[1]
Wolffe, A.; Matzke, M. Epigenetics: Regulation through repression. Science, 1999, 286(5439), 481-486. [http:// dx.doi.org/10.11226/science.286.5439.481]. [PMID: 10521337].
[2]
Chaturvedi, P.; Tyagi, S.C. Epigenetic mechanisms underlying cardiac degeneration and regeneration. Int. J. Cardiol., 2014, 173(1), 1-11. [http://dx.doi.org/10.1016/j.ijcard.2014.02.008]. [PMID: 24636549].
[3]
Chalkiadaki, A.; Guarente, L. The multifaceted functions of sirtuins in cancer. Nat. Rev. Cancer, 2015, 15(10), 608-624. [http://dx.doi.org/10.1038/nrc3985]. [PMID: 26383140].
[4]
Shuang, S.; Zeming, L.U.; Jin, J.J.; Yong, C. Genetic modes of epigenetic modification and its research progress. Chin. Sci. Bull., 2016, 61(36), 3878-3886. [http://dx.doi.org/10.1360/N972016-00972].
[5]
Chalkiadaki, A.; Guarente, L. Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat. Rev. Endocrinol., 2012, 8(5), 287-296. [http://dx.doi.org/10.1038/nrendo.2011.225]. [PMID: 22249520].
[6]
Chang, H.C.; Guarente, L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol. Metab., 2014, 25(3), 138-145. [http://dx.doi.org/10.1016/j.tem.2013.12.001]. [PMID: 24388149].
[7]
Inoue, T.; Hiratsuka, M.; Osaki, M.; Yamada, H.; Kishimoto, I.; Yamaguchi, S.; Nakano, S.; Katoh, M.; Ito, H.; Oshimura, M. SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene, 2007, 26(7), 945-957. [http://dx.doi.org/10.1038/sj.onc.1209857]. [PMID: 16909107].
[8]
Xiaobo, M. Design, Synthesis and Activity of A Novel Selective Epigenetic Target SIRT2 Inhibitor; Xihua University: Chengdu, 2017.
[9]
Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov., 2006, 5(9), 769-784. [http://dx.doi.org/10.1038/nrd2133]. [PMID: 16955068].
[10]
Haigis, M.C.; Sinclair, D.A. Mammalian sirtuins: Biological insights and disease relevance. Annu. Rev. Pathol., 2010, 5, 253-295. [http://dx.doi.org/10.1146/annurev.pathol.4.110807.092250]. [PMID: 20078221].
[11]
Michan, S.; Sinclair, D. Sirtuins in mammals: Insights into their biological function. Biochem. J., 2007, 404(1), 1-13. [http://dx.doi.org/10.1042/BJ20070140]. [PMID: 17447894].
[12]
Moniot, S.; Weyand, M.; Steegborn, C. Structures, substrates, and regulators of Mammalian sirtuins - opportunities and challenges for drug development. Front. Pharmacol., 2012, 3(3), 16. [http://dx.doi.org/10.3389/fphar.2012.00016]. [PMID: 22363286].
[13]
Chopra, V.; Quinti, L.; Kim, J.; Vollor, L.; Narayanan, K.L.; Edgerly, C.; Cipicchio, P.M.; Lauver, M.A.; Choi, S.H.; Silverman, R.B.; Ferrante, R.J.; Hersch, S.; Kazantsev, A.G. The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington’s disease mouse models. Cell Rep., 2012, 2(6), 1492-1497. [http://dx.doi.org/10.1016/j.celrep.2012.11.001]. [PMID: 23200855].
[14]
Gomes, P.; Fleming Outeiro, T.; Cavadas, C. Emerging Role of Sirtuin 2 in the regulation of mammalian metabolism. Trends Pharmacol. Sci., 2015, 36(11), 756-768. [http://dx.doi.org/10.1016/j.tips.2015.08.001]. [PMID: 26538315].
[15]
Liu, G.; Park, S.H.; Imbesi, M.; Nathan, W.J.; Zou, X.; Zhu, Y.; Jiang, H.; Parisiadou, L.; Gius, D. Loss of NAD-dependent protein deacetylase sirtuin-2 alters mitochondrial protein acetylation and dysregulates mitophagy. Antioxid. Redox Signal., 2017, 26(15), 849-863. [http://dx.doi.org/10.1089/ars.2016.6662]. [PMID: 27460777].
[16]
Kozako, T.; Suzuki, T.; Yoshimitsu, M.; Arima, N.; Honda, S.; Soeda, S. Anticancer agents targeted to sirtuins. Molecules, 2014, 19(12), 20295-20313. [http://dx.doi.org/10.3390/molecules191220295]. [PMID: 25486244].
[17]
Wang, F.; Nguyen, M.; Qin, F.X.; Tong, Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell, 2007, 6(4), 505-504. [http://dx.doi.org/10.1111/j.1474-9726.2007.00304.x].
[18]
Kim, H.S.; Vassilopoulos, A.; Wang, R.H.; Lahusen, T.; Xiao, Z.; Xu, X.; Li, C.; Veenstra, T.D.; Li, B.; Yu, H.; Ji, J.; Wang, X.W.; Park, S.H.; Cha, Y.I.; Gius, D.; Deng, C.X. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell, 2011, 20(4), 487-499. [http://dx.doi.org/10.1016/j.ccr.2011.09.004]. [PMID: 22014574].
[19]
Maxwell, M.M.; Tomkinson, E.M.; Nobles, J.; Wizeman, J.W.; Amore, A.M.; Quinti, L.; Chopra, V.; Hersch, S.M.; Kazantsev, A.G. The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS. Hum. Mol. Genet., 2011, 20(20), 3986-3996. [http://dx.doi.org/10.1093/hmg/ddr326]. [PMID: 21791548].
[20]
Hu, F.; Sun, X.; Li, G.; Wu, Q.; Chen, Y.; Yang, X.; Luo, X.; Hu, J.; Wang, G. Inhibition of SIRT2 limits tumour angiogenesis via inactivation of the STAT3/VEGFA signalling pathway. Cell Death Dis., 2018, 10(1), 9. [http://dx.doi.org/10.1038/s41419-018-1260-z]. [PMID: 30584257].
[21]
Huang, S.; Zhao, Z.; Tang, D.; Zhou, Q.; Li, Y.; Zhou, L.; Yin, Y.; Wang, Y.; Pan, Y.; Dorfman, R.G.; Ling, T.; Zhang, M. Downregulation of sirt2 inhibits invasion of hepatocellular carcinoma by inhibiting energy metabolism. Transl. Oncol., 2017, 10(6), 917-927. [http://dx.doi.org/10.1016/j.tranon.2017.09.006]. [PMID: 28992545].
[22]
Kim, H.S.; Vassilopoulos, A.; Wang, R.H.; Lahusen, T.; Xiao, Z.; Xu, X.; Li, C.; Veenstra, T.D.; Li, B.; Yu, H.; Ji, J.; Wang, X.W.; Park, S.H.; Cha, Y.I.; Gius, D.; Deng, C.X. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell, 2011, 20(4), 487-499. [http://dx.doi.org/10.1016/j.ccr.2011.09.004]. [PMID: 22014574].
[23]
McGlynn, L.M.; Zino, S.; MacDonald, A.I.; Curle, J.; Reilly, J.E.; Mohammed, Z.M.A.; McMillan, D.C.; Mallon, E.; Payne, A.P.; Edwards, J.; Shiels, P.G. SIRT2: Tumour suppressor or tumour promoter in operable breast cancer? Eur. J. Cancer, 2014, 50(2), 290-301. [http://dx.doi.org/10.1016/j.ejca.2013.10.005]. [PMID: 24183459].
[24]
Soung, Y.H.; Pruitt, K.; Chung, J. Epigenetic silencing of ARRDC3 expression in basal-like breast cancer cells. Sci. Rep., 2014, 4(19)(Suppl.), 3846. [PMID: 24457910].
[25]
Cheon, M.G.; Kim, W.; Choi, M.; Kim, J.E. AK-1, A specific SIRT2 inhibitor, induces cell cycle arrest by downregulating Snail in HCT116 human colon carcinoma cells. Cancer Lett., 2015, 356(2 Pt B), 637-645. [http://dx.doi.org/10.1016/j.canlet.2014.10.012]. [PMID: 25312940].
[26]
Yan-Hua, D.U.; Zhang, H.Y.; Sun, H.; Amp, O. Reduced expression of SIRT2 in serous ovarian carcinoma promotes cell proliferation,migration and invasion. Chinese J. Pathophysiol., 2015, 11(10), 1181-1189.
[27]
Jing, H.; Hu, J.; He, B.; Negrón Abril, Y.L.; Stupinski, J.; Weiser, K.; Carbonaro, M.; Chiang, Y.L.; Southard, T.; Giannakakou, P.; Weiss, R.S.; Lin, H.A. SIRT2-selective inhibitor promotes c-myc oncoprotein degradation and exhibits broad anticancer activity. Cancer Cell, 2016, 29(3), 297-310. [http://dx.doi.org/10.1016/j.ccell.2016.02.007]. [PMID: 26977881].
[28]
Singh, S.; Kumar, P.U.; Thakur, S.; Kiran, S.; Sen, B.; Sharma, S.; Rao, V.V.; Poongothai, A.R.; Ramakrishna, G. Expression/locali-zation patterns of sirtuins (SIRT1, SIRT2, and SIRT7) during progression of cervical cancer and effects of sirtuin inhibitors on growth of cervical cancer cells. Tumour Biol., 2015, 36(8), 6159-6171. [http://dx.doi.org/10.1007/s13277-015-3300-y]. [PMID: 25794641].
[29]
Kim, H.W.; Kim, S.A.; Ahn, S.G. Sirtuin inhibitors, EX527 and AGK2, suppress cell migration by inhibiting HSF1 protein stability. Oncol. Rep., 2016, 35(1), 235-242. [http://dx.doi.org/10.3892/or.2015.4381]. [PMID: 26530275].
[30]
He, X.; Nie, H.; Hong, Y.; Sheng, C.; Xia, W.; Ying, W. SIRT2 activity is required for the survival of C6 glioma cells. Biochem. Biophys. Res. Commun., 2012, 417(1), 468-472. [http://dx.doi.org/10.1016/j.bbrc.2011.11.141]. [PMID: 22166219].
[31]
Grbesa, I.; Pajares, M.J.; Martínez-Terroba, E.; Agorreta, J.; Mikecin, A.M.; Larráyoz, M.; Idoate, M.A.; Gall-Troselj, K.; Pio, R.; Montuenga, L.M. Expression of sirtuin 1 and 2 is associated with poor prognosis in non-small cell lung cancer patients. PLoS One, 2015, 10(4)e0124670 [http://dx.doi.org/10.1371/journal.pone.0124670]. [PMID: 25915617].
[32]
Dryden, S.C.; Nahhas, F.A.; Nowak, J.E.; Goustin, A.S.; Tainsky, M.A. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell. Biol., 2003, 23(9), 3173-3185. [http://dx.doi.org/10.1128/MCB.23.9.3173-3185.2003]. [PMID: 12697818].
[33]
Seo, K.S.; Park, J.H.; Heo, J.Y.; Jing, K.; Han, J.; Min, K.N.; Kim, C.; Koh, G.Y.; Lim, K.; Kang, G.Y.; Uee Lee, J.; Yim, Y.H.; Shong, M.; Kwak, T.H.; Kweon, G.R. SIRT2 regulates tumour hypoxia response by promoting HIF-1α hydroxylation. Oncogene, 2015, 34(11), 1354-1362. [http://dx.doi.org/10.1038/onc.2014.76]. [PMID: 24681946].
[34]
Suematsu, T.; Li, Y.; Kojima, H.; Nakajima, K.; Oshimura, M.; Inoue, T. Deacetylation of the mitotic checkpoint protein BubR1 at lysine 250 by SIRT2 and subsequent effects on BubR1 degradation during the prometaphase/anaphase transition. Biochem. Biophys. Res. Commun., 2014, 453(3), 588-594. [http://dx.doi.org/10.1016/j.bbrc.2014.09.128]. [PMID: 25285631].
[35]
Hong, N.; Feng, Y.; Jing-Wen, T.; Tong-De, T.; Hua-Hua, L.I.; Guang-Xing, Y.; Yi-Xiao, F.; Hao-Ben, Z. Influences of SIRT2 silence on proliferation, migration and invasion of gastric cancer SGC-7901 cells. Chinese Med. Biotechnol., 2018, 13(6), 526-531.
[36]
Rumpf, T.; Schiedel, M.; Karaman, B.; Roessler, C.; North, B.J.; Lehotzky, A.; Oláh, J.; Ladwein, K.I.; Schmidtkunz, K.; Gajer, M.; Pannek, M.; Steegborn, C.; Sinclair, D.A.; Gerhardt, S.; Ovádi, J.; Schutkowski, M.; Sippl, W.; Einsle, O.; Jung, M. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Nat. Commun., 2015, 6(2382), 6263. [http://dx.doi.org/10.1038/ncomms7263]. [PMID: 25672491].
[37]
Jing, H.; Zhang, X.; Wisner, S.A.; Chen, X.; Spiegelman, N.A.; Linder, M.E.; Lin, H. SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a. eLife, 2017, 6, 32. [http://dx.doi.org/10.7554/eLife.32436]. [PMID: 29239724].
[38]
Du, J.; Zhou, Y.; Su, X.; Yu, J.J.; Khan, S.; Jiang, H.; Kim, J.; Woo, J.; Kim, J.H.; Choi, B.H.; He, B.; Chen, W.; Zhang, S.; Cerione, R.A.; Auwerx, J.; Hao, Q.; Lin, H. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science, 2011, 334(6057), 806-809. [http://dx.doi.org/10.1126/science.1207861]. [PMID: 22076378].
[39]
Mathias, R.A.; Greco, T.M.; Oberstein, A.; Budayeva, H.G.; Chakrabarti, R.; Rowland, E.A.; Kang, Y.; Shenk, T.; Cristea, I.M. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell, 2014, 159(7), 1615-1625. [http://dx.doi.org/10.1016/j.cell.2014.11.046]. [PMID: 25525879].
[40]
Tan, M.; Peng, C.; Anderson, K.A.; Chhoy, P.; Xie, Z.; Dai, L.; Park, J.; Chen, Y.; Huang, H.; Zhang, Y.; Ro, J.; Wagner, G.R.; Green, M.F.; Madsen, A.S.; Schmiesing, J.; Peterson, B.S.; Xu, G.; Ilkayeva, O.R.; Muehlbauer, M.J.; Braulke, T.; Mühlhausen, C.; Backos, D.S.; Olsen, C.A.; McGuire, P.J.; Pletcher, S.D.; Lombard, D.B.; Hirschey, M.D.; Zhao, Y. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab., 2014, 19(4), 605-617. [http://dx.doi.org/10.1016/j.cmet.2014.03.014]. [PMID: 24703693].
[41]
Hoffmann, G.; Breitenbücher, F.; Schuler, M.; Ehrenhofer-Murray, A.E. A novel sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer. J. Biol. Chem., 2014, 289(8), 5208-5216. [http://dx.doi.org/10.1074/jbc.M113.487736]. [PMID: 24379401].
[42]
Ma, W.; Zhao, X.; Wang, K.; Liu, J.; Huang, G. Dichloroacetic acid (DCA) synergizes with the SIRT2 inhibitor Sirtinol and AGK2 to enhance anti-tumor efficacy in non-small cell lung cancer. Cancer Biol. Ther., 2018, 19(9), 835-846. [http://dx.doi.org/10.1080/15384047.2018.1480281]. [PMID: 30067423].
[43]
Zhao, D.; Mo, Y.; Li, M.T.; Zou, S.W.; Cheng, Z.L.; Sun, Y.P.; Xiong, Y.; Guan, K.L.; Lei, Q.Y. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. J. Clin. Invest., 2014, 124(12), 5453-5465. [http://dx.doi.org/10.1172/JCI76611]. [PMID: 25384215].
[44]
Faubert, B.; Boily, G.; Izreig, S.; Griss, T.; Samborska, B.; Dong, Z.; Dupuy, F.; Chambers, C.; Fuerth, B.J.; Viollet, B.; Mamer, O.A.; Avizonis, D.; DeBerardinis, R.J.; Siegel, P.M.; Jones, R.G. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab., 2013, 17(1), 113-124. [http://dx.doi.org/10.1016/j.cmet.2012.12.001]. [PMID: 23274086].
[45]
Mungai, P.T.; Waypa, G.B.; Jairaman, A.; Prakriya, M.; Dokic, D.; Ball, M.K.; Schumacker, P.T. Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mol. Cell. Biol., 2011, 31(17), 3531-3545. [http://dx.doi.org/10.1128/MCB.05124-11]. [PMID: 21670147].
[46]
Jones, R.G.; Plas, D.R.; Kubek, S.; Buzzai, M.; Mu, J.; Xu, Y.; Birnbaum, M.J.; Thompson, C.B. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell, 2005, 18(3), 283-293. [http://dx.doi.org/10.1016/j.molcel.2005.03.027]. [PMID: 15866171].