[1]
Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.W.; Comber, H.; Forman, D.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer, 2013, 49(6), 1374-1403.
[2]
Lalitha, K.; Suman, G.; Pruthvish, S.; Mathew, A.; Murthy, N.S. Estimation of time trends of incidence of prostate cancer-an Indian scenario. Asian Pac. J. Cancer Prev., 2012, 13(12), 6245-6250.
[3]
Asbell, S.O.; Martz, K.L.; Shin, K.H.; Sause, W.T.; Doggett, R.L.; Perez, C.A.; Pilepich, M.V. Impact of surgical staging in evaluating the radiotherapeutic outcome in RTOG 77-06, a phase III study for T1bN0M0 (A2) and T2N0M0 (B) prostate carcinoma. Int. J. Radiat. Oncol. Biol. Phys., 1998, 40(4), 769-782.
[4]
Klotz, L. Prostate cancer overdiagnosis and overtreatment. Curr. Opin. Endocrinol. Diab Obes., 2013, 20(3), 204-209.
[5]
Nguyen, C.; Lairson, D.R.; Swartz, M.D.; Du, X.L. Risks of Major Long-term side effects associated with androgen-deprivation therapy in men with prostate cancer Pharmacotherapy. J. Human Pharmacol. Drug Ther., 2018, 38(10), 999-1009.
[6]
Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; Xu, Y. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med., 2010, 363(5), 411-422.
[7]
Evans, A.J. Treatment effects in prostate cancer. Mod. Pathol., 2018, 31(S1), S110.
[8]
Cui, J.; Wang, Y.; Dong, B.; Qin, L.; Wang, C.; Zhou, P.; Wang, X.; Xu, H.; Xue, W.; Fang, Y.X.; Gao, W.Q. Pharmacological inhibition of the Notch pathway enhances the efficacy of androgen deprivation therapy for prostate cancer. Int. J. Cancer, 2018, 143(3), 645-656.
[9]
Leong, K.G.; Gao, W.Q. The Notch pathway in prostate development and cancer. Differentiation, 2008, 76(6), 699-716.
[10]
Hafeez, B.B.; Adhami, V.M.; Asim, M.; Siddiqui, I.A.; Bhat, K.M.; Zhong, W.; Saleem, M.; Din, M.; Setaluri, V.; Mukhtar, H. Targeted knockdown of Notch-1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator. Clin. Cancer Res., 2009, 15(2), 452-459.
[11]
Fleming, R.J. Structural conservation of Notch receptors and ligands. Semin. Cell Dev. Biol., 1998, 9(6), 599-607.
[12]
Zayzafoon, M.; Abdulkadir, S.A.; McDonald, J.M. Notch signaling and ERK activation are important for the osteomimetic properties of prostate cancer bone metastatic cell lines. J. Biol. Chem., 2004, 279, 3662-3670.
[13]
Santagata, S.; Demichelis, F.; Riva, A.; Varambally, S.; Hofer, M.D.; Kutok, J.L.; Rubin, M.A. JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res., 2004, 64, 6854-6857.
[14]
Sha, J.; Li, J.; Wang, W.; Pan, L.; Cheng, J.; Li, L.; Lin, W. Curcumin induces G0/G1 arrest and apoptosis in hormone independent prostate cancer DU-145 cells by down regulating Notch signaling. Biomed. Pharmacother., 2016, 84, 177-184.
[15]
Wang, K.; Pan, L.; Che, X.; Cui, D.; Li, C. Gli1 inhibition induces cell-cycle arrest and enhanced apoptosis in brain glioma cell lines. J. Neurooncol., 2010, 98, 319-327.
[16]
Chhabra, G.; Singh, C.K.; Ndiaye, M.A.; Fedorowicz, S.; Molot, A.; Ahmad, N. Prostate cancer chemoprevention by natural agents: Clinical evidence and potential implications. Cancer Lett., 2018, 422, 9-18.
[17]
Rivera, M.; Ramos, Y.; Rodriguez-Valentín, M.; Lopez-Acevedo, S.; Cubano, L.A.; Zou, J.; Boukli, N.M. Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells. PLoS One, 2017, 12e0179587
[18]
Gordaliza, M. Natural products as leads to anticancer drugs. Clin. Transl. Oncol., 2007, 9, 767-776.
[19]
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.R.; Amin, A.; Aquilano, K.; Arbiser, J.; Arreola, A.; Arzumanyan, A.; Ashraf, S.S. December. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin. Cancer Biol., 2015, 35, S276-S304.
[20]
Friedman, M. Chemistry and multibeneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices. J. Agric. Food Chem., 2014, 62, 7652-7670.
[21]
Koparal, A.T.; Zeytinoglu, M. Effects of carvacrol on a human non-small cell lung cancer (NSCLC) cell line, A549. Cytotechnology, 2003, 43(1-3), 149-154.
[22]
Karkabounas, S.; Kostoula, O.K.; Daskalou, T.; Veltsistas, P.; Karamouzis, M.; Zelovitis, I.; Skoufos, I. Anticarcinogenic and antiplatelet effects of carvacrol. Exp. Oncol., 2006, 28, 121-125.
[23]
Arunasree, K.M. Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine, 2010, 17, 581-588.
[24]
Mehdi, S.J.; Ahmad, A.; Irshad, M.; Manzoor, N.; Rizvi, M.M.A. Cytotoxic effect of Carvacrol on human cervical cancer cells. Biol. Med. (Aligarh), 2011, 3, 307-312.
[25]
Patel, B.; Shah, V.R.; Bavadekar, S.A. Anti-proliferative effects of carvacrol on human prostate cancer cell line, LNCaP. FASEB J., 2012, 26, 1037-5.
[26]
Yin, Q.H.; Yan, F.X.; Zu, X.Y.; Wu, Y.H.; Wu, X.P.; Liao, M.C.; Zhuang, Y.Z. Anti-proliferative and pro-apoptotic effect of carvacrol on human hepatocellular carcinoma cell line HepG-2. Cytotechnology, 2012, 64, 43-51.
[27]
Ahmed, H.H.; Shousha, W.G.; El-Mezayen, H.A.; Ismaiel, N.N.; Mahmoud, N.S. In vivo antitumor potential of carvacrol against hepatocellular carcinoma in rat model. World J. Pharm. Pharm. Sci., 2013, 2, 2367-2396.
[28]
Bhakkiyalakshmi, E.; Suganya, N.; Sireesh, D.; Krishnamurthi, K.; Devi, S.S.; Rajaguru, P.; Ramkumar, K.M. Carvacrol induces mitochondria-mediated apoptosis in HL-60 promyelocytic and Jurkat T lymphoma cells. Eur. J. Pharmacol., 2016, 772, 92-98.
[29]
Khan, F.; Khan, I.; Farooqui, A.; Ansari, I.A. Carvacrol induces Reactive Oxygen Species (ROS)-mediated apoptosis along with cell cycle arrest at G0/G1 in human prostate cancer Cells. Nutr. Cancer, 2017, 69(7), 1075-1087.
[30]
Wang, Q.; Li, H.; Sun, Z.; Dong, L.; Gao, L.; Liu, C.; Wang, X. Kukoamine A inhibits human glioblastoma cell growth and migration through apoptosis induction and epithelial-mesenchymal transition attenuation. Sci. Rep., 2016, 6, 36543.
[31]
Xiong, J.; Yang, H.; Luo, W.; Shan, E.; Liu, J.; Zhang, F.; Yang, J. The anti-metastatic effect of 8-MOP on hepatocellular carcinoma is potentiated by the down-regulation of bHLH transcription factor DEC1. Pharmacol. Res., 2016, 105, 121-133.
[32]
Farooqui, A.; Khan, F.; Khan, I.; Ansari, I.A. Glycyrrhizin induces reactive oxygen species-dependent apoptosis and cell cycle arrest at G 0/G 1 in HPV18+ human cervical cancer HeLa cell line. Biomed. Pharmacother., 2018, 97, 752-764.
[33]
Mondal, A.; Bennett, L.L. Resveratrol enhances the efficacy of sorafenib mediated apoptosis in human breast cancer MCF7 cells through ROS, cell cycle inhibition, caspase 3 and PARP cleavage. Biomed. Pharmacother., 2016, 84, 1906-1914.
[34]
Shankar, S.; Srivastava, R.K. Involvement of Bcl-2 family members, phosphatidylinositol 3′-kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)-induced apoptosis in prostate cancer. Int. J. Oncol., 2007, 30, 905-918.
[35]
Zhou, G.X.; Ding, X.L.; Huang, J.F.; Zhang, H.; Wu, S.B.; Cheng, J.P.; Wei, Q. Apoptosis of human pancreatic cancer cells induced by Triptolide. World J. Gastroenterol., 2008, 14, 1504.
[36]
Uno, M.; Otsuki, T.; Hiratsuka, J.; Yoden, E.; Aihara, T.; Harada, T.; Imajo, Y. Expression of cell cycle regulator genes in KB, a human squamous cell carcinoma cell line, after irradiation. Int. J. Oncol., 2000, 17, 947-1001.
[37]
Chikara, S.; Lindsey, K.; Dhillon, H.; Mamidi, S.; Kittilson, J.; Christofidou-Solomidou, M.; Reindl, K.M. Enterolactone induces G1-phase cell cycle arrest in non-small cell lung cancer cells by downregulating cyclins and cyclin-dependent kinases. Nutr. Cancer, 2017, 69, 652-662.
[38]
Jiang, L.; Wu, J.; Chen, Q.; Hu, X.; Li, W.; Hu, G. Notch1 expression is upregulated in glioma and is associated with tumor progression. J. Clin. Neurosci., 2011, 18, 387-390.
[39]
Chen, X.; Xiao, W.; Wang, W.; Luo, L.; Ye, S.; Liu, Y. The complex interplay between ERK1/2, TGFβ/Smad, and Jagged/Notch signaling pathways in the regulation of epithelial-mesenchymal transition in retinal pigment epithelium cells. PLoS One, 2014, 9e, 96365.
[40]
Li, W.; Song, A.P.; Zhao, F.; Hu, Y.M.; Hua, M. A novel human TINP1 gene promotes cell proliferation through inhibition of p53 and p21 expression. Oncol. Rep., 2013, 30, 1848-1852.
[41]
van de Merbel, A.F.; van der Horst, G.; Buijs, J.T.; van der Pluijm, G. Protocols for migration and invasion studies in prostate cancer. In: Prostate Cancer; Humana Press: New York, NY, 2018; pp. 67-79.
[42]
Sun, S.Y.; Hail, N., Jr; Lotan, R. Apoptosis as a novel target for cancer chemoprevention. J. Natl. Cancer Inst., 2004, 96, 662-672.
[43]
Zielinski, R.R.; Eigl, B.J.; Chi, K.N. Targeting the apoptosis pathway in prostate cancer. Cancer J., 2013, 19, 79-89.
[44]
Knight, T.; Luedtke, D.; Edwards, H.; Taub, J.W.; Ge, Y. A delicate balance-The BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochem. Pharmacol., 2019, 162, 250-261.
[45]
Amaral, R.G.; dos Santos, S.A.; Andrade, L.N.; Severino, P.; Carvalho, A.A. Natural products as treatment against cancer: A historical and current vision. Clin. Oncol. (R. Coll. Radiol.), 2019, 4, 1562.
[46]
Gezici, S.; Sekeroglu, N. Current perspectives in the application of medicinal plants against cancer: Novel therapeutic agents. Anticancer Agents Med Chem., (Formerly Current Medicinal Chemistry- Anti-Cancer Agents), 2019, 19(1), 101-111.
[47]
Fulda, S. Modulation of apoptosis by natural products for cancer therapy. Planta Med., 2010, 76, 1075-1079.
[48]
Bishayee, A.; Sethi, G. Bioactive natural products in cancer prevention and therapy: Progress and promise. Semin. Cancer Biol., 2016, 40, 1-3.
[49]
Fan, K.; Li, X.; Cao, Y.; Qi, H.; Li, L.; Zhang, Q.; Sun, H. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anticancer Drugs, 2015, 26(8), 813-823.
[50]
Luo, Y.; Wu, J.Y.; Lu, M.H.; Shi, Z.; Na, N.; Di, J.M. Carvacrol alleviates prostate cancer cell proliferation, migration, and invasion through regulation of PI3K/Akt and MAPK signaling pathways. Oxid. Med. Cell. Longev., 2016, 2016, 1469693.
[51]
Lim, W.; Ham, J.; Bazer, F.W.; Song, G. Carvacrol induces mitochondria‐mediated apoptosis via disruption of calcium homeostasis in human choriocarcinoma cells. J. Cell. Physiol., 2019, 234, 1803-1815.
[52]
Watson, R.W.G.; Fitzpatrick, J.M. Targeting apoptosis in prostate cancer: focus on caspases and inhibitors of apoptosis proteins. BJU Int., 2005, 96, 30-34.
[53]
Shao, W.; Yeretssian, G.; Doiron, K.; Hussain, S.N.; Saleh, M. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J. Biol. Chem., 2007, 282, 36321-36329.
[54]
Li, J.; Yuan, J. Caspases in apoptosis and beyond. Oncogene, 2008, 27, 6194.
[55]
Kantari, C.; Walczak, H. Dual philosophy in death receptor signalling. Open Cell Signal. J., 2011, 3, 27-34.
[56]
Zivny, J.; Klener, P., Jr; Pytlik, R.; Andera, L. The role of apoptosis in cancer development and treatment: Focusing on the development and treatment of hematologic malignancies. Curr. Pharm. Des., 2010, 16, 11-33.
[57]
Adams, J.M.; Cory, S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ., 2018, 25, 27.
[58]
Guo, B.; Godzik, A.; Reed, J.C. Bcl-G, a novel pro-apoptotic member of the Bcl-2 family. J. Biol. Chem., 2001, 276(4), 2780-2785.
[59]
Martin-Cordero, C.; Jose Leon-Gonzalez, A.; Manuel Calderon-Montano, J.; Burgos-Moron, E.; Lopez-Lazaro, M. Pro-oxidant natural products as anticancer agents. Curr. Drug Targets, 2012, 13, 1006-1028.
[60]
Fruehauf, J.P.; Meyskens, F.L. Reactive oxygen species: A breath of life or death? Clin. Cancer Res., 2007, 13, 789-794.
[61]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8, 579-591.
[62]
Sherr, C.J.; Bartek, J. Cell cycle–targeted cancer therapies. Annu. Rev. Cancer Biol., 2017, 1, 41-57.
[63]
Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer, 2017, 17, 93.
[64]
Aparicio, L.A.; Campelo, R.G.; Espinosa, J.C.; Ayerbes, M.V.; Lopez, M.R.; Prado, S.D.; Gallego, G.A. Prostate cancer and Hedgehog signalling pathway. Clin. Transl. Oncol., 2007, 9, 420.
[65]
Wang, Z.; Li, Y.; Banerjee, S.; Kong, D.; Ahmad, A.; Nogueira, V.; Sarkar, F.H. Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-κB signaling pathways. J. Cell. Biochem., 2010, 109, 726-736.
[66]
MacKenzie, F.; Duriez, P.; Wong, F.; Noseda, M.; Karsan, A. Notch4 inhibits endothelial apoptosis via RBP-Jκ-dependent and-independent pathways. J. Biol. Chem., 2004, 279, 11657-11663.
[67]
Nair, P.; Somasundaram, K.; Krishna, S. Activated Notch-1 inhibits p53-induced apoptosis and sustains transformation by human papillomavirus type 16 E6 and E7 oncogenes through a PI3K-PKB/Akt-dependent pathway. J. Virol., 2003, 77, 7106-7112.
[68]
Ronchini, C.; Capobianco, A.J. Induction of cyclin D1 transcription and CDK2 activity by Notchic: implication for cell cycle disruption in transformation by Notchic. Mol. Cell. Biol., 2001, 21, 5925-5934.
[69]
Murata, K.; Hattori, M.; Hirai, N.; Shinozuka, Y.; Hirata, H.; Kageyama, R.; Minato, N. Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Mol. Cell. Biol., 2005, 25, 4262-4271.
[70]
Sarmento, L.M.; Huang, H.; Limon, A.; Gordon, W.; Fernandes, J.; Tavares, M.J.; Carlesso, N. Notch-1 modulates timing of G1-S progression by inducing SKP2 transcription and p27Kip1 degradation. J. Exp. Med., 2005, 202, 157-168.
[71]
Wang, Z.; Li, Y.; Ahmad, A.; Banerjee, S.; Azmi, A.S.; Kong, D.; Sarkar, F.H. Down-regulation of Notch-1 is associated with Akt and FoxM1 in inducing cell growth inhibition and apoptosis in prostate cancer cells. J. Cell. Biochem., 2011, 112, 78-88.