Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Hybrids of Coumarin Derivatives as Potent and Multifunctional Bioactive Agents: A Review

Author(s): Ioannis Fotopoulos and Dimitra Hadjipavlou-Litina*

Volume 16, Issue 3, 2020

Page: [272 - 306] Pages: 35

DOI: 10.2174/1573406415666190416121448

Price: $65

Abstract

Background: Coumarins exhibit a plethora of biological activities, e.g. antiinflammatory and anti-tumor. Molecular hybridization technique has been implemented in the design of novel coumarin hybrids with several bioactive groups in order to obtain molecules with better pharmacological activity and improved pharmacokinetic profile.

Objective: Therefore, we tried to gather as many as possible biologically active coumarin hybrids referred in the literature till now, to delineate the structural characteristics in relation to the activities and to have a survey that might help the medicinal chemists to design new coumarin hybrids with drug-likeness and varied bioactivities.

Results: The biological activities of the hybrids in most of the cases were found to be different from the biological activities presented by the parent coumarins. The results showed that the hybrid molecules are more potent compared to the standard drugs used in the evaluation experiments.

Conclusion: Conjugation of coumarin with varied pharmacophore groups/druglike molecules responsible for different biological activities led to many novel hybrid molecules, with a multitarget behavior and improved pharmacokinetic properties.

Keywords: Coumarins, hybrids, anti-Alzheimer, anti-inflammatories, anticancer, anti-microbial, enzymes' inhibitors.

Graphical Abstract

[1]
Nikhil, B.; Shikha, B.; Anil, P.; Prakash, N.B. Diverse pharmacological activities of 3-substituted coumarins: A review. Int. Res. J. Pharm., 2012, 3(7), 24-29.
[2]
Wu, L.; Wang, X.; Xu, W.; Farzaneh, F.; Xu, R. The structure and pharmacological functions of coumarins and their derivatives. Curr. Med. Chem., 2009, 16(32), 4236-4260.
[3]
Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr. Med. Chem., 2005, 12(8), 887-916.
[4]
Aoife, L. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des., 2004, 10(30), 3797-3811.
[5]
Bansal, Y.; Silakari, O. Multifunctional compounds: Smart molecules for multifactorial diseases. Eur. J. Med. Chem., 2014, 76, 31-42.
[6]
Geldenhuys, W.J.; Youdim, M.B.H.; Carroll, R.T.; Van der Schyf, C.J. The emergence of designed multiple ligands for neurodegenerative disorders. Prog. Neurobiol., 2011, 94(4), 347-359.
[7]
Zhang, H-Y. One-compound-multiple-targets strategy to combat Alzheimer’s disease. FEBS Lett., 2005, 579(24), 5260-5264.
[8]
Van der Schyf, C.J.; Geldenhuys, W.J. In: International Review of Neurobiology; Youdim, M.B.H.; Douce, P., Eds.; Academic Press, 2011; Vol. 100, pp. 107-125.
[9]
Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[10]
Claudio, V.J.; Amanda, D.; Vanderlan da Silva, B.; Eliezer, J.B.; Carlos, A.M.F. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[11]
Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Coumarin hybrids as novel therapeutic agents. Bioorg. Med. Chem., 2014, 22(15), 3806-3814.
[12]
Barnard, E.A. In: The Peripheral Nervous System; Hubband, J.I., Ed.; Plenum Press: New York, 1974; pp. 201-224.
[13]
Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussman, J.L. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact., 2010, 187(1-3), 10-22.
[14]
Vanneri, A.; McGeown, W.J.; Shanks, M.F. Empirical evidence of neuroprotection by dual cholinesterase inhibition in Alzheimer’s disease. Neuroreport, 2008, 16(2), 107-110.
[15]
Lane, R.M.; Potkin, S.G.; Enz, A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia Int. J. Neurophyschop., 2006, 9(1), 101-124.
[16]
Mostert, S.; Petzer, A.; Petzer, J.P. Inhibition of monoamine oxidase by benzoxathiolone analogues. Bioorg. Med. Chem. Lett., 2016, 26, 1200-1204.
[17]
Kostova, I.; Bhatia, S.; Grigorov, P.; Balkansky, S.; Parmar, V.S.; Prasad, K.; Sasao, L. Coumarins as antioxidants. Curr. Med. Chem., 2011, 18(25), 23.
[18]
Anand, P.; Singh, B.; Singh, N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg. Med. Chem., 2012, 20(3), 6.
[19]
Catto, M.; Pisani, L.; Leonetti, F.; Pesce, P.; Stefanachi, A.; Cellamare, S.; Carotti, A. Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase. Bioorg. Med. Chem., 2013, 21(1), 7.
[20]
Sun, Q.; Peng, D.Y.; Yang, S.G.; Zhu, X.L.; Yang, W.C.; Yang, G.F. Syntheses of coumarin–tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Ab aggregation, and b-secretase. Bioorg. Med. Chem., 2014, 22, 4784-4791.
[21]
Xie, S.S.; Wang, X.; Jiang, N.; Yu, W.; Kelvin, D.G. W.; Lan, J.S.; Li, Z.R.; Kong, L.Y., Multi-target tacrine-coumarin hybrids: Cholinesterase and monoamine oxidase B inhibition properties against Alzheimer’s disease. Eur. J. Med. Chem., 2015, 95, 153-165.
[22]
Piazzi, L.; Rampa, A.; Bisi, A.; Gobbi, S.; Belluti, F.; Cavalli, A.; Bartolini, M.; Andrisano, V.; Valenti, P.; Recantini, M. 3-(4-[Benzyl(methyl)amino]methyl-phenyl)-6,7-dimethoxy-2H-2-chromenone(AP2238) inhibits both acetylcholinesterase and acetylcholinesterase-induced β-Amyloid aggregation: A dual function lead for Alzheimer’s disease therapy. J. Med. Chem., 2003, 46, 2279-2282.
[23]
Catto, M.; Nicolotti, O.; Leonetti, F.; Carotti, A.; Favia, A.D.; Soto-Otero, R.; Méndez-Alvarez, E.; Carotti, A. Structural insights into monoamine oxidase inhibitory potency and selectivity of 7-substituted coumarins from ligand- and target-based approaches. J. Med. Chem., 2006, 49(16), 4912-4925.
[24]
Chimenti, F.; Secci, D.; Bolasco, A.; Chimenti, P.; Bizzarri, B.; Granese, A.; Carradori, S.; Yanez, M.; Orallo, F.; Ortuso, F.; Alcaro, S. Synthesis, molecular modeling and selective inhibitory activity against human monoamine oxidases of 3-carboxamido-7-substituted coumarins. J. Med. Chem., 2009, 52(7), 1935-1942.
[25]
Hamulakova, S.; Janovec, L.; Soukup, O.; Jun, D.; Kuca, K. Synthesis, in vitro acetylcholinesterase inhibitory activity and molecular docking of new acridine-coumarin hybrids. Int. J. Biol. Macromol., 2017, 104, 333-338.
[26]
Pisani, L.; Farina, R.; Catto, M.; Iacobazzi, R.M.; Nicolloti, O.; Cellamare, S.; Mangiatordi, G.F.; Denora, N.; Soto-Otero, R.; Siragusa, L.; Altomare, C.D.; Carotti, A. Exploring basic tail modifications of coumarin-based dual Acetylcholinesterase-Monoamine Oxidase B inhibitors: Identification of water-soluble, brain-permeant neuroprotective multitarget agents. J. Med. Chem., 2016, 59, 6791-6806.
[27]
Joubert, J.; Foka, G.B.; Pepsold, B.P.; Oliver, D.W.; Kapp, E.; Malan, S.F. Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 853-864.
[28]
Ibrar, A.; Khan, A.; Ali, M.; Sarwar, R.; Mehsud, S.; Farooq, U.; Halimi, S.M.A.; Khan, I.; Al-Harrasi, A. Combined in vitro and in silico studies for the Anticholinesterase activity and pharmacokinetics of coumarinyl thiazoles and oxadiazoles. Front Chem., 2018, 6, 61.
[29]
Zhang, J.; Jiang, C-S. Synthesis and evaluation of coumarin/piperazine hybrids as acetylcholinesterase inhibitors. Med. Chem. Res., 2018, 27(6), 1717-1727.
[30]
Xie, S.S.; Lan, J-S.; Wang, X.; Wang, Z-M.; Jiang, N.; Li, F.; Wu, J-J.; Wang, J.; Kong, L-Y. Design, synthesis and biological evaluation of novel donepezil–coumarin hybrids as multi-target agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24(7), 1528-1539.
[31]
Wang, C.; Wu, Z.; Cai, H.; Xu, S.; Liu, J.; Jiang, J.; Yao, H.; Wu, X.; Xu, J. Design, synthesis, biological evaluation and docking study of 4-isochromanone hybrids bearing N-benzyl pyridinium moiety as dual binding site acetylcholinesterase inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(22), 5212-5216.
[32]
Lan, J.S.; Ding, Y.; Liu, Y.; Kang, P.; Hou, J-W.; Zhang, X-Y.; Xie, S-S.; Zhang, T. Design, synthesis and biological evaluation of novel coumarin-N-benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 139, 48-59.
[33]
Jalili-Baleh, L.; Nadri, H.; Forootanfar, H.; Samzadeh-Kermani, A.; Kucukkilinc, T.T.; Ayazgok, B.; Rahimifard, M.; Baeeri, M.; Doostmohammadi, M.; Firoozpour, L.; Bukhari, S.N.A.; Abdollahi, M.; Ganjali, M.R.; Emami, S.; Khoobi, M.; Foroumadi, A. Novel 3-phenylcoumarin–lipoic acid conjugates as multi-functional agents for potential treatment of Alzheimer’s disease. Bioorg. Chem., 2018, 79, 223-234.
[34]
Yang, H.L.; Cai, P.; Liu, C-H.; Yang, X-L.; Li, F.; Wang, J.; Wu, J-J.; Wang, X-B.; Kong, L-Y. Design, synthesis and evaluation of coumarin-pargyline hybrids as novel dual inhibitors of monoamine oxidases and amyloid-b aggregation for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 138(14), 715-728.
[35]
Jiang, N.; Huang, Q.; Liu, J.; Liang, N.; Lim, Q.; Li, Q.; Xie, S-S. Design, synthesis and biological evaluation of new coumarin-dithiocarbamate hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 146(12), 287-298.
[36]
Duan, Y.C.; Ma, Y.C.; Zhang, E.; Shi, X-J.; Wang, M-M.; Ye, X-W.; Liu, H-M. Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents. Eur. J. Med. Chem., 2013, 62, 11-19.
[37]
Kallitsakis, M.G.; Carotti, A.; Catto, M.; Peperidou, A.; Hadjipavlou-Litina, D.J.; Litinas, K.E. Synthesis and biological evaluation of novel hybrid molecules containing purine, coumarin and isoxazoline or isoxazole moieties. TOMCJ, 2017, 11(16), 196-211.
[38]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[39]
Zhang, H.; Burrows, F. Targeting multiple signal transduction pathways through inhibition of Hsp90. J. Mol. Med. , 2004, 82(8), 488-499.
[40]
Zhao, H.; Yan, B.; Peterson, L.B.; Blagg, B.S.J. 3-Arylcoumarin derivatives manifest anti-proliferative activity through Hsp90 inhibition. ACS Med. Chem. Lett., 2012, 3(4), 327-331.
[41]
Stefanachi, A.; Favia, A.D.; Nicolotti, O.; Leonetti, F.; Pisani, L.; Catto, M.; Zimmer, C.; Hartmann, R.W.; Carotti, A. Design, synthesis, and biological evaluation of imidazolyl derivatives of 4,7-disubstituted coumarins as aromatase inhibitors selective over 17-α-Hydroxylase/C17−20 Lyase. J. Med. Chem., 2011, 54(6), 1613-1625.
[42]
Chen, H.; Li, S.; Yao, Y.; Zhou, L.; Zhao, J.; Gu, Y.; Wang, K.; Li, X. Design, synthesis, and anti-tumor activities of novel triphenylethylene-coumarin hybrids, and their interactions with Ct-DNA. Bioorg. Med. Chem. Lett., 2013, 23(17), 4785-4789.
[43]
Zhao, L.; Yao, Y.; Li, S.; Lv, M.; Chen, H.; Li, X. Cytotoxicity and DNA binding property of triphenylethylene-coumarin hybrids with two amino side chains. Bioorg. Med. Chem. Lett., 2014, 24(3), 900-904.
[44]
Terzioglu, N.; Gürsoy, A. Synthesis and anticancer evaluation of some new hydrazone derivatives of 2,6-dimethylimidazo[2,1-b][1,3,4]thiadiazole-5-carbohydrazide. Eur. J. Med. Chem., 2003, 38(7), 781-786.
[45]
Ahn, B.Z.; Sok, D.E. Michael acceptors as a tool for anticancer drug design. Curr. Pharm. Design., 1996, 2(3), 247-262.
[46]
Elshemy, H.A.H.; Zaki, M.A. Design and synthesis of new coumarin hybrids and insight into their mode of antiproliferative action. Bioorg. Med. Chem., 2017, 25(3), 1066-1075.
[47]
Xiao, C.F.; Tao, L.Y.; Sun, H.Y.; Wei, W.; Chen, Y.; Fu, L.W.; Zou, Y. Design, synthesis and antitumor activity of a series of novel coumarin–stilbenes hybrids, the 3-arylcoumarins. Chinese. Chem. Lett., 2010, 21(11), 1295-1298.
[48]
Simoni, D.; Roberti, M.; Invidiata, F.P.; Aiello, E.; Aiello, S.; Marchetti, P.; Baruchello, R.; Eleopra, M.; Di Cristina, A.; Grimaudo, S.; Gebbia, N.; Crosta, L.; Dieli, F.; Tolomeo, M. Stilbene-based anticancer agents: Resveratrol analogues active toward HL60 leukemic cells with a non-specific phase mechanism. Bioorg. Med. Chem. Lett., 2006, 16(12), 3245-3248.
[49]
Belluti, F.; Fontana, G.; Dal Bo, L.; Carenini, N.; Giommarelli, C.; Zunino, F. Design, synthesis and anticancer activities of stilbene-coumarin hybrid compounds: Identification of novel proapoptotic agents. Bioorg. Med. Chem., 2010, 18(10), 3543-3550.
[50]
Klayman, D.L. Qinghaosu (artemisinin): An antimalarial drug from China. Science, 1985, 228(4703), 1049-1055.
[51]
Maresca, A.; Temperini, C.; Pochet, L.; Masereel, B.; Scozzafava, A.; Supuran, C.T. Correction to deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins. J. Med. Chem., 2015, 58(14), 5689-5689.
[52]
Maresca, A.; Scozzafava, A.; Supuran, C.T. 7,8-Disubstituted- but not 6,7-disubstituted coumarins selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II in the low nanomolar/subnanomolar range. Bioorg. Med. Chem. Lett., 2010, 20(24), 7255-7258.
[53]
Maresca, A.; Supuran, C.T. Coumarins incorporating hydroxy- and chloro-moieties selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II. Bioorg. Med. Chem. Lett., 2010, 20(15), 4511-4514.
[54]
Yu, H.; Hou, Z.; Tian, Y.; Mou, Y.; Guo, C. Design, synthesis, cytotoxicity and mechanism of novel dihydroartemisinin-coumarin hybrids as potential anti-cancer agents. Eur. J. Med. Chem., 2018, 151, 434-449.
[55]
Budman, D.R. Review: Tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest., 2005, 23(3), 264-273.
[56]
Singh, H.; Singh, J.V.; Gupta, M.K.; Saxena, A.K.; Sharma, S.; Nepali, K.; Bedi, P.M.S. Triazole tethered isatin-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Bioorg. Med. Chem. Lett., 2017, 27(17), 3974-3979.
[57]
Haider, S.; Alam, M.S.; Hamid, H. 1,3,4-Thiadiazoles: A potent multi targeted pharmacological scaffold. Eur. J. Med. Chem., 2015, 92, 156-177.
[58]
Kamath, P.R.; Sunil, D.; Joseph, M.M.; Salam, A.A.A.; Sreelekha, T.T. Indole-coumarin-thiadiazole hybrids: An appraisal of their IMF-7 cell growth inhibition, apoptotic, antimetastatic and computational Bcl-2 binding potential. Eur. J. Med. Chem., 2017, 136, 442-451.
[59]
Hu, C.; Ma, S. Recent development of lipoxygenase inhibitors as anti-inflammatory agents. Med. Chem. Comm., 2018, 9(2), 212-225.
[60]
Steinbach, G.; Lynch, P.M.; Phillips, R.K.S.; Wallace, M.H.; Hawk, E.; Gordon, G.B.; Wakabayashi, N.; Saunders, B.; Shen, Y.; Fujimura, T.; Su, L-K.; Levin, B.; Godio, L.; Patterson, S.; Rodriguez-Bigas, M.A.; Jester, S.L.; King, K.L.; Schumacher, M.; Abbruzzese, J.; DuBois, R.N.; Hittelman, W.N.; Zimmerman, S.; Sherman, J.W.; Kelloff, G. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in Familial Adenomatous Polyposis. New. Engl. J. Med., 2000, 342(26), 1946-1952.
[61]
Abouzid, K.A.M.; Khalil, N.A.; Ahmed, E.M.; El-Latif, H.A.A.; El-Araby, M.E. Structure-based molecular design, synthesis, and in vivo anti-inflammatory activity of pyridazinone derivatives as nonclassic COX-2 inhibitors. Med. Chem. Res., 2010, 19(7), 629-642.
[62]
Shen, F.Q.; Wang, Z.C.; Wu, S.Y.; Ren, S.Z.; Man, R.J.; Wang, B.Z.; Zhu, H.L. Synthesis of novel hybrids of pyrazole and coumarin as dual inhibitors of COX-2 and 5-LOX. Bioorg. Med. Chem. Lett., 2017, 27(16), 3653-3660.
[63]
Sarrouilhe, D.; Lalégerie, P.; Baudry, M. Endogenous phosphorylation and dephosphorylation of rat liver plasma membrane proteins, suggesting a 18 kDa phosphoprotein as a potential substrate for alkaline phosphatase. Biochim. Biophys. Acta, 1992, 1118(2), 116-122.
[64]
Li, M.; Ding, W.; Baruah, B.; Crans, D.C.; Wang, R. Inhibition of protein tyrosine phosphatase 1B and alkaline phosphatase by bis(maltolato)oxovanadium (IV). J. Inorg. Biochem., 2008, 102(10), 1846-1853.
[65]
Mundy, G.R. Metastasis to bone: Causes, consequences and therapeutic opportunities. Nat. Rev. Cancer, 2002, 2, 584-593.
[66]
Romagnoli, R.; Baraldi, P.G.; Salvador, M.K.; Camacho, M.E.; Preti, D.; Tabrizi, M.A.; Bassetto, M.; Brancale, A.; Hamel, E.; Bortolozzi, R.; Basso, G.; Viola, G. Synthesis and biological evaluation of 2-substituted-4-(3′,4′,5′-trimethoxyphenyl)-5-aryl thiazoles as anticancer agents. Bioorg. Med. Chem., 2012, 20(24), 7083-7094.
[67]
Ibrar, A.; Zaib, S.; Khan, I.; Jabeen, F.; Iqbal, J.; Saeed, A. Facile and expedient access to bis-coumarin–iminothiazole hybrids by molecular hybridization approach: Synthesis, molecular modelling and assessment of alkaline phosphatase inhibition, anticancer and antileishmanial potential. RSC Adv, 2015, 5(109), 89919-89931.
[68]
Sun, J.S.; Li, Y.Y.; Liu, M.H.; Sheu, S.Y. Effects of coumestrol on neonatal and adult mice osteoblasts activities. J. Biomed. Mater. Res. A, 2006, 81A(1), 214-223.
[69]
Tang, C.H.; Yang, R.S.; Chien, M.Y.; Chen, C.C.; Fu, W.M. Enhancement of bone morphogenetic protein-2 expression and bone formation by coumarin derivatives via p38 and ERK-dependent pathway in osteoblasts. Eur. J. Pharmacol., 2008, 579(1-3), 40-49.
[70]
Ming, L.G.; Zhou, J.; Cheng, G.Z.; Ma, H.P.; Chen, K.M. Osthol, a coumarin isolated from common Cnidium fruit, enhances the differentiation and maturation of osteoblasts in vitro. Pharmacology, 2011, 88, 11.
[71]
Allen, J.G.; Fotsch, C.; Babij, P. Emerging targets in osteoporosis disease modification. J. Med. Chem., 2010, 53(11), 4332-4353.
[72]
Sashidhara, K.V.; Modukuri, R.K.; Choudhary, D.; Rao, K.B.; Kumar, M.; Khedgikar, V.; Trivedi, R. Synthesis and evaluation of new coumarin-pyridine hybrids with promising anti-osteoporotic activities. Eur. J. Med. Chem., 2013, 70, 802-810.
[73]
Pingaew, R.; Saekee, A.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, biological evaluation and molecular docking of novel chalcone–coumarin hybrids as anticancer and antimalarial agents. Eur. J. Med. Chem., 2014, 85, 65-76.
[74]
Bisi, A.; Cappadone, C.; Rampa, A.; Farruggia, G.; Sargenti, A.; Belluti, F.; Di Martino, R.M.C.; Malucelli, E.; Meluzzi, A.; Iotti, S.; Gobbi, S. Coumarin derivatives as potential antitumor agents: Growth inhibition, apoptosis induction and multidrug resistance reverting activity. Eur. J. Med. Chem., 2017, 127, 577-585.
[75]
Mokale, S.N.; Begum, A.; Sakle, N.S.; Shelke, V.R.; Bhavale, S.A. Design, synthesis and anticancer screening of 3-(3-(substituted phenyl) acryloyl)-2H-chromen-2ones as selective anti-breast cancer agent. Biomed. Pharmacother., 2017, 89, 966-972.
[76]
Guo, Y.; Wang, Y.; Li, H.; Wang, K.; Wan, Q.; Li, J.; Zhou, Y.; Chen, Y. Novel nitric oxide donors of phenylsulfonylfuroxan and 3-benzyl coumarin derivatives as potent antitumor agents. ACS Med. Chem. Lett., 2018, 9(5), 502-506.
[77]
Huerta, S. Nitric oxide for cancer therapy. Future Sci. OA, 2015, 1(1), FSO44.
[78]
Patil, P.O.; Bari, S.B.; Firke, S.D.; Deshmukh, P.K. Donda, S.T.; Patil, D.A. A comprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer’s disease. Bioorg. Med. Chem., 2013, 21(9), 17.
[79]
Dutta, A.K.G. B.; Gogoi, S.; Ali, S.; Zhen, J.; Reith, M. The novel trisubstituted pyran derivative D-142 has triple monoamine reuptake inhibitory activity and exerts potent antidepressant-like activity in rodents. Eur. J. Pharmacol., 2011, 671(1-3), 39-44.
[80]
Sashidhara, K.V.; Modukuri, R.K.; Singh, S.; Rao, K.B.; Teja, G.A.; Gupta, S.; Shukla, S. Design and synthesis of new series of coumarin-aminopyran derivatives possessing potential anti-depressant-like activity. Bioorg. Med. Chem. Lett., 2015, 25(2), 337-341.
[81]
Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. Synthesis and biological evaluation of novel coumarin derivatives with a 7-azomethine linkage. Bioorg. Med. Chem. Lett., 2004, 14(3), 611-614.
[82]
Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. Synthesis and antiinflammatory activity of coumarin derivatives. J. Med. Chem., 2005, 48(20), 6400-6408.
[83]
Sashidhara, K.V.; Kumar, M.; Modukuri, R.K.; Sonkar, R.; Bhatia, G.; Khanna, A.K.; Rai, S.; Shukla, R. Synthesis and anti-inflammatory activity of novel biscoumarin-chalcone hybrids. Bioorg. Med. Chem. Lett., 2011, 20(24), 7205-7211.
[84]
Melagraki, G.; Afantitis, A.; Igglessi-Markopoulou, O.; Detsi, A.; Koufaki, M.; Kontogiorgis, C.; Hadjipavlou-Litina, D.J. Synthesis and evaluation of the antioxidant and anti-inflammatory activity of novel coumarin-3-aminoamides and their alpha-lipoic acid adducts. Eur. J. Med. Chem., 2009, 44(7), 3020-3026.
[85]
Zygmunt, M.; Dudek, M.; Bilska-Wilkosz, A.; Bednarski, M.; Mogilski, S.; Knutelska, J.; Sapa, J. Anti-inflammatory activity of lipoic acid in mice peritonitis model. Acta Pol. Pharm., 2013, 70(5), 899-904.
[86]
Reddy, D.S.; Hosamani, K.M.; Devarajegowda, H.C. Design, synthesis of benzocoumarin-pyrimidine hybrids as novel class of antitubercular agents, their DNA cleavage and X-ray studies. Eur. J. Med. Chem., 2015, 101, 705-715.
[87]
Negi, B.; Rawat, D.S. Antituberculosis drug research: A critical overview. Med. Res. Rev., 2013, 33(4), 693-764.
[88]
Naik, R.J.; Kulkarni, M.V.; Sreedhara, R.P.K.; Nayak, P.G. Click chemistry approach for Bis-Chromenyl Triazole hybrids and their antitubercular activity. Chem. Biol. Drug Des., 2012, 80(4), 516-523.
[89]
Anand, A.; Naik, R.J.; Revankar, H.M.; Kulkarni, M.V.; Dixit, S.R.; Joshi, S.D. A click chemistry approach for the synthesis of mono and bis aryloxy linked coumarinyl triazoles as anti-tubercular agents. Eur. J. Med. Chem., 2015, 105, 194-207.
[90]
Ashok, D.; Gundu, S.; Aamate, V.K.; Devulapally, M.G.; Bathini, R.; Manga, V. Dimers of coumarin-1,2,3-triazole hybrids bearing alkyl spacer: Design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents. J. Mol. Struct., 2018, 1157, 312-321.
[91]
Voynikov, Y.; Valcheva, V.; Momekov, G.; Peikov, P.; Stavrakov, G. Theophylline-7-acetic acid derivatives with amino acids as anti-tuberculosis agents. Bioorg. Med. Chem. Lett., 2014, 24(14), 3043-3045.
[92]
Bakkestuen, A.K.; Gundersen, L-L.; Utenova, B.T. Synthesis, biological activity, and SAR of antimycobacterial 9-aryl-, 9-arylsulfonyl-, and 9-benzyl-6-(2-furyl)purines. J. Med. Chem., 2005, 48(7), 2710-2723.
[93]
Mangasuli, S.N.; Hosamani, K.M.; Devarajegowda, H.C.; Kurjogi, M.M.; Joshi, S.D. Synthesis of coumarin-theophylline hybrids as a new class of anti-tubercular and anti-microbial agents. Eur. J. Med. Chem., 2018, 146, 747-756.
[94]
Gao, T.; Zeng, Z.; Wang, G.; Sun, S.; Liu, Y. Synthesis of ethylene tethered isatin-coumarin hybrids and evaluation of their in vitro antimycobacterial activities. J. Heterocyclic. Chem., 2018, 55(6), 1484-1488.
[95]
Liu, B.; Hu, G.; Tang, X.; Wang, G.; Xu, Z. 1H-1,2,3-triazole-tethered isatin–coumarin hybrids: Design, synthesis and in vitro anti-mycobacterial evaluation. J. Heterocyclic. Chem., 2018, 55(3), 775-780.
[96]
Yusufzai, S.K.; Osman, H.; Khan, M.S.; Razik, B.M.A.; Ezzat, M.O.; Mohamad, S.; Gansau, J.A.; Parumasivan, T. 4-Thiazoli-dinone coumarin derivatives as two-component NS2B/NS3 DENV flavivirus serine protease inhibitors: Synthesis, molecular docking, biological evaluation and structure-activity relationship studies. Chem. Cent. J., 2018, 12(1), 16.
[97]
Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem., 2016, 123, 236-255.
[98]
Arshad, A.; Osman, H.; Bagley, M.C.; Lam, C.K.; Mohamad, S.; Zahariluddin, A.S.M. Synthesis and antimicrobial properties of some new thiazolyl coumarin derivatives. Eur. J. Med. Chem., 2011, 46(9), 3788-3794.
[99]
Osman, H.; Yusufzai, S.K.; Khan, M.S.; Abd Razik, B.M.; Sulaiman, O.; Mohamad, S.; Gansau, J.A.; Ezzat, M.O.; Parumasivam, T.; Hassan, M.Z. New thiazolyl-coumarin hybrids: Design, synthesis, characterization, X-ray crystal structure, antibacterial and antiviral evaluation. J. Mol. Struct., 2018, 1166, 147-154.
[100]
Bassetto, M.; De Burghgraeve, T.; Delang, L.; Massarotti, A.; Coluccia, A.; Zonta, N.; Gatti, V.; Colombano, G.; Sorba, G.; Silvestri, R.; Tron, G.C.; Neyts, J.; Leyssen, P.; Brancale, A. Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus. Antivir Res., 2013, 98(1), 12-18.
[101]
Scholte, F.E.M.; Tas, A.; Albulescu, I.C.; Žusinaite, E.; Merits, A.; Snijder, E.J.; van Hemert, M.J. Stress granule components G3BP1 and G3BP2 play a proviral role early in Chikungunya virus replication. J. Virol., 2015, 89(8), 4457-4469.
[102]
Wang, X.; Zhang, J.; Huang, Y.; Wang, R.; Zhang, L.; Qiao, K.; Li, L.; Liu, C.; Ouyang, Y.; Xu, W.; Zhang, Z.; Zhang, L.; Shao, Y.; Jiang, S.; Ma, L.; Liu, J. Design, Synthesis, and Biological Evaluation of 1-[(2-Benzyloxyl/alkoxyl)methyl]-5-halo-6-aryluracils as potent HIV-1 non-nucleoside reverse transcriptase inhibitors with an improved drug resistance profile. J. Med. Chem., 2012, 55(5), 2242-2250.
[103]
Kirkiacharian, S.; Thuy, D.T.; Sicsic, S.; Bakhchinian, R.; Kurkjian, R.; Tonnaire, T. Structure–activity relationships of some 3-substituted-4-hydroxycoumarins as HIV-1 protease inhibitors. Il Farmaco, 2002, 57(9), 703-708.
[104]
Hwu, J.R.; Lin, S-Y.; Tsay, S-C.; De Clercq, E.; Leyssen, P.; Neyts, J. Coumarin−purine ribofuranoside conjugates as new agents against hepatitis C virus. J. Med. Chem., 2011, 54(7), 2114-2126.
[105]
Hwu, J.R.; Lin, S-Y.; Tsay, S-C.; Singha, R.; Pal, B.K.; Leyssen, P.; Neyts, J. Development of new sulfur-containing conjugated compounds as anti-HCV agents. Phosphorus Sulfur, 2011, 186(5), 1144-1152.
[106]
Shenai, B.R.; Lee, B.J.; Alvarez-Hernandez, A.; Chong, P.Y.; Emal, C.D.; Neitz, R.J.; Roush, W.R.; Rosenthal, P.J. Structure-activity relationships for inhibition of cysteine protease activity and development of Plasmodium falciparum by peptidyl vinyl sulfones. Antimicrob. Agents Ch., 2003, 47(1), 154-160.
[107]
Hwu, J.R.; Kapoor, M.; Tsay, S-C.; Lin, C-C.; Hwang, K.C.; Horng, J-C.; Chen, I.C.; Shieh, F-K.; Leyssen, P.; Neyts, J. Benzouracil–coumarin–arene conjugates as inhibiting agents for chikungunya virus. Antivir Res., 2015, 118, 103-109.
[108]
Chavan, R.R.; Hosamani, K.M. Microwave-assisted synthesis, computational studies and antibacterial/ anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid. Roy. Soc. Open Sci., 2018, 5(5) 172435
[109]
Holiyachi, M.; Samundeeswari, S.; Chougala, B.M.; Naik, N.S.; Madar, J.; Shastri, L.A.; Joshi, S.D.; Dixit, S.R.; Dodamani, S.; Jalalpure, S.; Sunagar, V.A. Design and synthesis of coumarin–imidazole hybrid and phenyl-imidazoloacrylates as potent antimicrobial and antiinflammatory agents. Monatsh. Chem., 2018, 149(3), 595-609.
[110]
Singh, L.R.; Avula, S.R.; Raj, S.; Srivastava, A.; Palnati, G.R.; Tripathi, C.K.M.; Pasupuleti, M.; Sashidhara, K.V. Coumarin–benzimidazole hybrids as a potent antimicrobial agent: Synthesis and biological elevation. J. Antibiot. , 2017, 70, 954-961.
[111]
Zhao, X.L.; Chen, L.F.; Wang, Z. Aesculin modulates bone metabolism by suppressing receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and transduction signals. Biochem. Bioph. Res. Commun., 2017, 488(1), 15-21.
[112]
Baek, J.M.; Park, S.H.; Cheon, Y.H.; Ahn, S-J.; Lee, M.S.; Oh, J.; Kim, J-Y. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway. Biochem. Bioph. Res. Co., 2015, 461(2), 334-341.
[113]
Boddu, R.K.; Thummuri, D.; Naidu, V.G.M.; Sistla, R.; Uppuluri, V.M. Synthesis of some novel orcinol based coumarin triazole hybrids with capabilities to inhibit RANKL-induced osteoclastogenesis through NF-κB signaling pathway. Bioorg. Chem., 2018, 78(9), 94-102.
[114]
Margheri, F.; Ceruso, M.; Carta, F.; Laurenzana, A.; Maggi, L.; Lazzeri, S.; Simonini, G.; Annunziato, F.; Del Rosso, M.; Supuran, C.T.; Cimaz, R. Overexpression of the transmembrane carbonic anhydrase isoforms IX ad XII in the inflamed synovium. J. Enzyme Inhib. Med. Chem., 2016, 31(4), 60-63.
[115]
Bua, S.; Mannelli, L.D.C.; Vullo, D.; Ghelardini, C.; Bartolucci, G.; Scozzafava, A.; Supuran, C.T.; Carta, F. Design and synthesis of novel nonsteroidal anti-inflammatory drugs and carbonic anhydrase inhibitors hybrids (NSAIDs–CAIs) for the treatment of Rheumatoid Arthritis. J. Med. Chem., 2017, 60(3), 12.
[116]
Kato, A.; Hayashi, E.; Miyauchi, S.; Adachi, I.; Imahori, T.; Natori, Y.; Yoshimura, Y.; Nash, R.J.; Shimaoka, H.; Nakagome, I.; Koseki, J.; Hirono, S.; Takahata, H. α-1-C-Butyl-1,4-dideoxy-1,4-imino-l-arabinitol as a Second-Generation iminosugar-based oral α-glucosidase inhibitor for improving postprandial hyperglycemia. J. Med. Chem., 2012, 55(23), 10347-10362.
[117]
Ghani, U. Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: Finding needle in the haystack. Eur. J. Med. Chem., 2015, 103(30), 133-162.
[118]
Kazmi, M.; Zaib, S.; Ibrar, A.; Amjad, S.T.; Shafique, Z.; Mehsud, S.; Saeed, A.; Iqbal, J.; Khan, I. A new entry into the portfolio of a-glucosidase inhibitors as potent therapeutics for type 2 diabetes: Design, bioevaluation and one-pot multi-component synthesis of diamine-bridged coumarinyl oxadiazole conjugates. Bioorg. Chem., 2018, 77(13), 190-202.
[119]
Taha, M.; Ismail, N.H.; Imran, S.; Wadood, A.; Rahim, F.; Saad, A.M.; Khan, K.M.; Nasir, A. Synthesis, molecular docking and α-glucosidase inhibition of 5-aryl-2-(6′-nitrobenzofuran-2′-yl)-1,3,4-oxadiazoles. Bioorg. Chem., 2016, 66(7), 117-123.
[120]
Zhao, D.G.; Zhou, A.Y.; Du, Z.; Zhang, Y.; Zhang, K.; Ma, Y-Y. Coumarins with α-glucosidase and α-amylase inhibitory activities from the flower of Edgeworthia gardneri. Fitoterapia, 2015, 107(6), 122-127.
[121]
Kobayashi, Y.; Nakano, Y.; Kizaki, M.; Hoskikuma, K.; Yokoo, Y.; Kamiya, T. Capsaicin-like anti-obese activities of evodiamine from fruits of Evodia rutaecarpa, a vanilloid receptor agonist. Planta Medica., 2001, 67(7), 628-633.
[122]
Alapati, V.; Noolvi, M.N.; Manjula, S.N.; Pallavi, K.J.; Patel, H.M.; Tippeswamy, B.S.; Satyanarayana, S.V. In vivo anti-tumour activity of novel Quinazoline derivatives. Eur. Rev. Med. Pharmaco., 2012, 16(13), 1753-1764.
[123]
Mentese, E.; Karaali, N.; Akyuz, G.; Yilmaz, F.; Ulker, S.; Kahveci, B. Synthesis and evaluation of α-glucosidase and pancreatic lipase inhibition by quinazolinone-coumarin hybrids. Chem. Heterocycl. Compd., 2016, 52(12), 1017-1024.
[124]
Kim, D.H.; Jung, H.A.; Sohn, H.S.; Kim, J.W.; Choi, J.S. Potential of Icariin metabolites from Epimedium koreanum Nakai as antidiabetic therapeutic agents. Molecules, 2017, 22(6) E986
[125]
Sun, H.; Song, X.; Tao, Y.; Li, M.; Yang, K.; Zheng, H.; Jin, Z.; Dodd, R.H.; Pan, G.; Lu, K.; Yu, P. Synthesis & α-glucosidase inhibitory & glucose consumption-promoting activities of flavonoid–coumarin hybrids. Future Med. Chem., 2018, 10(9), 1055-1066.
[126]
Poulsen, S.A.; Quinn, R.J. Adenosine receptors: New opportunities for future drugs. Bioorg. Med. Chem., 1998, 6, 619-641.
[127]
Fredholm, B.B.; Arslan, G.; Halldner, L.; Kull, B.; Schulte, G.; Wasserman, W. Structure and function of adenosine receptors and their genes. N-S Arch. Pharmacol., 2000, 362(4-5), 364-374.
[128]
Feoktistov, I.; Wells, J.N.; Biaggioni, I. Adenosine A2B receptors as therapeutic targets. Drug Develop. Res., 1998, 45(3-4), 198-206.
[129]
Gessi, S.; Cattabriga, E.; Avitabile, A.; Gafa, R.; Lanza, G.; Cavazzini, L.; Bianchi, N.; Gambari, R.; Feo, C.; Liboni, A.; Gullini, S.; Leung, E.; Mac-Lennan, S.; Borea, P.A. Elevated expression of A3 adenosine receptors in human colorectal cancer is reflected in peripheral blood cells. Clin. Cancer Res., 2004, 10(17), 5895-5901.
[130]
Jacobson, K.A.; Gao, Z.G. Adenosine receptors as therapeutic targets. Nat. Rev. Drug Discov., 2006, 5(3), 247-264.
[131]
Vazquez-Rodriguez, S.; Matos, M.J.; Santana, L.; Uriarte, E.; Borges, F.; Kachler, S.; Klotz, K-N. Chalcone-based derivatives as new scaffolds for hA3 adenosine receptor antagonists. J. Pharm. Pharmacol., 2013, 65, 697-703.
[132]
Alacron de la Lastra, C.; Villegas, I. Resveratrol as an anti-inflammatory and anti-aging agent: Mechanisms and clinical implications. Mol. Nutr. Food Res., 2005, 49(5), 405-430.
[133]
Vilar, S.; Quezada, E.; Santana, L.; Uriarte, E.; Yanez, M.; Fraiz, N.; Alcaide, C.; Cano, E.; Orallo, F. Design, synthesis, and vasorelaxant and platelet antiaggregatory activities of coumarin–resveratrol hybrids. Bioorg. Med. Chem. Lett., 2006, 16(2), 257-261.
[134]
Enseleit, F.; Lüscher, T.F.; Ruschitzka, F. Darusentan, a selective endothelin a receptor antagonist, for the oral treatment of resistant hypertension. Ther. Adv. Cardiovasc. Dis., 2010, 4(4), 231-240.
[135]
Amin, K.M.; Awadalla, F.M.; Eissa, A.A.; Abou-Seri, S.M.; Hassan, G.S. Design, synthesis and vasorelaxant evaluation of novel coumarin–pyrimidine hybrids. Bioorg. Med. Chem., 2011, 19(20), 6087-6097.
[136]
Lee, M.J.; Chou, F.P.; Tseng, T.H.; Hsieh, M.H.; Lin, M.C.; Wang, C.J. Hibiscus protocatechuic acid or esculetin can inhibit oxidative LDL induced by either copper ion or nitric oxide donor. J. Agr. Food Chem., 2002, 50(7), 2130-2136.
[137]
Quan, H.Y.; Baek, N.I.; Chung, S.H. Licochalcone a prevents adipocyte differentiation and lipogenesis via suppression of peroxisome proliferator-activated receptor γ and sterol regulatory element-binding protein pathways. J. Agr. Food Chem., 2012, 60(20), 5112-5120.
[138]
Sashidhara, K.V.; Palnati, G.R.; Sonkar, R.; Avula, S.R.; Awasthi, C.; Bhatia, G. Coumarin chalcone fibrates: A new structural class of lipid lowering agents. Eur. J. Med. Chem., 2013, 64, 422-431.
[139]
Canner, P.L.; Berge, K.G.; Wenger, N.K.; Stamler, J.; Friedman, L.; Prineas, R.J.; Friedewald, W. Fifteen year mortality in coronary drug project patients: Long-term benefit with niacin. J. Am. Coll. Cardiol., 1986, 8(6), 1245-1255.
[140]
Wise, A.; Foord, S.M.; Fraser, N.J.; Barnes, A.A.; Elshourbagy, N.; Eilert, M.; Ignar, D.M.; Murdock, P.R.; Steplewski, K.; Green, A.; Brown, A.J.; Dowell, S.J.; Szekeres, P.G.; Hassall, D.G.; Marshall, F.H.; Wilson, S.; Pike, N.B. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem., 2003, 278(11), 9869-9874.
[141]
Qin, J.; Rao, A.; Chen, X.; Zhu, X.; Liu, Z.; Huang, X.; Degrado, S.; Huang, Y.; Xiao, D.; Aslanian, R.; Cheewatrakoolpong, B.; Zhang, H.; Greenfeder, S.; Farley, C.; Cook, J.; Kurowski, S.; Li, Q.; van Heek, M.; Chintala, M.; Wang, G.; Hsieh, Y.; Li, F.; Palani, A. Discovery of a potent nicotinic acid receptor agonist for the treatment of dyslipidemia. ACS Med. Chem. Lett., 2011, 2(2), 171-176.
[142]
Singh, L.R.; Kumar, A.; Upadhyay, A.; Gupta, S.; Palanati, G.R.; Sikka, K.; Siddiqi, M.I.; Yadav, P.N.; Sashidhara, K.V. Discovery of coumarin-dihydroquinazolinone analogs as niacin receptor 1 agonist with in-vivo anti-obesity efficacy. Eur. J. Med. Chem., 2018, 152, 208-222.
[143]
del Marmol, V.; Beermann, F. Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett., 1996, 381(3), 165-168.
[144]
Asanuma, M.; Miyazaki, I.; Oqawa, N. Dopamine- or L-DOPA-induced neurotoxicity: The role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox. Res., 2003, 5(3), 165-176.
[145]
Likhitwitayawuid, K. Stilbenes with tyrosinase inhibitory activity. Curr. Sci. India, 2008, 94(1), 9.
[146]
Fais, A.; Corda, M.; Era, B.; Fadda, M.B.; Matos, M.J.; Quezada, E.; Santana, L.; Picciau, C.; Podda, G.; Delogu, G. Tyrosinase inhibitor activity of coumarin-resveratrol hybrids. Molecules, 2009, 14(7), 2514-2520.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy