Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

An Inventive Report of Inducing Apoptosis in Non-Small Cell Lung Cancer (NSCLC) Cell Lines by Transfection of MiR-4301

Author(s): Abbas J. Avval, Ahmad Majd, Naghmeh Gholipour, Kambiz A. Noghabi, Anna Ohradanova-Repic and Ghasem Ahangari*

Volume 19, Issue 13, 2019

Page: [1609 - 1617] Pages: 9

DOI: 10.2174/1871520619666190416114145

Price: $65

Abstract

Background: Based on recent studies, new therapeutic strategies have been developed for cancer treatment using microRNAs (miRNAs). With this view, miRNAs manipulating techniques can be considered as novel therapeutic prospects for cancer treatment. In this study, we evaluated the expression of miR-4301 in human lung cancer cell lines and investigated its potential role in cell proliferation and tumor suppression on Non-Small Cell Lung Cancer (NSCLC) cells.

Methods: We used quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) to examine the level of miR- 4301 expression in human lung cancer cell lines (A549, QU-DB) and non-malignant lung epithelial cells (HFLF-PI5). Then, we investigated the effect of miR-4301 by transfecting it into these cell lines and probing for cancer cell viability and apoptosis using the MTT assay, flow cytometry and immunofluorescence staining.

Results: Our results showed that the expression level of miR-4301 was significantly reduced in human lung cancer cell lines (P<0.001). When miR-4301 was transfected in lung cancer cells, their cell proliferation was suppressed and apoptosis induced. This decline in cell survival was confirmed by the MTT assay. Transfection of miR-4301 caused an increase in early and late apoptotic cells in all lung cancer cell lines tested.

Conclusions: Our findings show that miR-4301 may act as a lung cancer suppressor through targeting of proteins involved in cell proliferation and survival. For this reason, targeting miR-4301 may provide a new strategy for the diagnosis and treatment of patients with this deadly disease. This article is protected by copyright. All rights reserved.

Keywords: miR-4301, tumour inhibition, apoptosis, lung cancer, transfection of miR-4301, cancer suppressor.

Graphical Abstract

[1]
Koudelakova, V.; Kneblova, M.; Trojanec, R.; Drabek, J.; Hajduch, M. Non-small cell lung cancergenetic predictors. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2013, 157(2), 125-136.
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[3]
Navada, S.; Lai, P.; Schwartz, A.G.; Kalemkerian, G.P. Temporal trends in small cell lung cancer: Analysis of the national Surveillance Epidemiology and End-Results (SEER) database. J. Clin. Oncol., 2006, 24(18S), 384S.
[4]
Sher, T.; Dy, G.K.; Adjei, A.A. Small cell lung cancer. Mayo Clin. Proc., 2008, 83(3), 355-367.
[5]
Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; Geisinger, K.; Hirsch, F.R.; Ishikawa, Y.; Kerr, K.M.; Noguchi, M.; Pelosi, G.; Powell, C.A.; Tsao, M.S.; Wistuba, I. The 2015 World Health Organization classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J. Thorac. Oncol., 2015, 10(9), 1243-1260.
[6]
Li, C.M.; Chu, W.Y.; Wong, D.L.; Tsang, H.F.; Tsui, N.B.; Chan, C.M.; Xue, V.W.; Siu, P.M.; Yung, B.Y.; Chan, L.W.; Wong, S.C. Current and future molecular diagnostics in non-small-cell lung cancer. Expert Rev. Mol. Diagn., 2015, 15(8), 1061-10674.
[7]
Tang, Y.; Qiao, G.; Xu, E.; Xuan, Y.; Liao, M.; Yin, G. Biomarkers for early diagnosis, prognosis, prediction, and recurrence monitoring of non-small cell lung cancer. OncoTargets Ther., 2017, 10, 4527-4534.
[8]
Heist, A.R.S.; Engelman, J.A. SnapShot: Non-small cell lung cancer. Cancer Cell, 2012, 21, 448-448.
[9]
Zhu, Q.G.; Zhang, S.M.; Ding, X.X.; He, B.; Zhang, H.Q. Driver genes in non-small cell lung cancer: Characteristics, detection methods, and targeted therapies. Oncol. Target, 2017, 8(34), 57680-57692.
[10]
Pikor, L.A.; Ramnarine, V.R.; Lam, S.; Lam, W.L. Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung Cancer, 2013, 82(2), 179-189.
[11]
Yang, I.A.; Holloway, J.W.; Fong, K.M. Genetic susceptibility to lung cancer and co-morbidities. J. Thorac. Dis., 2013, 5, S454-S462.
[12]
Timmer, J.C.; Salvesen, G.S. Caspase substrates. Cell Death Differ., 2007, 14, 66-72.
[13]
Lüthi, A.U.; Martin, S.J. The CASBAH: A searchable database of caspase substrates. Cell Death Differ., 2007, 14, 641-650.
[14]
Matsuura, K.; Canfield, K.; Feng, W.; Kurokawa, M. Metabolic regulation of apoptosis in cancer. Int. Rev. Cell Mol. Biol., 2016, 327, 43-87.
[15]
Slee, E.A.; Harte, M.T.; Kluck, R.M.; Wolf, B.B.; Casiano, C.A.; Newmeyer, D.D.; Wang, H.G.; Reed, J.C.; Nicholson, D.W.; Alnemri, E.S.; Green, D.R.; Martin, S.J. Ordering the cytochrome c-initiated caspase cascade: Hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell Biol., 1999, 144(2), 281-292.
[16]
Stennicke, H.R.; Jürgensmeier, J.M.; Shin, H.; Deveraux, Q.; Wolf, B.B.; Yang, X.; Zhou, Q.; Ellerby, H.M.; Ellerby, L.M.; Bredesen, D.; Green, D.R.; Reed, J.C.; Froelich, C.J.; Salvesen, G.S. Pro-caspase-3 is a major physiologic target of caspase-8. J. Biol. Chem., 1998, 273, 27084-27090.
[17]
Kurokawa, M.; Kornbluth, S. Caspases and kinases in a death grip. Cell, 2009, 138, 838-854.
[18]
Taylor, R.C.; Cullen, S.P.; Martin, S.J. Apoptosis: Controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol., 2008, 9, 231-241.
[19]
Fernald, K.; Kurokawa, M. Evading apoptosis in cancer. Trends Cell Biol., 2013, 23, 620-633.
[20]
Ambros, V. The functions of animal microRNAs. Nature, 2004, 431, 350-355.
[21]
Bushati, N.; Cohen, S.M. microRNA functions. Annu. Rev. Cell Dev. Biol., 2007, 23, 175-205.
[22]
Krol, J.; Loedige, I.; Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet., 2010, 11, 597-610.
[23]
Palanichamy, J.K.; Rao, D.S. miRNA dysregulation in cancer: Towards a mechanistic understanding. Front. Genet., 2014, 5, 54.
[24]
Gulyaeva, L.F.; Kushlinskiy, N.E. Regulatory mechanisms of microRNA expression. J. Transl. Med., 2016, 14(1), 143.
[25]
Watanabe, K.; Takai, D. Disruption of the expression and function of microRNAs in lung cancer as a result of epigenetic changes. Front. Genet., 2013, 4, 275.
[26]
Hou, J.; Meng, F.; Chan, L.W.; Cho, W.C.; Wong, S.C. Circulating plasma MicroRNAs as diagnostic markers for NSCLC. Front. Genet., 2016, 193 eCollection 2016.
[27]
Wiemer, E.A.C. Prognostic circulating microRNA biomarkers in early-stage non-small cell lung cancer: A Role for miR-150. Clin. Pharmacol. Ther., 2017, 103(6), 968-970.
[28]
Zhao, K.; Cheng, J.; Chen, B.; Liu, Q.; Xu, D.; Zhang, Y. Circulating microRNA-34 family low expression correlates with poor prognosis in patients with non-small cell lung cancer. J. Thorac. Dis., 2017, 9(10), 3735-3746.
[29]
Gao, X.; Li, S.; Li, W.; Wang, G.; Zhao, W.; Han, J.; Diao, C.; Wang, X.; Zhang, M. MicroRNA-539 suppresses tumor cell growth by targeting the WNT8B gene in non-small cell lung cancer. J. Cell. Biochem., 2017, 120(2)
[http://dx.doi.org/10.1002/jcb.26634]
[30]
Li, J.C.; Zheng, J.Q. Effect of microRNA-145 on proliferation and apoptosis of human non-small cell lung cancer A549 cells by regulating mTOR signaling pathway. J. Cell. Biochem., 2017. [Epub ahead of print].
[31]
Kang, M.; Shi, J.; Peng, N.; He, S. MicroRNA-211 promotes non-small-cell lung cancer proliferation and invasion by targeting MxA. OncoTargets Ther., 2017, 10, 5667-5675.
[32]
Hou, L.; Luo, P.; Ma, Y.; Jia, C.; Yu, F.; Lv, Z.; Wu, C.; Fu, D. MicroRNA-125a-3p downregulation correlates with tumorigenesis and poor prognosis in patients with non-small cell lung cancer. Oncol. Lett., 2017, 14(4), 4441-4448.
[33]
Wang, L.; Qu, J.; Zhou, L.; Liao, F.; Wang, J. MicroRNA-373 inhibits cell proliferation and invasion via targeting BRF2 in human non-small cell lung cancer A549 cell line. Cancer Res. Treat., 2017, 50(3), 936-949.
[34]
Bhatnagar, P.; Barron-Casella, E.; Bean, C.J.; Milton, J.N.; Baldwin, C.T.; Steinberg, M.H.; Debaun, M.; Casella, J.F.; Arking, D.E. Genome-wide meta-analysis of systolic blood pressure in children with sickle cell disease. PLoS One, 2013, 8(9)e74193
[35]
Gholipour, N.; Ohradanova-Repic, A.; Ahangari, G. A novel report of MiR-4301 induces cell apoptosis by negatively regulating DRD2 expression in human breast cancer cells. J. Cell. Biochem., 2018, 119(8), 6408-6417.
[36]
Pornour, M.; Ahangari, G.; Hejazi, S.; Deezagi, A. New perspective therapy of breast cancer based on selective dopamine receptor D2 agonist and antagonist effects on MCF-7 cell line. Rec. Pat. Anticancer Drug Discov, 2015, 10(2), 214-223.
[37]
Kanehisa, M.; Goto, S.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. Data, information, knowledge and principle: Back to metabolism in KEGG. Nucleic Acids Res., 2014, 42, D199-D205.
[38]
Triboulet, R.; Chang, H.M.; LaPierre, R.J.; Gregory, R.I. Post-transcriptional control of DGCR8 expression by the microprocessor. RNA, 2009, 15(6), 1005-1011.
[39]
Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer, 2006, 6(11), 857-866.
[40]
Ng, E.K.; Wong, C.L.; Ma, E.S.; Kwong, A. MicroRNAs as new players for diagnosis, prognosis, and therapeutic targets in breast cancer. J. Oncol., 2009, 2009305420
[41]
Li, G.; Fang, J.; Wang, Y.; Wang, H.; Sun, C.C. MiRNA-based therapeutic strategy in lung cancer. Curr. Pharm. Des., 2018, 23(39), 6011-6018.
[42]
Villalobos, P.; Wistuba, I.I. Lung cancer biomarkers. Hematol. Oncol. Clin. North Am., 2017, 31(1), 13-29.
[43]
Saumet, A.; Mathelier, A.; Lecellier, C.H. The potential of microRNAs in personalized medicine against cancers. Biomed Res. Int., 2014, 2014642916
[44]
Sun, C.C.; Li, S.J.; Yuan, Z.P.; Li, D.J. MicroRNA-346 facilitates cell growth and metastasis, and suppresses cell apoptosis in human non-small cell lung cancer by regulation of XPC/ERK/Snail/E-cadherin pathway. Aging (Albany NY), 2016, 8(10), 2509-2524.
[45]
Yang, T.; Thakur, A.; Chen, T.; Yang, L.; Lei, G.; Liang, Y.; Zhang, S.; Ren, H.; Chen, M. MicroRNA-15a induces cell apoptosis and inhibits metastasis by targeting BCL2L2 in non-small cell lung cancer. Tumour Biol., 2015, 36(6), 4357-4365.
[46]
Petrovic, N.; Ergun, S. miRNAs as potential treatment targets and treatment options in cancer. Mol. Diagn. Ther., 2018, 22(2), 157-168.
[47]
Meng, W.; Tai, Y.; Zhao, H.; Fu, B.; Zhang, T.; Liu, W.; Chen, G. Downregulation of miR33a-5p in Hepatocellular carcinoma: A possible mechanism for chemotherapy resistance. Med. Sci. Monit., 2017, 23, 1295-1304.
[48]
Shen, M.; Li, M.; Liu, J. Long noncoding RNA HOTTIP promotes nasopharyngeal cancer cell proliferation, migration, and invasion by inhibiting miR-4301. Med. Sci. Monit., 2019, 25, 778-785.
[49]
Sheikhpour, M.; Ahangari, G.; Sadeghizadeh, M.; Khosravi, A.; Derakhshani Deilami, G. Significant changes in D2-like dopamine gene receptors expression associated with non-small-cell lung cancer: Could it be of potential use in the design of future therapeutic strategies? Curr. Cancer Ther. Rev., 2012, 8(4), 304-310.
[50]
Sheikhpour, M.; Ahangari, G.; Sadeghizadeh, M.; Deezagi, A. A novel report of apoptosis in human lung carcinoma cells using selective agonist of D2-like dopamine receptors: A new approach for the treatment of human non-small cell lung cancer. Int. J. Immunopathol. Pharmacol., 2013, 26(2), 393-402.
[51]
Wu, X.Y.; Zhang, C.X.; Deng, L.C.; Xiao, J.; Yuan, X.; Zhang, B.; Hou, Z.B.; Sheng, Z.H.; Sun, L.; Jiang, Q.C. Overexpressed D2 dopamine receptor inhibits non-small cell lung cancer progression through inhibiting NF-κB signaling pathway. Cell. Physiol. Biochem., 2018, 48, 2258-2272.
[52]
Li, J.; Zhu, S.; Kozono, D.; Ng, K.; Futalan, D.; Shen, Y.; Akers, J.C.; Steed, T.; Kushwaha, D.; Schlabach, M.; Carter, B.S.; Kwon, C.H.; Furnari, F.; Cavenee, W.; Elledge, S.; Chen, C.C. Genome-wide shRNA screen revealed integrated mitogenic signaling between dopamine receptor D2 (DRD2) and epidermal growth factor receptor (EGFR) in glioblastoma. Oncotarget, 2014, 5(4), 882-893.
[53]
Chetty, R.; Govender, D. Gene of the month: KRAS. J. Clin. Pathol., 2013, 66(7), 548-550.
[54]
McKay, M.M.; Morrison, D.K. Integrating signals from RTKs to ERK/MAPK. Oncogene, 2014, 26(22), 3113-3121.
[55]
Takashima, A.; Faller, D.V. Targeting the RAS oncogene. Expert Opin. Ther. Targets, 2013, 17(5), 507-531.
[56]
Pérez-Ramírez, C.; Cañadas-Garre, M.; Molina, M.Á.; Faus-Dáder, M.J.; Calleja-Hernández, M.Á. PTEN and PI3K/AKT in non-small-cell lung cancer. Pharmacogenomics, 2015, 16(16), 1843-1862.
[57]
Scrima, M.; De Marco, C.; Fabiani, F.; Franco, R.; Pirozzi, G.; Rocco, G.; Ravo, M.; Weisz, A.; Zoppoli, P.; Ceccarelli, M.; Botti, G.; Malanga, D.; Viglietto, G. Signaling networks associated with AKT activation in non-small cell lung cancer (NSCLC): New insights on the role of phosphatydil-inositol-3 kinase. PLoS One, 2012, 7e30427
[58]
Balsara, B.R.; Pei, J.; Mitsuuchi, Y.; Page, R.; Klein-Szanto, A.; Wang, H.; Unger, M.; Testa, J.R. Frequent activation of AKT in non-small cell lung carcinomas and preneoplastic bronchial lesions. Carcinogenesis, 2004, 25, 2053-2059.
[59]
Cappuzzo, F.; Ligorio, C.; Janne, P.A.; Toschi, L.; Rossi, E.; Trisolini, R.; Paioli, D.; Holmes, A.J.; Magrini, E.; Finocchiaro, G.; Bartolini, S.; Cancellieri, A.; Ciardiello, F.; Patelli, M.; Crino, L.; Varella-Garcia, M. Prospective study of gefitinib in epidermal growth factor receptor fluorescence in situ hybridization positive/phospho-Akt positive or never smoker patients with advanced nonsmall-cell lung cancer: The ONCOBELL trial. J. Clin. Oncol., 2007, 25, 2248-2255.
[60]
Tsurutani, J.; Fukuoka, J.; Tsurutani, H.; Shih, J.H.; Hewitt, S.M.; Travis, W.D.; Jen, J.; Dennis, P.A. Evaluation of two phosphorylation sites improves the prognostic significance of akt activation in Non-small-cell lung cancer tumors. J. Clin. Oncol., 2006, 24, 306-314.
[61]
Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc., 2008, 83(5), 584-594.
[62]
Mendelsohn, J.; Baselga, J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J. Clin. Oncol., 2003, 21(14), 2787-2799.
[63]
Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; Nishiwaki, Y.; Ohe, Y.; Yang, J.J.; Chewaskulyong, B.; Jiang, H.; Duffield, E.L.; Watkins, C.L.; Armour, A.A.; Fukuoka, M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med., 2009, 361, 947-957.
[64]
Oxnard, G.R.; Arcila, M.E.; Chmielecki, J.; Ladanyi, M.; Miller, V.A.; Pao, W. New strategies in overcoming acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer. Clin. Cancer Res., 2011, 17, 5530-5553.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy