Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Applications of Magnetic Liposomes in Cancer Therapies

Author(s): Anilkumar T.S, K.T. Shalumon and Jyh-Ping Chen*

Volume 25, Issue 13, 2019

Page: [1490 - 1504] Pages: 15

DOI: 10.2174/1389203720666190521114936

Price: $65

Abstract

MNPs find numerous important biomedical applications owing to their high biocompatibility and unique magnetic properties at the bottom level. Among several other biomedical applications, MNPs are gaining importance in treating various kinds of cancer either as a hyperthermia agent alone or as a drug/gene carrier for single or combined therapies. At the same time, another type of nano-carrier with lipid bilayer, i.e. liposomes, has also emerged as a platform for administration of pharmaceutical drugs, which sees increasing importance as a drug/gene carrier in cancer therapy due to its excellent biocompatibility, tunable particle size and the possibility for surface modification to overcome biological barriers and to reach targeted sites. MLs that combine MNPs with liposomes are endowed with advantages of both MNPs and liposomes and are gaining importance for cancer therapy in various modes. Hence, we will start by reviewing the synthesis methods of MNPs and MLs, followed by a comprehensive assessment of current strategies to apply MLs for different types of cancer treatments. These will include thermo-chemotherapy using MLs as a triggered releasing agent to deliver drugs/genes, photothermal/ photodynamic therapy and combined imaging and cancer therapy.

Keywords: Magnetic nanoparticles, liposomes, drug and gene delivery, photothermal therapy, photodynamic therapy, hyperthermia, MRI.

[1]
Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 2016; 66(4): 271-89.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[2]
Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin 2017; 67(1): 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[3]
Allemani C, Weir HK, Carreira H, et al. Global surveillance of cancer survival 1995-2009: Analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet 2015; 385(9972): 977-1010.
[http://dx.doi.org/10.1016/S0140-6736(14)62038-9] [PMID: 25467588]
[4]
Huang CY, Ju DT, Chang CF, Muralidhar Reddy P, Velmurugan BK. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine (Taipei) 2017; 7(4): 23.
[http://dx.doi.org/10.1051/bmdcn/2017070423] [PMID: 29130448]
[5]
Chakraborty S, Rahman T. The difficulties in cancer treatment. Ecancermedicalscience 2012; 6Ed16
[PMID: 24883085]
[6]
Arruebo M, Vilaboa N, Sáez-Gutierrez B, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel) 2011; 3(3): 3279-330.
[http://dx.doi.org/10.3390/cancers3033279] [PMID: 24212956]
[7]
Baskar R, Lee KA, Yeo R, Yeoh K-W. Cancer and radiation therapy: Current advances and future directions. Int J Med Sci 2012; 9(3): 193-9.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[8]
Petryk A, Giustini A, Ryan P, Strawbridge R, Hoopes P. Iron oxide nanoparticle hyperthermia and chemotherapy cancer treatment. Proc SPIE Int Soc Opt Eng. Curr Pharm Des 2011; 7181: 71810N.
[http://dx.doi.org/10.1117/12.810024] [PMID: 25346581]
[9]
Silva AKA, Silva EL, Carriço AS, Egito EST. Magnetic carriers: A promising device for targeting drugs into the human body. Curr Pharm Des 2007; 13(11): 1179-85.
[http://dx.doi.org/10.2174/138161207780618993] [PMID: 17430178]
[10]
Chen GJ, Wang LF. Design of magnetic nanoparticles-assisted drug delivery system. Curr Pharm Des 2011; 17(22): 2331-51.
[http://dx.doi.org/10.2174/138161211797052574] [PMID: 21736546]
[11]
Klein S, Sommer A, Distel LV, Neuhuber W, Kryschi C. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem Biophys Res Commun 2012; 425(2): 393-7.
[http://dx.doi.org/10.1016/j.bbrc.2012.07.108] [PMID: 22842461]
[12]
Huang G, Chen H, Dong Y, et al. Superparamagnetic iron oxide nanoparticles: Amplifying ROS stress to improve anticancer drug efficacy. Theranostics 2013; 3(2): 116-26.
[http://dx.doi.org/10.7150/thno.5411] [PMID: 23423156]
[13]
Bárcena C, Sra AK, Gao J. Applications of magnetic nanoparticles in biomedicine Nanoscale Magnetic Materials and Applications. Boston, MA: Springer 2009; pp. 591-626.
[http://dx.doi.org/10.1007/978-0-387-85600-1_20]
[14]
Espinosa A, Di Corato R, Kolosnjaj-Tabi J, Flaud P, Pellegrino T, Wilhelm C. Duality of iron oxide nanoparticles in cancer therapy: Amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 2016; 10(2): 2436-46.
[http://dx.doi.org/10.1021/acsnano.5b07249] [PMID: 26766814]
[15]
Mou X, Ali Z, Li S, He N. Applications of magnetic nanoparticles in targeted drug delivery system. J Nanosci Nanotechnol 2015; 15(1): 54-62.
[http://dx.doi.org/10.1166/jnn.2015.9585]
[16]
Abenojar EC, Wickramasinghe S, Bas-Concepcion J, Samia ACS. Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Prog Nat Sci Mater Int 2016; 26(5): 440-8.
[http://dx.doi.org/10.1016/j.pnsc.2016.09.004]
[17]
Chen YT, Kolhatkar AG, Zenasni O, Xu S, Lee TR. Biosensing using magnetic particle detection techniques. Sensors (Basel) 2017; 17(10)E2300
[http://dx.doi.org/10.3390/s17102300] [PMID: 28994727]
[18]
Gonzales-Weimuller M, Zeisberger M, Krishnan KM. Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater 2009; 321(13): 1947-50.
[http://dx.doi.org/10.1016/j.jmmm.2008.12.017] [PMID: 26405373]
[19]
Li W, Lee SS, Wu J, Hinton CH, Fortner JD. Shape and size controlled synthesis of uniform iron oxide nanocrystals through new non-hydrolytic routes. Nanotechnology 2016; 27(32)324002
[http://dx.doi.org/10.1088/0957-4484/27/32/324002] [PMID: 27354334]
[20]
Salunkhe AB, Khot VM, Pawar SH. Magnetic hyperthermia with magnetic nanoparticles: A status review. Curr Top Med Chem 2014; 14(5): 572-94.
[http://dx.doi.org/10.2174/1568026614666140118203550] [PMID: 24444167]
[21]
Usov NA, Nesmeyanov MS, Tarasov VP. Magnetic vortices as efficient nano heaters in magnetic nanoparticle hyperthermia. Sci Rep 2018; 8(1): 1224.
[http://dx.doi.org/10.1038/s41598-017-18162-8] [PMID: 29352175]
[22]
Shivani T, Ashu Bhan T. New developments in breast cancer therapy: Role of iron oxide nanoparticles. Adv Nat Sci Nanosci Nanotechnol 2017; 8(2)023002
[23]
Skitzki JJ, Repasky EA, Evans SS. Hyperthermia as an immunotherapy strategy for cancer. Curr Opin Investig Drugs 2009; 10(6): 550-8.
[PMID: 19513944]
[24]
Kossatz S, Ludwig R, Dähring H, et al. High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area. Pharm Res 2014; 31(12): 3274-88.
[http://dx.doi.org/10.1007/s11095-014-1417-0] [PMID: 24890197]
[25]
Cavaliere R, Ciocatto EC, Giovanella BC, et al. Selective heat sensitivity of cancer cells. Biochemical and clinical studies. Cancer 1967; 20(9): 1351-81.
[http://dx.doi.org/10.1002/1097-0142(196709)20:9<1351:AID-CNCR2820200902>3.0.CO;2-#] [PMID: 4292219]
[26]
Gordon RT, Hines JR, Gordon D. Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med Hypotheses 1979; 5(1): 83-102.
[http://dx.doi.org/10.1016/0306-9877(79)90063-X] [PMID: 459972]
[27]
Pradhan P, Giri J, Rieken F, et al. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release 2010; 142(1): 108-21.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.002] [PMID: 19819275]
[28]
Giustini A, Petryk A, Cassim M. Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life 2010; 1(1n02).
[http://dx.doi.org/10.1142/S1793984410000067.]
[29]
Neufeld E, Fuetterer M, Murbach M, Kuster N. Rapid method for thermal dose-based safety supervision during MR scans. Bioelectromagnetics 2015; 36(5): 398-407.
[http://dx.doi.org/10.1002/bem.21919] [PMID: 25962894]
[30]
Di Corato R, Béalle G, Kolosnjaj-Tabi J, et al. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano 2015; 9(3): 2904-16.
[http://dx.doi.org/10.1021/nn506949t] [PMID: 25695371]
[31]
Sato I, Umemura M, Mitsudo K, et al. Simultaneous hyperthermia-chemotherapy with controlled drug delivery using single-drug nanoparticles. Sci Rep 2016; 6: 24629.
[http://dx.doi.org/10.1038/srep24629] [PMID: 27103308]
[32]
Medina OP, Zhu Y, Kairemo K. Targeted liposomal drug delivery in cancer. Curr Pharm Des 2004; 10(24): 2981-9.
[http://dx.doi.org/10.2174/1381612043383467] [PMID: 15379663]
[33]
Lombardo D, Calandra P, Barreca D, Magazù S, Kiselev MA. Soft interaction in liposome nanocarriers for therapeutic drug delivery. Nanomaterials (Basel) 2016; 6(7): 125.
[http://dx.doi.org/10.3390/nano6070125] [PMID: 28335253]
[34]
Xing H, Hwang K, Lu Y. Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics 2016; 6(9): 1336-52.
[http://dx.doi.org/10.7150/thno.15464] [PMID: 27375783]
[35]
Jaafar-Maalej C, Elaissari A, Fessi H. Lipid-based carriers: Manufacturing and applications for pulmonary route. Expert Opin Drug Deliv 2012; 9(9): 1111-27.
[http://dx.doi.org/10.1517/17425247.2012.702751] [PMID: 22724618]
[36]
Riaz MK, Riaz MA, Zhang X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int J Mol Sci 2018; 19(1)E195
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[37]
Ngoune R, Peters A, von Elverfeldt D, Winkler K, Pütz G. Accumulating nanoparticles by EPR: A route of no return. J Control Release 2016; 238: 58-70.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.028] [PMID: 27448444]
[38]
Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond) 2013; 8(9): 1509-28.
[http://dx.doi.org/10.2217/nnm.13.118] [PMID: 23914966]
[39]
Eloy JO, Petrilli R, Raspantini GL, Lee RJ. Targeted liposomes for siRNA delivery to cancer. Curr Pharm Des 2018; 24(23): 2664-72.
[http://dx.doi.org/10.2174/1381612824666180807121935] [PMID: 30084323]
[40]
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol 2015; 6: 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[41]
Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008; 108(6): 2064-110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[42]
Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 2012; 112(11): 5818-78.
[http://dx.doi.org/10.1021/cr300068p] [PMID: 23043508]
[43]
Biehl P, Von der Lühe M, Dutz S, Schacher FH. Synthesis, characterization, and applications of magnetic nanoparticles featuring polyzwitterionic coatings. Polymers (Basel) 2018; 10(1): 91.
[http://dx.doi.org/10.3390/polym10010091] [PMID: 30966126]
[44]
Hergt R, Dutz S, Röder M. Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys Condens Matter 2008; 20(38)385214
[http://dx.doi.org/10.1088/0953-8984/20/38/385214] [PMID: 21693832]
[45]
Hauser AK, Mathias R, Anderson KW, Hilt JZ. The effects of synthesis method on the physical and chemical properties of dextran coated iron oxide nanoparticles. Mater Chem Phys 2015; 160: 177-86.
[http://dx.doi.org/10.1016/j.matchemphys.2015.04.022] [PMID: 26097275]
[46]
Iwamoto T, Ishigaki T. Fabrication of iron oxide nanoparticles using laser ablation in liquids. J Phys Conf Ser 2013; 441(1)012034
[http://dx.doi.org/10.1088/1742-6596/441/1/012034]
[47]
Kim M, Osone S, Kim T, Higashi H, Seto T. Synthesis of nanoparticles by laser ablation: A review. Kona Powder Particle J 2017; 34: 80-90.
[http://dx.doi.org/10.14356/kona.2017009]
[48]
Kamel Madbouly A, Hamdan T. Bio-synthesis of magnetite nanoparticles by bacteria. Am J Nano Res Appl 2014; 2(5): 98-103.
[49]
Klem MT, Young M, Douglas T. Biomimetic magnetic nanoparticles. Mater Today 2005; 8(9): 28-37.
[http://dx.doi.org/10.1016/S1369-7021(05)71078-6]
[50]
Bazylinski DA. Synthesis of the bacterial magnetosome: The making of a magnetic personality. Int Microbiol 1999; 2(2): 71-80.
[PMID: 10943396]
[51]
Elfick A, Rischitor G, Mouras R, et al. Biosynthesis of magnetic nanoparticles by human mesenchymal stem cells following transfection with the magnetotactic bacterial gene mms6. Sci Rep 2017; 7: 39755.
[http://dx.doi.org/10.1038/srep39755] [PMID: 28051139]
[52]
Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 2012; 7(1): 144-4.
[http://dx.doi.org/10.1186/1556-276X-7-144] [PMID: 22348683]
[53]
El-Dakdouki M, El-Boubbou K, Xia J, Kavunja H, Huang X. Methods for magnetic nanoparticle synthesis and functionalization Chemistry of Bioconjugates: Synthesis, Characterization, and Biomedical Applications. New York, NY: Wiley 2014; pp. 281-314.
[http://dx.doi.org/10.1002/9781118775882.ch10]
[54]
Khalil MI. Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors. Arab J Chem 2015; 8(2): 279-84.
[http://dx.doi.org/10.1016/j.arabjc.2015.02.008]
[55]
Maherani B, Arab-Tehrany E, Mozafari M, Gaiani CML. Liposomes: A review of manufacturing techniques and targeting strategies. Curr Nanosci 2011; 7(3): 436-52.
[http://dx.doi.org/10.2174/157341311795542453]
[56]
Laouini A, Jaafar-Maalej C, Limayem Blouza I, Sfar S, Charcosset C, Fessi H. Preparation, characterization and applications of liposomes: State of the art. J Colloid Sci Biotechnol 2012; 1(2): 147-68.
[http://dx.doi.org/10.1166/jcsb.2012.1020]
[57]
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[58]
Cortesi R, Esposito E, Gambarin S, Telloli P, Menegatti E, Nastruzzi C. Preparation of liposomes by reverse-phase evaporation using alternative organic solvents. J Microencapsul 1999; 16(2): 251-6.
[http://dx.doi.org/10.1080/026520499289220] [PMID: 10080118]
[59]
Gjetting T, Andresen TL, Christensen CL, Cramer F, Poulsen TT, Poulsen HS. A simple protocol for preparation of a liposomal vesicle with encapsulated plasmid DNA that mediate high accumulation and reporter gene activity in tumor tissue. Results Pharma Sci 2011; 1(1): 49-56.
[http://dx.doi.org/10.1016/j.rinphs.2011.08.001] [PMID: 25755981]
[60]
Kalepu S, Kumar Kt S, Betha S, Varma MM. Liposomal drug delivery system - a comprehensive review. Int J Drug Dev Res 2013; 5(4): 62-75.
[61]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102-2.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[62]
de Meyer F, Smit B. Effect of cholesterol on the structure of a phospholipid bilayer. Proc Natl Acad Sci USA 2009; 106(10): 3654-8.
[http://dx.doi.org/10.1073/pnas.0809959106] [PMID: 19225105]
[63]
Kessel A, Ben-Tal N, May S. Interactions of cholesterol with lipid bilayers: The preferred configuration and fluctuations. Biophys J 2001; 81(2): 643-58.
[http://dx.doi.org/10.1016/S0006-3495(01)75729-3] [PMID: 11463613]
[64]
Meure LA, Foster NR, Dehghani F. Conventional and dense gas techniques for the production of liposomes: A review. AAPS PharmSciTech 2008; 9(3): 798-809.
[http://dx.doi.org/10.1208/s12249-008-9097-x] [PMID: 18597175]
[65]
Lapinski MM, Castro-Forero A, Greiner AJ, Ofoli RY, Blanchard GJ. Comparison of liposomes formed by sonication and extrusion: Rotational and translational diffusion of an embedded chromophore. Langmuir 2007; 23(23): 11677-83.
[http://dx.doi.org/10.1021/la7020963] [PMID: 17939695]
[66]
Riaz M. Liposomes preparation methods. Pak J Pharm Sci 1996; 9(1): 65-77.
[PMID: 16414777]
[67]
Jousma H, Talsma H, Spies F, Joosten JGH, Junginger HE, Crommelin DJA. Characterization of liposomes. The influence of extrusion of multilamellar vesicles through polycarbonate membranes on particle size, particle size distribution and number of bilayers. Int J Pharm 1987; 35(3): 263-74.
[http://dx.doi.org/10.1016/0378-5173(87)90139-6]
[68]
Cho NJ, Hwang LY, Solandt JJR, Frank CW. Comparison of extruded and sonicated vesicles for planar bilayer self-assembly. Materials (Basel) 2013; 6(8): 3294-308.
[http://dx.doi.org/10.3390/ma6083294] [PMID: 28811437]
[69]
Eliaz RE, Szoka FC Jr. Liposome-encapsulated doxorubicin targeted to CD44: A strategy to kill CD44-overexpressing tumor cells. Cancer Res 2001; 61(6): 2592-601.
[PMID: 11289136]
[70]
Wang F, Liu J. Self-healable and reversible liposome leakage by citrate-capped gold nanoparticles: Probing the initial adsorption/desorption induced lipid phase transition. Nanoscale 2015; 7(38): 15599-604.
[http://dx.doi.org/10.1039/C5NR04805B] [PMID: 26372064]
[71]
Pupo E, Padrón A, Santana E, et al. Preparation of plasmid DNA-containing liposomes using a high-pressure homogenization--extrusion technique. J Control Release 2005; 104(2): 379-96.
[http://dx.doi.org/10.1016/j.jconrel.2005.02.001] [PMID: 15907587]
[72]
Schneider T, Sachse A, Röbling G, Brandl M. Large-scale production of liposomes of defined size by a new continuous high pressure extrusion device. Drug Dev Ind Pharm 1994; 20(18): 2787-807.
[http://dx.doi.org/10.3109/03639049409042681]
[73]
Giulio AD, Maurizi G, Odoardi P, Saletti MA, Amicosante G, Oratore A. Encapsulation of ampicillin in reverse-phase evaporation liposomes: A direct evaluation by derivative spectrophotometry. Int J Pharm 1991; 74(2): 183-8.
[http://dx.doi.org/10.1016/0378-5173(91)90235-G]
[74]
Madni MA, Sarfraz M, Rehman M, et al. Liposomal Drug Delivery: A versatile platform for challenging clinical applications. J Pharm Pharm Sci 2014; 17(3): 401-26.
[75]
Szoka F Jr, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci USA 1978; 75(9): 4194-8.
[http://dx.doi.org/10.1073/pnas.75.9.4194] [PMID: 279908]
[76]
Aburai K, Yagi N, Yokoyama Y, et al. Preparation of liposomes modified with lipopeptides using a supercritical carbon dioxide reverse-phase evaporation method. J Oleo Sci 2011; 60(5): 209-15.
[http://dx.doi.org/10.5650/jos.60.209] [PMID: 21502720]
[77]
Sakai H, Gotoh T, Imura T, Sakai K, Otake K, Abe M. Preparation and properties of liposomes composed of various phospholipids with different hydrophobic chains using a supercritical reverse phase evaporation method. J Oleo Sci 2008; 57(11): 613-21.
[http://dx.doi.org/10.5650/jos.57.613] [PMID: 18838834]
[78]
Yamaguchi S, Kimura Z, Misono T, et al. Preparation and properties of nonionic vesicles prepared with polyglycerol fatty acid esters using the supercritical carbon dioxide reverse phase evaporation method. J Oleo Sci 2016; 65(3): 201-6.
[http://dx.doi.org/10.5650/jos.ess15217] [PMID: 26876680]
[79]
Yamaguchi S, Tsuchiya K, Sakai K, Abe M, Sakai H. Preparation of nonionic vesicles using the supercritical carbon dioxide reverse phase evaporation method and analysis of their solution properties. J Oleo Sci 2016; 65(1): 21-6.
[http://dx.doi.org/10.5650/jos.ess15192] [PMID: 26666274]
[80]
Otake K, Shimomura T, Goto T, et al. One-step preparation of chitosan-coated cationic liposomes by an improved supercritical reverse-phase evaporation method. Langmuir 2006; 22(9): 4054-9.
[http://dx.doi.org/10.1021/la051662a] [PMID: 16618144]
[81]
Otake K, Shimomura T, Goto T, et al. Preparation of liposomes using an improved supercritical reverse phase evaporation method. Langmuir 2006; 22(6): 2543-50.
[http://dx.doi.org/10.1021/la051654u] [PMID: 16519453]
[82]
Zhong J. Liposomal preparation by supercritical fluids technology. Afr J Biotechnol 2011; 10(73)
[http://dx.doi.org/10.5897/AJB11.1394]
[83]
Jiskoot W, Teerlink T, Beuvery EC, Crommelin DJA. Preparation of liposomes via detergent removal from mixed micelles by dilution. The effect of bilayer composition and process parameters on liposome characteristics. Pharm Weekbl Sci 1986; 8(5): 259-65.
[http://dx.doi.org/10.1007/BF01960070] [PMID: 3786108]
[84]
Huang Z, Li X, Zhang T, et al. Progress involving new techniques for liposome preparation. Asian J Pharm Sci 2014; 9(4): 176-82.
[http://dx.doi.org/10.1016/j.ajps.2014.06.001]
[85]
Dua SJ, Rana AC, Bhandari AK. Liposome: Methods of preparation and applications. Int J Pharm Studies Res 2012; 3(2): 14-20.
[86]
Deamer DW. Preparation and properties of ether-injection liposomes. Ann N Y Acad Sci 1978; 308: 250-8.
[http://dx.doi.org/10.1111/j.1749-6632.1978.tb22027.x] [PMID: 279292]
[87]
Rahman SA, Abdelmalak NS, Badawi A, Elbayoumy T, Sabry N, El Ramly A. Tretinoin-loaded liposomal formulations: From lab to comparative clinical study in acne patients. Drug Deliv 2016; 23(4): 1184-93.
[PMID: 26004128]
[88]
Deamer D, Bangham AD. Large volume liposomes by an ether vaporization method. Biochim Biophys Acta 1976; 443(3): 629-34.
[PMID: 963074]
[89]
Jaafar-Maalej C, Diab R, Andrieu V, Elaissari A, Fessi H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res 2010; 20(3): 228-43.
[http://dx.doi.org/10.3109/08982100903347923] [PMID: 19899957]
[90]
Wagner A, Vorauer-Uhl K. Liposome technology for industrial purposes. J Drug Deliv 2011; 2011591325
[http://dx.doi.org/10.1155/2011/591325] [PMID: 21490754]
[91]
Hauschild S, Lipprandt U, Rumplecker A, et al. Direct preparation and loading of lipid and polymer vesicles using inkjets. Small 2005; 1(12): 1177-80.
[http://dx.doi.org/10.1002/smll.200500093] [PMID: 17193413]
[92]
Carugo D, Bottaro E, Owen J, Stride E, Nastruzzi C. Liposome production by microfluidics: Potential and limiting factors. Sci Rep 2016; 6: 25876.
[http://dx.doi.org/10.1038/srep25876] [PMID: 27194474]
[93]
Yu B, Lee RJ, Lee LJ. Microfluidic methods for production of liposomes. Methods Enzymol 2009; 465: 129-41.
[http://dx.doi.org/10.1016/S0076-6879(09)65007-2] [PMID: 19913165]
[94]
Andar AU, Hood RR, Vreeland WN, Devoe DL, Swaan PW. Microfluidic preparation of liposomes to determine particle size influence on cellular uptake mechanisms. Pharm Res 2014; 31(2): 401-13.
[http://dx.doi.org/10.1007/s11095-013-1171-8] [PMID: 24092051]
[95]
Jahn A, Vreeland WN, DeVoe DL, Locascio LE, Gaitan M. Microfluidic directed formation of liposomes of controlled size. Langmuir 2007; 23(11): 6289-93.
[http://dx.doi.org/10.1021/la070051a] [PMID: 17451256]
[96]
Gogoi M, Kumar N, Patra S. Multifunctional magnetic liposomes for cancer imaging and therapeutic applications.In Nanoarchitectonics for Smart Delivery and Drug Targeting, Holban, AM. New York, NY: Elsevier 2016; pp. 743-82.
[97]
Lin W, Xie X, Yang Y, et al. Thermosensitive magnetic liposomes with doxorubicin cell-penetrating peptides conjugate for enhanced and targeted cancer therapy. Drug Deliv 2016; 23(9): 3436-43.
[http://dx.doi.org/10.1080/10717544.2016.1189983] [PMID: 27193383]
[98]
Ferreira RV, Martins TM, Goes AM, et al. Thermosensitive gemcitabine-magnetoliposomes for combined hyperthermia and chemotherapy. Nanotechnology 2016; 27(8)085105
[http://dx.doi.org/10.1088/0957-4484/27/8/085105] [PMID: 26820520]
[99]
Hardiansyah A, Yang MC, Liu TY, Kuo CY, Huang LY, Chan TY. Hydrophobic drug-loaded pegylated magnetic liposomes for drug-controlled release. Nanoscale Res Lett 2017; 12(1): 355.
[http://dx.doi.org/10.1186/s11671-017-2119-4] [PMID: 28525950]
[100]
Al-Ahmady Z, Lozano N, Mei KC, Al-Jamal WT, Kostarelos K. Engineering thermosensitive liposome-nanoparticle hybrids loaded with doxorubicin for heat-triggered drug release. Int J Pharm 2016; 514(1): 133-41.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.009] [PMID: 27863656]
[101]
Gogoi M, Sarma HD, Bahadur D, Banerjee R. Biphasic magnetic nanoparticles-nanovesicle hybrids for chemotherapy and self-controlled hyperthermia. Nanomedicine (Lond) 2014; 9(7): 955-70.
[http://dx.doi.org/10.2217/nnm.13.90] [PMID: 24102326]
[102]
Tai LA, Tsai PJ, Wang YC, Wang YJ, Lo LW, Yang CS. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release. Nanotechnology 2009; 20(13)135101
[http://dx.doi.org/10.1088/0957-4484/20/13/135101] [PMID: 19420485]
[103]
Alavizadeh SH, Gheybi F, Nikpoor AR, Badiee A, Golmohammadzadeh S, Jaafari MR. Therapeutic efficacy of cisplatin thermosensitive liposomes upon mild hyperthermia in C26 tumor bearing Balb/c mice. Mol Pharm 2017; 14(3): 712-21.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01006] [PMID: 28135098]
[104]
Gogoi M, Jaiswal MK, Sarma HD, Bahadur D, Banerjee R. Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy. Integr Biol 2017; 9(6): 555-65.
[http://dx.doi.org/10.1039/C6IB00234J] [PMID: 28513646]
[105]
Kami D, Takeda S, Itakura Y, Gojo S, Watanabe M, Toyoda M. Application of magnetic nanoparticles to gene delivery. Int J Mol Sci 2011; 12(6): 3705-22.
[http://dx.doi.org/10.3390/ijms12063705] [PMID: 21747701]
[106]
Du C-X, Zhang T-B, Dong S-L, et al. A magnetic gene delivery nanosystem based on cationic liposomes. J Mater Sci 2016; 51(18): 8461-70.
[http://dx.doi.org/10.1007/s10853-016-0106-2]
[107]
Wang Y, Cui H, Li K, et al. A magnetic nanoparticle-based multiple-gene delivery system for transfection of porcine kidney cells. PLoS One 2014; 9(7)E102886
[http://dx.doi.org/10.1371/journal.pone.0102886] [PMID: 25048709]
[108]
Zheng X, Lu J, Deng L, Xiong Y, Chen J. Preparation and characterization of magnetic cationic liposome in gene delivery. Int J Pharm 2009; 366(1-2): 211-7.
[http://dx.doi.org/10.1016/j.ijpharm.2008.09.019] [PMID: 18848871]
[109]
Zhao Y, Huang L. Lipid nanoparticles for gene delivery. Adv Genet 2014; 88: 13-36.
[http://dx.doi.org/10.1016/B978-0-12-800148-6.00002-X] [PMID: 25409602]
[110]
Kono Y, Jinzai H, Kotera Y, Fujita T. Influence of physicochemical properties and PEG modification of magnetic liposomes on their interaction with intestinal epithelial Caco-2 cells. Biol Pharm Bull 2017; 40(12): 2166-74.
[http://dx.doi.org/10.1248/bpb.b17-00563] [PMID: 28966298]
[111]
Wang CM, Kong MJ, Dong AQ. Magnetic liposome mediated shRNA specifically suppresses the growth of non-small cell lung cancer in vitro and in vivo. Zhonghua Yi Xue Za Zhi 2012; 92(5): 341-4.
[PMID: 22490840]
[112]
Jiang S, Eltoukhy AA, Love KT, Langer R, Anderson DG. Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery. Nano Lett 2013; 13(3): 1059-64.
[http://dx.doi.org/10.1021/nl304287a] [PMID: 23394319]
[113]
Yang Y, Xie X, Xu X, et al. Thermal and magnetic dual-responsive liposomes with a cell-penetrating peptide-siRNA conjugate for enhanced and targeted cancer therapy. Colloids Surf B Biointerfaces 2016; 146: 607-15.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.002] [PMID: 27429294]
[114]
Peng Z, Wang C, Fang E, Lu X, Wang G, Tong Q. Co-delivery of doxorubicin and SATB1 shRNA by thermosensitive magnetic cationic liposomes for gastric cancer therapy. PLoS One 2014; 9(3)E92924
[http://dx.doi.org/10.1371/journal.pone.0092924] [PMID: 24675979]
[115]
Chu M, Shao Y, Peng J, et al. Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials 2013; 34(16): 4078-88.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.086] [PMID: 23465836]
[116]
Shen S, Kong F, Guo X, et al. CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation. Nanoscale 2013; 5(17): 8056-66.
[http://dx.doi.org/10.1039/c3nr01447a] [PMID: 23873020]
[117]
Zhou Z, Sun Y, Shen J, et al. Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 2014; 35(26): 7470-8.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.063] [PMID: 24881997]
[118]
Chen C-L, Kuo L-R, Lee S-Y, et al. Photothermal cancer therapy via femtosecond-laser-excited FePt nanoparticles. Biomaterials 2013; 34(4): 1128-34.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.044] [PMID: 23137396]
[119]
Estelrich J, Busquets MA. Iron oxide nanoparticles in photothermal therapy. Molecules 2018; 23(7)E1567
[http://dx.doi.org/10.3390/molecules23071567] [PMID: 29958427]
[120]
Shen S, Wang S, Zheng R, et al. Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 2015; 39: 67-74.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.064] [PMID: 25477173]
[121]
Jiang X, Zhang S, Ren F, et al. Ultrasmall magnetic CuFeSe2 ternary nanocrystals for multimodal imaging guided photothermal therapy of cancer. ACS Nano 2017; 11(6): 5633-45.
[http://dx.doi.org/10.1021/acsnano.7b01032] [PMID: 28525715]
[122]
Basoglu H, Bilgin MD, Demir MM. Protoporphyrin IX-loaded magnetoliposomes as a potential drug delivery system for photodynamic therapy: Fabrication, characterization and in vitro study. Photodiagn Photodyn Ther 2016; 13: 81-90.
[http://dx.doi.org/10.1016/j.pdpdt.2015.12.010] [PMID: 26751701]
[123]
Anilkumar TS, Lu YJ, Chen HA, Hsu HL, Jose G, Chen JP. Dual targeted magnetic photosensitive liposomes for photothermal/photodynamic tumor therapy. J Magn Magn Mater 2018.
[124]
Xue P, Sun L, Li Q, et al. PEGylated magnetic Prussian blue nanoparticles asa multifunctional therapeutic agent for combined targeted photothermal ablation and pH-triggered chemotherapy of tumour cells. J Colloid Interface Sci 2018; 509: 384-94.
[http://dx.doi.org/10.1016/j.jcis.2017.09.027] [PMID: 28923735]
[125]
Khosroshahi M, Ghazanfari L, Hassannejad Z, Lenhert S. In-vitro application of doxorubicin loaded magnetoplasmonic thermosensitive liposomes for laser hyperthermia and chemotherapy of breast cancer. J Nanomed Nanotechnol 2015; 6: 298.
[http://dx.doi.org/10.4172/2157-7439.1000298]
[126]
Bolfarini GC, Siqueira-Moura MP, Demets GJF, Morais PC, Tedesco AC. In vitro evaluation of combined hyperthermia and photodynamic effects using magnetoliposomes loaded with cucurbituril zinc phthalocyanine complex on melanoma. J Photochem Photobiol B 2012; 115: 1-4.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.05.009] [PMID: 22854225]
[127]
Guo Y, Zhang Y, Ma J, et al. Light/magnetic hyperthermia triggered drug released from multi-functional thermo-sensitive magnetoliposomes for precise cancer synergetic theranostics. J Control Release 2018; 272: 145-58.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.028] [PMID: 28442407]
[128]
Estelrich J, Sánchez-Martín MJ, Busquets MA. Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents. Int J Nanomedicine 2015; 10: 1727-41.
[PMID: 25834422]
[129]
Kamaly N, Kalber T, Ahmad A, et al. Bimodal paramagnetic and fluorescent liposomes for cellular and tumor magnetic resonance imaging. Bioconjug Chem 2008; 19(1): 118-29.
[http://dx.doi.org/10.1021/bc7001715] [PMID: 17985841]
[130]
Grover VPB, Tognarelli JM, Crossey MME, Cox IJ, Taylor-Robinson SD, McPhail MJW. Magnetic resonance imaging: Principles and techniques: Lessons for clinicians. J Clin Exp Hepatol 2015; 5(3): 246-55.
[http://dx.doi.org/10.1016/j.jceh.2015.08.001] [PMID: 26628842]
[131]
Sun C, Lee JSH, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008; 60(11): 1252-65.
[http://dx.doi.org/10.1016/j.addr.2008.03.018] [PMID: 18558452]
[132]
Sosnovik DE, Nahrendorf M, Weissleder R. Magnetic nanoparticles for MR imaging: Agents, techniques and cardiovascular applications. Basic Res Cardiol 2008; 103(2): 122-30.
[http://dx.doi.org/10.1007/s00395-008-0710-7] [PMID: 18324368]
[133]
Mulder WJM, Strijkers GJ, Griffioen AW, et al. A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets. Bioconjug Chem 2004; 15(4): 799-806.
[http://dx.doi.org/10.1021/bc049949r] [PMID: 15264867]
[134]
German SV, Navolokin NA, Kuznetsova NR, et al. Liposomes loaded with hydrophilic magnetite nanoparticles: Preparation and application as contrast agents for magnetic resonance imaging. Colloids Surf B Biointerfaces 2015; 135: 109-15.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.042] [PMID: 26241922]
[135]
Béalle G, Di Corato R, Kolosnjaj-Tabi J, et al. Ultra magnetic liposomes for MR imaging, targeting, and hyperthermia. Langmuir 2012; 28(32): 11834-42.
[http://dx.doi.org/10.1021/la3024716] [PMID: 22799267]
[136]
Zhang C, Wu D, Lu L, et al. Multifunctional hybrid liposome as a theranostic platform for magnetic resonance imaging guided photothermal therapy. ACS Biomater Sci Eng 2018; 4(7): 2597-605.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00176]
[137]
Sun Q, You Q, Wang J, et al. Theranostic nanoplatform: Triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles. ACS Appl Mater Interfaces 2018; 10(2): 1963-75.
[http://dx.doi.org/10.1021/acsami.7b13651] [PMID: 29276824]
[138]
Kwon Y-S, Jang SJ, Yoon YI, et al. Magnetic liposomal particles for magnetic imaging, sensing, and the pH-sensitive delivery of therapeutics. Part Part Syst Charact 2016; 33(5): 242-7.
[http://dx.doi.org/10.1002/ppsc.201600041]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy