Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Matrine-Family Alkaloids: Versatile Precursors for Bioactive Modifications

Author(s): Xiao-hua Cai*, Hong-yan Zhang and Bing Xie*

Volume 16, Issue 4, 2020

Page: [431 - 453] Pages: 23

DOI: 10.2174/1573406415666190507121744

Price: $65

Abstract

Matrine-family alkaloids as tetracycloquinolizindine analogues from Traditional Chinese Medicine Sophora flavescens Ait, Sophora subprostrata and Sophora alopecuroides L possess various pharmacological activities and have aroused great interests over the past decades. Especially, a lot of matrine derivatives have been designed and synthesized and their biological activities investigated, and encouraging results have continuously been achieved in recent several years. These studies are helpful to develop more potent candidates or therapeutic agents and disclose their molecular targets and mechanisms. This paper reviews recent advances in the bioactive modifications of matrine-family alkaloids from derivatization of the C-13, C-14 or C-15 position, opening D ring, fusing D ring and structural simplification.

Keywords: Alkaloid, matrine-family alkaloid, sophoridine, Sophora species, matrine, bioactive modification.

Next »
Graphical Abstract

[1]
Wu, Z.J.; Sun, D.M.; Fang, D.M.; Chen, J.Z.; Cheng, P.; Zhang, G.L. Analysis of matrine-type alkaloids using ESI-QTOF. Int. J. Mass Spectrom., 2013, 341-342, 28-33.
[http://dx.doi.org/10.1016/j.ijms.2013.03.002]
[2]
Zhang, B.; Liu, Z.Y.; Li, Y.Y.; Luo, Y.; Liu, M.L.; Dong, H.Y.; Wang, Y.X.; Liu, Y.; Zhao, P.T.; Jin, F.G.; Li, Z.C. Antiinflammatory effects of matrine in LPS-induced acute lung injury in mice. Eur. J. Pharm. Sci., 2011, 44(5), 573-579.
[http://dx.doi.org/10.1016/j.ejps.2011.09.020] [PMID: 22019524]
[3]
Wang, X.; Lin, H.; Zhang, R. The clinical efficacy and adverse effects of interferon combined with matrine in chronic hepatitis B: A systematic review and meta-analysis. Phytother. Res., 2017, 31(6), 849-857.
[http://dx.doi.org/10.1002/ptr.5808] [PMID: 28382770]
[4]
Cao, H.W.; Zhang, H.; Chen, Z.B.; Wu, Z.J.; Cui, Y.D. Chinese traditional medicine matrine: A review of its antitumor activities. J. Med. Plants Res., 2011, 5, 1806-1811.
[5]
Verma, M.; Deep, A.; Nandal, R.; Shinmar, P.; Kaushik, D. Novel drug delivery system for cancer management: A review. Curr. Cancer Ther. Rev., 2016, 12, 253-272.
[http://dx.doi.org/10.2174/1573394713666170406101900]
[6]
Zeng, Z.P.; Guo, Z.; Peng, B.; Shen, S.N.; Xia, F.B.; Liu, Y.M.; Pan, R.L. Comparative analysis of alkaloids in radix sophorae tonkinensis and radix sophorae flavescentis using UPLC /Q-TOF MSE. Nat. Prod. Res. Dev., 2015, 27, 804-808.
[7]
Chen, J.; Wang, S.M.; Meng, J.; Sun, F.; Liang, S.W. [Simultaneous quantitative analysis of five alkaloids in Sophora flavescens by multi-components assay by single marker]. Zhongguo Zhongyao Zazhi, 2013, 38(9), 1406-1410.
[PMID: 23944078]
[8]
Wang, C.Y.; Bai, X.Y.; Wang, C.H. Traditional Chinese medicine: a treasured natural resource of anticancer drug research and development. Am. J. Chin. Med., 2014, 42(3), 543-559.
[http://dx.doi.org/10.1142/S0192415X14500359] [PMID: 24871650]
[9]
Ye, G.; Zhu, H.Y.; Li, Z.X.; Ma, C.H.; Fan, M.S.; Sun, Z.L.; Huang, C.G. LC-MS characterization of efficacy substances in serum of experimental animals treated with Sophora flavescens extracts. Biomed. Chromatogr., 2007, 21(6), 655-660.
[http://dx.doi.org/10.1002/bmc.805] [PMID: 17370298]
[10]
Hu, P-Y.; Zheng, Q.; Chen, H.; Wu, Z-F.; Yue, P.F.; Yang, M. Pharmacokinetics and distribution of sophoridine nanoliposomes in rats. Chin. J. New. Drug., 2012, 21, 2662-2666.
[11]
Zhang, H-F.; Shi, L-J.; Song, G.Y.; Cai, Z.G.; Wang, C.; An, R.J. Protective effects of matrine against progression of high-fructose diet-induced steatohepatitis by enhancing antioxidant and anti-inflammatory defences involving Nrf2 translocation. Food Chem. Toxicol., 2013, 55, 70-77.
[http://dx.doi.org/10.1016/j.fct.2012.12.043] [PMID: 23295629]
[12]
Shi, D.; Zhang, J.; Qiu, L.; Li, J.; Hu, Z.; Zhang, J. Matrine inhibits infiltration of the inflammatory Gr1(hi) monocyte subset in injured mouse liver through inhibition of monocyte chemoattractant protein-1. Evid. Based Complement. Alternat. Med., 2013, 2013580673
[http://dx.doi.org/10.1155/2013/580673] [PMID: 24058371]
[13]
Sun, D.; Wang, J.; Yang, N.; Ma, H. Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. Biochem. Biophys. Res. Commun., 2016, 477(1), 83-90.
[http://dx.doi.org/10.1016/j.bbrc.2016.06.024] [PMID: 27286706]
[14]
Zhang, Y.B.; Zhang, X.L.; Chen, N.H.; Wu, Z.N.; Ye, W.C.; Li, Y.L.; Wang, G.C. Four Matrine-based alkaloids with antiviral activities against HBV from the seeds of sophora alopecuroides. Org. Lett., 2017, 19(2), 424-427.
[http://dx.doi.org/10.1021/acs.orglett.6b03685] [PMID: 28067050]
[15]
deLemos, A.S.; Chung, R.T. Hepatitis C treatment: an incipient therapeutic revolution. Trends Mol. Med., 2014, 20(6), 315-321.
[http://dx.doi.org/10.1016/j.molmed.2014.02.002] [PMID: 24636306]
[16]
Sun, N.; Wang, Z-W.; Wu, C-H.; Li, E.; He, J-P.; Wang, S-Y.; Hu, Y-L.; Lei, H-M.; Li, H-Q. Antiviral activity and underlying molecular mechanisms of Matrine against porcine reproductive and respiratory syndrome virus in vitro. Res. Vet. Sci., 2014, 96(2), 323-327.
[http://dx.doi.org/10.1016/j.rvsc.2013.12.009] [PMID: 24411654]
[17]
Fu, Q.; Wang, J.; Ma, Z.; Ma, S. Anti-asthmatic effects of matrine in a mouse model of allergic asthma. Fitoterapia, 2014, 94, 183-189.
[http://dx.doi.org/10.1016/j.fitote.2013.12.014] [PMID: 24368304]
[18]
Zhang, X.; Jin, L.; Cui, Z.; Zhang, C.; Wu, X.; Park, H.; Quan, H.; Jin, C. Antiparasitic effects of oxymatrine and matrine against Toxoplasma gondii in vitro and in vivo. Exp. Parasitol., 2016, 165, 95-102.
[http://dx.doi.org/10.1016/j.exppara.2016.03.020] [PMID: 26993085]
[19]
Goto, T.; Hirazawa, N.; Takaishi, Y.; Kashiwad, Y. Antiparasitic effect of matrine and oxymatrine (quinolizidine alkaloids) on the ciliate Cryptocaryon irritans in the red sea bream Pagrus major. Aquaculture, 2015, 437, 339-343.
[http://dx.doi.org/10.1016/j.aquaculture.2014.12.026]
[20]
Shao, J.; Wang, T.; Yan, Y.; Shi, G.; Cheng, H.; Wu, D.; Wang, C. Matrine reduces yeast-to-hypha transition and resistance of a fluconazole-resistant strain of Candida albicans. J. Appl. Microbiol., 2014, 117(3), 618-626.
[http://dx.doi.org/10.1111/jam.12555] [PMID: 24860982]
[21]
Xu, C.Q.; Dong, D.L.; Du, Z.M.; Chen, Q.W.; Gong, D.M.; Yang, B.F. [Comparison of the anti-arrhythmic effects of matrine and berbamine with amiodarone and RP58866]. Yao Xue Xue Bao, 2004, 39(9), 691-694.
[PMID: 15606015]
[22]
Haiyan, W.; Yuxiang, L.; Linglu, D.; Tingting, X.; Yinju, H.; Hongyan, L.; Lin, M.; Yuanxu, J.; Yanrong, W.; Jianqiang, Y. Antinociceptive effects of matrine on neuropathic pain induced by chronic constriction injury. Pharm. Biol., 2013, 51(7), 844-850.
[http://dx.doi.org/10.3109/13880209.2013.767363] [PMID: 23627473]
[23]
Li, Q.; Huang, H.; He, Z.; Sun, Y.; Tang, Y.; Shang, X.; Wang, C. Regulatory effects of antitumor agent matrine on FOXO and PI3K-AKT pathway in castration-resistant prostate cancer cells. Sci. China Life Sci., 2018, 61(5), 550-558.
[http://dx.doi.org/10.1007/s11427-016-9050-6] [PMID: 29119376]
[24]
Zhang, J.Q.; Li, Y-M.; Liu, T.; He, W-T.; Chen, Y.T.; Chen, X.H.; Li, X.; Zhou, W.C.; Yi, J.F.; Ren, Z.J. Antitumor effect of matrine in human hepatoma G2 cells by inducing apoptosis and autophagy. World J. Gastroenterol., 2010, 16(34), 4281-4290.
[http://dx.doi.org/10.3748/wjg.v16.i34.4281] [PMID: 20818811]
[25]
Zhang, S.; Cheng, B.; Li, H.; Xu, W.; Zhai, B.; Pan, S.; Wang, L.; Liu, M.; Sun, X. Matrine inhibits proliferation and induces apoptosis of human colon cancer LoVo cells by inactivating Akt pathway. Mol. Biol. Rep., 2014, 41(4), 2101-2108.
[http://dx.doi.org/10.1007/s11033-014-3059-z] [PMID: 24452711]
[26]
Liu, Y.; Xu, Y.; Ji, W.; Li, X.; Sun, B.; Gao, Q.; Su, C. Anti-tumor activities of matrine and oxymatrine: literature review. Tumour Biol., 2014, 35(6), 5111-5119.
[http://dx.doi.org/10.1007/s13277-014-1680-z] [PMID: 24526416]
[27]
Zhu, L.; Pan, Q-X.; Zhang, X-J.; Xu, Y-M.; Chu, Y-J.; Liu, N.; Lv, P.; Zhang, G-X.; Kan, Q-C. Protective effects of matrine on experimental autoimmune encephalomyelitis via regulation of ProNGF and NGF signaling. Exp. Mol. Pathol., 2016, 100(2), 337-343.
[http://dx.doi.org/10.1016/j.yexmp.2015.12.006] [PMID: 26681653]
[28]
Xu, J.; Qi, Y.; Xu, W-H.; Liu, Y.; Qiu, L.; Wang, K-Q.; Hu, H-G.; He, Z-G.; Zhang, J-P. Matrine derivate MASM suppresses LPS-induced phenotypic and functional maturation of murine bone marrow-derived dendritic cells. Int. Immunopharmacol., 2016, 36, 59-66.
[http://dx.doi.org/10.1016/j.intimp.2016.04.022] [PMID: 27107799]
[29]
Kan, Q-C.; Pan, Q-X.; Zhang, X-J.; Chu, Y-J.; Liu, N.; Lv, P.; Zhang, G-X.; Zhu, L. Matrine ameliorates experimental autoimmune encephalomyelitis by modulating chemokines and their receptors. Exp. Mol. Pathol., 2015, 99(2), 212-219.
[http://dx.doi.org/10.1016/j.yexmp.2015.06.008] [PMID: 26093163]
[30]
Kan, Q.C.; Zhang, S.; Xu, Y.M.; Zhang, G.X.; Zhu, L. Matrine regulates glutamate-related excitotoxic factors in experimental autoimmune encephalomyelitis. Neurosci. Lett., 2014, 560, 92-97.
[http://dx.doi.org/10.1016/j.neulet.2013.12.031] [PMID: 24368216]
[31]
Gong, S-S.; Li, Y-X.; Zhang, M-T.; Du, J.; Ma, P-S.; Yao, W-X.; Zhou, R.; Niu, Y.; Sun, T.; Yu, J-Q. Neuroprotective effect of matrine in mouse model of vincristine-induced neuropathic pain. Neurochem. Res., 2016, 41(11), 3147-3159.
[http://dx.doi.org/10.1007/s11064-016-2040-8] [PMID: 27561290]
[32]
Zhang, R.; Li, Y.; Hou, X.; Miao, Z.; Wang, Y. Neuroprotective effect of heat shock protein 60 on matrine-suppressed microglial activation. Exp. Ther. Med., 2017, 14(2), 1832-1836.
[http://dx.doi.org/10.3892/etm.2017.4691] [PMID: 28781634]
[33]
Li, X.; Zhou, R.; Zheng, P.; Yan, L.; Wu, Y.; Xiao, X.; Dai, G. Cardioprotective effect of matrine on isoproterenol-induced cardiotoxicity in rats. J. Pharm. Pharmacol., 2010, 62(4), 514-520.
[http://dx.doi.org/10.1211/jpp.62.04.0015] [PMID: 20604842]
[34]
Zhang, Y.; Cui, L.; Guan, G.; Wang, J.; Qiu, C.; Yang, T.; Guo, Y.; Liu, Z. Matrine suppresses cardiac fibrosis by inhibiting the TGF‑β/Smad pathway in experimental diabetic cardiomyopathy. Mol. Med. Rep., 2018, 17(1), 1775-1781.
[PMID: 29138820]
[35]
Jiang, M.; Wang, L.; Liu, X.; Yang, H.; Ren, F.; Gan, L.; Jiang, W. Synthesis of a temperature-sensitive matrine-imprinted polymer and its potential application for the selective extraction of matrine from radix Sophorae tonkinensis. Int. J. Mol. Sci., 2015, 16(2), 3441-3451.
[http://dx.doi.org/10.3390/ijms16023441] [PMID: 25658797]
[36]
Lei, Q.; Gao, B.; Zhang, D. Design and preparation of matrine surface-imprinted material and studies on its molecule recognition selectivity. J. Biomater. Sci. Polym. Ed., 2016, 27(1), 1-21.
[http://dx.doi.org/10.1080/09205063.2015.1102570] [PMID: 26426206]
[37]
Gao, B.; Zhang, L.; Li, Y. Designing and preparation of novel alkaloid-imprinted membrane with grafting type and its molecular recognition characteristic and permselectivity. Mater. Sci. Eng. C, 2016, 66, 259-267.
[http://dx.doi.org/10.1016/j.msec.2016.02.023] [PMID: 27207062]
[38]
Wang, F.; Wu, Y.J.; Lu, K.; Gao, L.; Ye, B.X. A simple, rapid and green method based on pulsed potentiostatic electrodeposition of reduced graphene oxide on glass carbon electrode for sensitive voltammetric detection of sophoridine. Electrochim. Acta, 2014, 141, 82-88.
[http://dx.doi.org/10.1016/j.electacta.2014.07.018]
[39]
Zhang, J.; Wang, Y.; Zheng, W. Development of a novel electrochemical sensor for determination of matrine in sophora flavescens. Molecules, 2017, 22(4), 575-584.
[http://dx.doi.org/10.3390/molecules22040575] [PMID: 28368325]
[40]
Liu, Z.M.; Zhang, X.; Cui, L.; Wang, K.; Zhan, H.J. Development of a highly sensitive electrochemiluminescence sophoridine sensor using Ru(bpy)32+ integrated carbon quantum dots-polyvinyl alcohol composite film. Sens. Actuators B Chem., 2017, 248, 402-410.
[http://dx.doi.org/10.1016/j.snb.2017.03.115]
[41]
Yong, J.; Wu, X.; Lu, C. Anticancer advances of matrine and its derivatives. Curr. Pharm. Des., 2015, 21(25), 3673-3680.
[http://dx.doi.org/10.2174/1381612821666150122123748] [PMID: 25613788]
[42]
Huang, J.; Xu, H. Matrine: Bioactivities and structural modifications. Curr. Top. Med. Chem., 2016, 16(28), 3365-3378.
[http://dx.doi.org/10.2174/1568026616666160506131012] [PMID: 27150374]
[43]
Cai, X-H.; Guo, H.; Xie, B. Structural modifications of matrine-type alkaloids. Mini Rev. Med. Chem., 2018, 18(9), 730-744.
[http://dx.doi.org/10.2174/1389557516666161104150334] [PMID: 27823557]
[44]
Hu, H.; Wang, S.; Zhang, C.; Wang, L.; Ding, L.; Zhang, J.; Wu, Q. Synthesis and in vitro inhibitory activity of matrine derivatives towards pro-inflammatory cytokines. Bioorg. Med. Chem. Lett., 2010, 20(24), 7537-7539.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.075] [PMID: 21036613]
[45]
Gao, L-M.; Han, Y-X.; Wang, Y-P.; Li, Y-H.; Shan, Y-Q.; Li, X.; Peng, Z-G.; Bi, C-W.; Zhang, T.; Du, N.N.; Jiang, J.D.; Song, D.Q. Design and synthesis of oxymatrine analogues overcoming drug resistance in hepatitis B virus through targeting host heat stress cognate 70. J. Med. Chem., 2011, 54(3), 869-876.
[http://dx.doi.org/10.1021/jm101325h] [PMID: 21218816]
[46]
Wang, L.; You, Y.; Wang, S.; Liu, X.; Liu, B.; Wang, J.; Lin, X.; Chen, M.; Liang, G.; Yang, H. Synthesis, characterization and in vitro anti-tumor activities of matrine derivatives. Bioorg. Med. Chem. Lett., 2012, 22(12), 4100-4102.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.069] [PMID: 22578453]
[47]
Tan, C-J.; Zhao, Y.; Goto, M.; Hsieh, K-Y.; Yang, X-M.; Morris-Natschke, S.L.; Liu, L-N.; Zhao, B-Y.; Lee, K-H. Alkaloids from Oxytropis ochrocephala and antiproliferative activity of sophoridine derivatives against cancer cell lines. Bioorg. Med. Chem. Lett., 2016, 26(5), 1495-1497.
[http://dx.doi.org/10.1016/j.bmcl.2015.09.010] [PMID: 26865176]
[48]
Ni, W.; Li, C.; Liu, Y.; Song, H.; Wang, L.; Song, H.; Wang, Q. Various bioactivity and relationship of structure-activity of matrine analogues. J. Agric. Food Chem., 2017, 65(10), 2039-2047.
[http://dx.doi.org/10.1021/acs.jafc.6b05474] [PMID: 28248103]
[49]
Huang, J-L.; Lv, M.; Xu, H. Semisynthesis of some matrine ether derivatives as insecticidal agents. RSC Advances, 2017, 7, 15997-16004.
[http://dx.doi.org/10.1039/C7RA00954B]
[50]
Xu, Y.; Wu, L.; Dai, H.; Gao, M.; Ur Rashid, H.; Wang, H.; Xie, P.; Liu, X.; Jiang, J.; Wang, L. Novel α, β-unsaturated sophoridinic derivatives: Design, synthesis, molecular docking and anti-cancer activities. Molecules, 2017, 22(11), 1967-1980.
[http://dx.doi.org/10.3390/molecules22111967] [PMID: 29135958]
[51]
Jiang, L.; Wu, L.; Yang, F.; Almosnid, N.; Liu, X.; Jiang, J.; Altman, E.; Wang, L.; Gao, Y. Synthesis, biological evaluation and mechanism studies of matrine derivatives as anticancer agents. Oncol. Lett., 2017, 14(3), 3057-3064.
[http://dx.doi.org/10.3892/ol.2017.6475] [PMID: 28927053]
[52]
Li, Z.; Wu, L.C.; Cai, B.; Luo, M.Y.; Huang, M.T.; Rashid, H.U.; Yang, Y.W.; Jiang, J.; Wang, L.S. Design, synthesis, and biological evaluation of thiomatrine derivatives as potential anticancer agents. Med. Chem. Res., 2018, 27, 1841-1955.
[http://dx.doi.org/10.1007/s00044-018-2205-x]
[53]
Li, Z.; Luo, M.; Cai, B.; Wu, L.; Huang, M.; Haroon-Ur-Rashid, ; Jiang, J.; Wang, L. Design, synthesis and biological evaluation of matrine derivatives as potential anticancer agents. Bioorg. Med. Chem. Lett., 2018, 28(4), 677-683.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.017] [PMID: 29395978]
[54]
Huang, J.; Xiang, S-Y.; Lv, M.; Yang, L-M.; Zhang, Y.; Zheng, Y-T.; Xu, H. 14-Formyl-15-aryloxy/methoxymatrine and 14-aryloxymethylidenyl-matrine derivatives as anti-HIV-1 agents. Med. Chem., 2018, 14(3), 249-252.
[http://dx.doi.org/10.2174/1573406413666171002120310] [PMID: 28969577]
[55]
Xu, Y.; Jing, D.; Chen, R.; Rashid, H.U.; Jiang, J.; Liu, X.; Wang, L.; Xie, P. Design, synthesis and evaluation of novel sophoridinic imine derivatives containing conjugated planar structure as potent anticancer agents. Bioorg. Med. Chem., 2018, 26(14), 4136-4144.
[http://dx.doi.org/10.1016/j.bmc.2018.07.001] [PMID: 30007563]
[56]
He, L.Q.; Gu, H-X.; Yin, D-K.; Zhang, Y-H.; Wang, X-S. Synthesis and anti-cancer activity of nitric oxide donor-based matrine derivatives. Chem. J. Chin. Univ., 2010, 31, 1541-1547.
[57]
Bi, C-W.; Zhang, C-X.; Li, Y-H.; Tang, S.; Deng, H-B.; Zhao, W-L.; Wang, Z.; Shao, R-G.; Song, D-Q. Novel N-substituted sophoridinol derivatives as anticancer agents. Eur. J. Med. Chem., 2014, 81, 95-105.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.069] [PMID: 24826818]
[58]
Li, D-D.; Dai, L-L.; Zhang, N.; Tao, Z-W. Synthesis, structure-activity relationship and biological evaluation of novel nitrogen mustard sophoridinic acid derivatives as potential anticancer agents. Bioorg. Med. Chem. Lett., 2015, 25(19), 4092-4096.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.035] [PMID: 26299348]
[59]
Liu, K.; Li, D-D.; Zhao, X-M.; Dai, L-L.; Zhang, T.; Tao, Z-W. Synthesis, cytotoxicity, topoisomerase I inhibition and molecular docking of novel phosphoramide mustard sophoridinic acid analogues. Appl. Organomet. Chem., 2016, 30, 1-7.
[60]
Bi, C.; Ye, C.; Li, Y.; Zhao, W.; Shao, R.; Song, D. Synthesis and biological evaluation of 12-N-p-chlorobenzyl sophoridinol derivatives as a novel family of anticancer agents. Acta Pharm. Sin. B, 2016, 6(3), 222-228.
[http://dx.doi.org/10.1016/j.apsb.2016.03.004] [PMID: 27175333]
[61]
Wu, L.; Wang, G.; Liu, S.; Wei, J.; Zhang, S.; Li, M.; Zhou, G.; Wang, L. Synthesis and biological evaluation of matrine derivatives containing benzo-α-pyrone structure as potent anti-lung cancer agents. Sci. Rep., 2016, 6, 35918-35925.
[http://dx.doi.org/10.1038/srep35918] [PMID: 27786281]
[62]
Du, N-N.; Li, X.; Wang, Y-P.; Liu, F.; Liu, Y-X.; Li, C-X.; Peng, Z-G.; Gao, L-M.; Jiang, J-D.; Song, D-Q. Synthesis, structure-activity relationship and biological evaluation of novel N-substituted matrinic acid derivatives as host heat-stress cognate 70 (Hsc70) down-regulators. Bioorg. Med. Chem. Lett., 2011, 21(16), 4732-4735.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.071] [PMID: 21757347]
[63]
Gao, L.M.; Tang, S.; Wang, Y.X.; Gao, R.M.; Zhang, X.; Peng, Z.G.; Li, J.R.; Jiang, J.D.; Li, Y.H.; Song, D.Q. Synthesis and biological evaluation of N-substituted sophocarpinic acid derivatives as coxsackievirus B3 inhibitors. ChemMedChem, 2013, 8(9), 1545-1553.
[http://dx.doi.org/10.1002/cmdc.201300224] [PMID: 23881611]
[64]
Tang, S.; Kong, L.; Li, Y.; Jiang, J.; Gao, L.; Cheng, X.; Ma, L.; Zhang, X.; Li, Y.; Song, D. Novel N-benzenesulfonyl sophocarpinol derivatives as coxsackie B virus inhibitors. ACS Med. Chem. Lett., 2015, 6(2), 183-186.
[http://dx.doi.org/10.1021/ml500525s] [PMID: 25699158]
[65]
Wang, S-G.; Kong, L-Y.; Li, Y-H.; Cheng, X-Y.; Su, F.; Tang, S.; Bi, C-W.; Jiang, J-D.; Li, Y-H.; Song, D-Q. Structure-activity relationship of N-benzenesulfonyl matrinic acid derivatives as a novel class of coxsackievirus B3 inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(17), 3690-3693.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.043] [PMID: 26112440]
[66]
Cheng, X-Y.; Li, Y-H.; Tang, S.; Zhang, X.; Wang, Y.X.; Wang, S.G.; Jiang, J.D.; Li, Y.H.; Song, D.Q. Synthesis and evaluation of halogenated 12N-sulfonyl matrinic butanes as potential anti-coxsackievirus agents. Eur. J. Med. Chem., 2017, 126, 133-142.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.097] [PMID: 27750147]
[67]
Tang, S.; Peng, Z-G.; Zhang, X.; Cheng, X-Y.; Li, W-J.; Jiang, J-D.; Li, Y-H.; Song, D-Q. Synthesis and biological evaluation of 12-benzyl matrinic amide derivatives as a novel family of anti-HCV agents. Chin. Chem. Lett., 2016, 27, 1052-1057.
[http://dx.doi.org/10.1016/j.cclet.2016.03.006]
[68]
Tang, S.; Peng, Z-G.; Li, Y-H.; Zhang, X.; Fan, T-Y.; Jiang, J-D.; Wang, Y-X.; Song, D-Q. Synthesis and biological evaluation of tricyclic matrinic derivatives as a class of novel anti-HCV agents. Chem. Cent. J., 2017, 11(1), 94.
[http://dx.doi.org/10.1186/s13065-017-0327-8] [PMID: 29086870]
[69]
Li, Y-H.; Wu, Z.Y.; Tang, S.; Zhang, X.; Wang, Y-X.; Jiang, J-D.; Peng, Z-G.; Song, D-Q. Evolution of matrinic ethanol derivatives as anti-HCV agents from matrine skeleton. Bioorg. Med. Chem. Lett., 2017, 27(9), 1962-1966.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.025] [PMID: 28320615]
[70]
Tang, S.; Li, Y.H.; Cheng, X.Y.; Yin, J.Q.; Li, Y.H.; Song, D.Q.; Wang, Y.X.; Liu, Z.D. Synthesis and biological evaluation of 12N-substituted tricyclic matrinic derivatives as a novel family of anti-influenza agents. Med. Chem., 2018, 14(8), 764-772.
[http://dx.doi.org/10.2174/1573406414666180222093033] [PMID: 29473520]
[71]
Zhang, X.; Liu, Q.; Li, Q.; Li, Y.; Liu, Z.; Deng, H.; Tang, S.; Wang, Y.; Wang, Y.; Song, D. Synthesis and biological evaluation of novel tricyclic matrinic derivatives as potential anti-filovirus agents. Acta Pharm. Sin. B, 2018, 8(4), 629-638.
[http://dx.doi.org/10.1016/j.apsb.2018.01.006] [PMID: 30109186]
[72]
Wu, L.; Liu, S.; Wei, J.; Li, D.; Liu, X.; Wang, J.; Wang, L. Synthesis and biological evaluation of matrine derivatives as anti-hepatocellular cancer agents. Bioorg. Med. Chem. Lett., 2016, 26(17), 4267-4271.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.045] [PMID: 27481558]
[73]
Huang, J.; Lv, M.; Thapa, S.; Xu, H. Synthesis of novel quinolinomatrine derivatives and their insecticidal/acaricidal activities. Bioorg. Med. Chem. Lett., 2018, 28(10), 1753-1757.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.029] [PMID: 29685655]
[74]
Xiao, P.; Kubo, H.; Ohsawa, M.; Higashiyama, K.; Nagase, H.; Yan, Y-N.; Li, J-S.; Kamei, J.; Ohmiya, S. kappa-Opioid receptor-mediated antinociceptive effects of stereoisomers and derivatives of (+)-matrine in mice. Planta Med., 1999, 65(3), 230-233.
[http://dx.doi.org/10.1055/s-1999-14080] [PMID: 10232067]
[75]
Kamei, J.; Xiao, P.; Ohsawa, M.; Kubo, H.; Higashiyama, K.; Takahashi, H.; Li, J.; Nagase, H.; Ohmiya, S. Antinociceptive effects of (+)-matrine in mice. Eur. J. Pharmacol., 1997, 337(2-3), 223-226.
[http://dx.doi.org/10.1016/S0014-2999(97)01273-9] [PMID: 9430418]
[76]
Teramoto, H.; Yamauchi, T.; Terado, Y.; Odagiri, S.; Sasaki, S.; Higashiyama, K. Design and synthesis of a piperidinone scaffold as an analgesic through kappa-opioid receptor: structure-activity relationship study of matrine alkaloids. Chem. Pharm. Bull. (Tokyo), 2016, 64(5), 410-419.
[http://dx.doi.org/10.1248/cpb.c15-00962] [PMID: 27150473]
[77]
Teramoto, H.; Yamauchi, T.; Sasaki, S.; Higashiyama, K. Development of κ opioid receptor agonists by focusing on phenyl substituents of 4-dimethylamino-3-phenylpiperidine derivatives: Structure-activity relationship study of matrine type alkaloids. Chem. Pharm. Bull. (Tokyo), 2016, 64(5), 420-431.
[http://dx.doi.org/10.1248/cpb.c15-00963] [PMID: 27150474]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy