[1]
Castelli, M.; Butassi, E.; Monteiro, M.; Svetaz, L.; Vicente, F.; Zacchino, S. Novel antifungal agents: A patent review. Expert Opin. Drug Deliv., 2014, 24(3), 323-338.
[2]
Willaer, R. Micro- and nanoscale approaches in antifungal drug discovery. Ferment. Technol., 2018, 4(2), 1-23.
[3]
Lewis, R. Current concepts in antifungal pharmacology. Mayo Clin. Proc., 2011, 86(8), 805-817.
[4]
Güngör, S.; Erdal, M.; Aksu, B. New formulation strategies in topical antifungal therapy. J. Cosmet. Dermatol., 2013, 3(1), 56-65.
[5]
Golan, D.; Armstrong, A.; Armstrong, E. Principles of pharmacology: The pathophysiologic basis of drug therapy, 4th ed; Wolters Kluwer: New-Delhi, India, 2017, pp. 662-663.
[6]
Kaur, I.; Kakkar, S. Topical delivery of antifungal agents. Expert Opin. Drug Deliv., 2010, 7(11), 1303-1327.
[7]
Myers, R. Immunizing and antimicrobial agents. Spring,, 2006, 1-16.
[8]
Bhowmik, B.; Aravind, S.; Gowda, D.; Singh, A.; Srivastava, A.; Osmani, R. Recent trends and advances in fungal drug delivery. J. Chem. Pharm. Res., 2016, 8(4), 169-178.
[9]
Magliani, W.; Conti, S.; Salati, A.; Arseni, S.; Frazzi, R.; Ravanetti, L.; Polonelli, L. New strategies for treatment of Candida vaginal infections. Rev. Iberoam. Micol., 2002, 19(3), 144-148.
[10]
Sawant, B.; Khan, T. Recent advances in delivery of antifungal agents for therapeutic management of candidiasis. Biomed. Pharmacother., 2017, 96, 1478-1490.
[11]
Souto, E.; Wissing, S.; Barbosa, C.; Müller, R. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int. J. Pharm., 2004, 278(1), 71-77.
[12]
Nakarani, M.; Misra, A.; Patel, J.; Vaghani, S. Itraconazole nanosuspension for oral delivery: Formulation, characterization and in vitro comparison with marketed formulation. Daru, 2010, 18(2), 84-90.
[13]
Lemke, A.; Kiderlen, A.; Kayser, O.; Amphotericin, B. Appl. Microbiol. Biotechnol., 2005, 68(2), 151-162.
[14]
Wasan, E.; Bartlett, K.; Gershkovich, P.; Sivak, P.; Banno, B.; Wong, Z.; Gagnon, J.; Gates, F.; Leon, C.; Wasan, K. Development and characterization of oral lipid-based Amphotericin B formulations with enhanced drug solubility, stability and antifungal activity in rats infected with Aspergillus fumigatus or Candida albicans. Int. J. Pharm., 2009, 372(1-2), 76-84.
[15]
Radwan, M.; AlQuadeib, B.; Siller, L.; Wright, M.; Horrocks, B. Oral administration of amphotericin B nanoparticles: Antifungal activity, bioavailability and toxicity in rats. Drug Deliv., 2017, 24(1), 40-50.
[16]
Das, S.; Suresh, P.; Deshmukh, R. Design of Eudragit RL 100 nanoparticles by nanoprecipitation method for ocular drug delivery. Nanomedicine , 2010, 6(2), 318-323.
[17]
Salernoa, C.; Chiappetta, D.; Arechavalac, A.; Gorzalczany, S.; Sciosciaa, S.; Bergni, C. Lipid-based microtubes for topical delivery of Amphotericin B. Colloids Surf. B Biointerfaces, 2013, 107, 160-166.
[18]
Butani, D.; Yewale, C.; Misra, A. Topical Amphotericin B solid lipid nanoparticles: Design and development. Colloids Surf. B Biointerfaces, 2016, 139, 17-24.
[19]
Jain, K.; Verma, A.; Mishra, P.; Jain, N. Characterization and evaluation of amphotericin B loaded MDP conjugated poly(propylene imine) dendrimers. Nanomedicine , 2015, 11(3), 705-713.
[20]
Fu, T.; Yi, J.; Lv, S.; Zhang, B. Ocular amphotericin B delivery by chitosan modified nanostructured lipid carriers for fungal keratitis targeted therapy. J. Liposome Res., 2017, 27(3), 228-233.
[21]
Ling Tan, J.; Roberts,, c; Billa,, N Mucoadhesive chitosan-coated nanostructured lipid carriers for oral delivery of amphotericin B. Pharm. Dev. Technol., 2019, 24, 504-512.
[22]
Lidwiq, D.; de Camargo, A.; Khalil, M.; Auler, E.; Mainardes, M. Antifungal activity of chitosan-coated poly (lactic-co-glycolic) acid nanoparticle containing Amphotericin B. Mycopathologia, 2018, 183, 659-668.
[23]
Campos, F.; Campmany, A.; Delgado, G.; Serrano, O.; Naveros, B. Development and characterization of a novel nystatin-loaded nanoemulsion for the buccal treatment of candidosis: Ultrastructural effects and release studies. J. Pharm. Sci., 2012, 101(10), 3739-3752.
[24]
Semis, R.; Polacheck, I.; Segal, E. Nystatin-intralipid preparation: Characterization and in vitro activity against yeasts and molds. Mycopathologia, 2010, 169(5), 333-341.
[25]
El-Ridy, M.; Abdelbary, A.; Essam, T. EL-Salam, A.; Kassem, A. Niosomes as a potential drug delivery system for increasing the efficacy and safety of nystatin. Drug Dev. Ind. Pharm., 2011, 37(12), 1491-1508.
[26]
Campos, F.; Naveros, B.; Serrano, O.; Delgado, G.; Campmany, A. Development and characterization of a novel nystatin-loaded nanoemulsion for the buccal treatment of candidosis: Ultrastructural effects and release studies. J. Pharm. Sci., 2012, 101(10), 3739-3752.
[27]
Campos, F.; Naveros, B.; Serrano, O.; Merino, C.; Campmany, A. Evaluation of novel nystatin nanoemulsion for skin candidosis infections. Mycoses, 2013, 56(1), 70-81.
[28]
Hussein-Al-Ali, S.; El Zowalaty, M.; Kura, A.; Geilich, M.; Fakurazi, S.; Webster, T.; Hussein, M. Antimicrobial and controlled release studies of a novel nystatin conjugated iron oxide nanocomposite. BioMed Res. Int., 2014, 2014, 1-13.
[29]
Reis, C. Luı’s Vasques Roque, L.; Baptista, M.; Rijp, P. Innovative formulation of nystatin particulate systems in toothpaste for candidiasis treatment. Pharm. Dev. Technol., 2016, 21(3), 282-287.
[30]
Groll, A.; Mickiene, D.; Werner, K.; Petraitiene, R.; Petraitis, V.; Calendario, M.; Field-Ridley, A.; Crisp, J.; Piscitel, S.; Walsh, T. Compartmental pharmacokinetics and tissue distribution of multilamellar liposomal nystatin in rabbits. Antimicrob. Agents Chemother., 2000, 44(4), 950-957.
[31]
Roque, L.; Alopaeus, J.; Reis, C.; Rijo, P.; Molpeceres, J.; Hagesaether, E.; Tho, I.; Reis, C. Mucoadhesive assessment of different antifungal nanoformulations. Bioinspir. Biomim., 2018, 13(5), 1-10.
[32]
Maqsood, I.; Masood, I.; Bashir, S.; Nawaz, H.; Anjum, A.; Shahzadi, I.; Ahmad, A. Preparation and in vitro evaluation of Nystatin micro emulsion based gel. Pak. J. Pharm. Sci., 2015, 28(5), 1587-1593.
[33]
Jadon, P.; Gajbhiye, V.; Jadon, R.; Gajbhiye, K.; Ganesh, A. Enhanced oral bioavailability of griseofulvin via niosomes. AAPS PharmSciTech, 2009, 10(4), 1186-1192.
[34]
Bavarsad, M.; Kouchak, N.; Mohamadipour, P.; Sadeghi-Nejad, B. Preparation and physicochemical characterization of topical chitosan-based film containing griseofulvin-loaded liposomes. J. Adv. Pharm. Technol. Res., 2016, 7(3), 91-98.
[35]
Carmona, E.; Limper, A. Overview of treatment approaches for fungal infections. Clin. Chest Med., 2017, 38(3), 393-402.
[36]
Salem, H.; Ahmed, S.; Omar, M. Liposomal flucytosine capped with gold nanoparticle formulations for improved ocular delivery. Drug Des. Devel. Ther., 2016, 10, 277-295.
[37]
Hashem, F.; Shaker, D.; Ghorab, M.; Nasr, M.; Ismail, A. Formulation, characterization, and clinical evaluation of microemulsion containing clotrimazole for topical delivery. AAPS PharmSciTech, 2011, 12(3), 879-886.
[38]
Borhade, V.; Pathak, S.; Sharma, S.; Patravale, V. Clotrimazole nanoemulsion for malaria chemotherapy. Part II: Stability assessment, in vivo pharmacodynamic evaluations and toxicological studies. Int. J. Pharm., 2012, 431(1-2), 149-160.
[39]
Pankaj, S.; Rini, T.; Dandagi, P. Formulation and evaluation of proniosome based drug delivery system of the antifungal drug clotrimazole. Int. J. Pharma Sci., 2013, 6(1), 1945-1951.
[40]
Firooz, A.; Nafisi, S.; Maibach, H. Novel drug delivery strategies for improving econazole antifungal action. Int. J. Pharm., 2015, 495(1), 599-607.
[41]
Sanna, V.; Gavini, E.; Cossu, M.; Rassu, G.; Giunchedi, P. Solid lipid nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate: In-vitro characterization, ex-vivo and in-vivo studies. J. Pharm. Pharmacol., 2007, 59(8), 1057-1064.
[42]
Passerini, N.; Gavini, E.; Albertini, B.; Rassu, G.; Sabatino, M.; Sanna, V.; Giunchedi, P.; Rodriguez, L. Evaluation of solid lipid microparticles produced by spray congealing for topical application of econazole nitrate. J. Pharm. Pharmacol., 2009, 61(5), 559-567.
[43]
Gajra, B.; Pandya, S.; Singh, S.; Rabari, H. Mucoadhesive hydrogel films of econazole nitrate: Formulation and optimization using factorial design. J. Drug Deliv., 2014, 2014, 1-14.
[44]
Baloglu, E.; Karavana, S.; Senyigit, Z.; Hilmioglu-Polat, S.; Metin, D.; Zekioglu, O.; Guneri, T.; Jones, D. In-situ gel formulations of econazole nitrate: Preparation and in-vitro and in-vivo evaluation. J. Pharm. Pharmacol., 2011, 63(10), 1274-1282.
[45]
Patel, M.; Patel, R.; Parikh, J.; Solanki, A.; Patel, B. Investigating effect of microemulsion components: In vitro permeation of ketoconazole. Pharm. Dev. Technol., 2011, 16(3), 250-258.
[46]
Ahmed, T.; Aljaeid, B. A potential in situ gel formulation loaded with novel fabricated poly(lactide-co-glycolide) nanoparticles for enhancing and sustaining the ophthalmic delivery of ketoconazole. Int. J. Nanomedicine, 2017, 12, 1863-1875.
[47]
Abdelbary, G.; Amin, M.; Zakaria, M. Ocular ketoconazole-loaded proniosomal gels: Formulation, ex vivo corneal permeation and in vivo studies. Drug Deliv., 2017, 24(1), 309-319.
[48]
Ghorpade, V.; Yadav, A.; Dias, R.; Mali, K.; Pargaonkar, S.; Shinde, P.; Dhane, N. Citric acid crosslinked carboxymethylcellulose-
poly(ethylene glycol) hydrogel films for delivery of poorly
soluble drugs. Int. J. Biol. Macromol, 2018, 118(Pt A), 783-791.
[49]
Kumar, S.; Kaur, P.; Bernela, M.; Rani, R.; Thakur, R. Ketoconazole
encapsulated in chitosan-gellan gum nanocomplexes exhibits
prolonged antifungal activity. Int. J. Biol. Macromol, 2016, 93(PtA), 988-994.
[50]
Rabinow, B.; Kipp, J.; Papadopoulos, P.; Wong, J.; Glosson, J.; Gass, J.; Sun, S.; Wielgos, T.; White, R.; Cook, C.; Barker, K.; Wood, K. Itraconazole IV nanosuspension enhances efficacy through altered pharmacokinetics in the rat. Int. J. Pharm., 2007, 339(1-2), 251-260.
[51]
Mohanty, B.; Majumdar, D.; Mishra, S.; Panda, A.; Patnaik, S. Development and characterization of itraconazole-loaded solid lipid nanoparticles for ocular delivery. Pharm. Dev. Technol., 2015, 20(4), 458-464.
[52]
Rundtfelt, C.; Steckel, H.; Scherliess, H.; Wyska, E.; Wlaź, P. Inhalable highly concentrated itraconazole nanosuspension for the treatment of broncho pulmonary aspergillosis. Eur. J. Pharm. Biopharm., 2013, 83(1), 44-53.
[53]
Chudasama, A.; Patel, V.; Nivsarkar, M.; Vasu, K.; Shishoo, C. Investigation of micro emulsion system for transdermal delivery of itraconazole. J. Adv. Pharm. Technol. Res., 2011, 2(1), 30-38.
[54]
Taveira, S.; Gelfuso, G.; Lima, E.; Gratieri, T. Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids Surf. B Biointerfaces, 2015, 133, 331-338.
[55]
Kumar, R.; Sinha, V. Solid lipid nanoparticle: An efficient carrier for improved ocular permeation of voriconazole. Drug Dev. Ind. Pharm., 2016, 42(12), 1956-1967.
[56]
Tian, B.; Yan, Q.; Wang, J.; Ding, C.; Sai, S. Enhanced antifungal activity of voriconazole-loaded nanostructured lipid carriers against Candida albicans with a dimorphic switching model. Int. J. Nanomedicine, 2017, 12, 7131-7141.
[57]
Kumar, R.; Sinha, V. Preparation and optimization of voriconazole microemulsion for ocular delivery. Colloids Surf. B Biointerfaces, 2014, 117, 82-88.
[58]
Pawar, P.; Kashyap, H.; Malhotra, S.; Sindhu, R. Hp--CD-Voriconazole In situ gelling system for ocular drug delivery: In vitro, stability, and antifungal activities assessment. BioMed Res. Int., 2013, 2013, 1-9.
[59]
Shukr, M. Novel in situ gelling ocular inserts for voriconazole-loaded niosomes: Design, in vitro characterization and in vivo evaluation of the ocular irritation and drug pharmacokinetics. J. Microencapsul., 2016, 33(1), 71-79.
[60]
Veloso, D.; Benedetti, N.; Ávila, R.; Bastos, T.; Silva, T.; Silva, M.; Batista, A.; Valadares, M.; Lima, E. Intravenous delivery of a liposomal formulation of voriconazole improves drug pharmacokinetics, tissue distribution, and enhances antifungal activity. Drug Deliv., 2018, 25(1), 1585-1594.
[61]
Faisal, W.; Soliman, G.; Hamdan, A. Enhanced skin deposition and delivery of voriconazole using ethosomal preparations. J. Liposome Res., 2016, 28(1), 14-21.
[62]
Arora, S.; Haghi, M.; Young, P.; Kappl, M.; Traini, D.; Jain, S. Highly respirable dry powder inhalable formulation of voriconazole with enhanced pulmonary bioavailability. Expert Opin. Drug Deliv., 2016, 13(2), 183-193.
[63]
Paul, P.; Sengupta, S.; Mukherjee, B.; Shaw, T.; Gaonkar, R.; Debnath, M. Chitosan-coated nanoparticles enhanced lung pharmacokinetic profile of voriconazole upon pulmonary delivery in mice. Nanomedicine , 2018, 13, 501-520.
[64]
Yang, M.; Dong, Z.; Zhang, Y.; Zhang, F.; Wang, Y.; Zhao, Z. Preparation and evaluation of posaconazole-loaded enteric microparticles in rats. Drug Dev. Ind. Pharm., 2017, 43(4), 618-627.
[65]
Fule, R.; Amin, P. Hot melt extruded amorphous solid dispersion of posaconazole with improved bioavailability: Investigating drug-polymermiscibility with advanced characterization. BioMed Res. Int., 2014, 2014, 1-16.
[67]
Chen, Y.; Liu, D.; Liu, J.; Chang, T.; Ho, H.; Sheu, M. Development of terbinafine solid lipid nanoparticles as a topical delivery system. Int. J. Nanomedicine, 2012, 7, 4409-4418.
[68]
Vaghasiya, H.; Kumar, A.; Sawant, K. Development of solid lipid nano particles based controlled release system for topical delivery of terbinafine hydrochloride. Eur. J. Pharm. Sci., 2013, 49(2), 311-322.
[69]
Nair, A.; Kim, H.; Chakraborty, B.; Singh, J.; Zaman, M.; Gupta, A.; Friden, P.; Murthy, S. Ungual and trans-ungualion tophoretic delivery of terbinafine for the treatment of onychomycosis. J. Pharm. Sci., 2009, 98(5), 4130-4140.
[70]
Shah, V. Jobanputra1, A. Enhanced ungual permeation of terbinafine HCl delivered through liposome-loaded nail lacquer formulation optimized by qbd approach. AAPS PharmSciTech, 2018, 19(1), 213-224.
[71]
Yang, Y.; Ou, R.; Guan, S.; Ye, X.; Hu, B.; Zhang, Y.; Lu, S.; Zhou, Y.; Yuan, Z.; Zhang, Y.; Li, Q.G. A novel drug delivery gel of terbinafine hydrochloride with high penetration for external use. Drug Deliv., 2015, 22(8), 1086-1093.