[1]
Sadalla, J.C.; Andrade, J.M.; Genta, M.L.; Baracat, E.C. Cervical cancer: What’s new? Rev. Assoc. Med. Bras., 2015, 61(6), 536-542.
[2]
Li, H.; Wu, X.; Cheng, X. Advances in diagnosis and treatment of metastatic cervical cancer. J. Gynecol. Oncol., 2016, 27(4)e43
[3]
Tsikouras, P.; Zervoudis, S.; Manav, B.; Tomara, E.; Iatrakis, G.; Romanidis, C.; Bothou, A.; Galazios, G. Cervical cancer: Screening, diagnosis and staging. J. BUON, 2016, 21(2), 320-325.
[4]
Chen, J.; Gu, W.; Yang, L.; Chen, C.; Shao, R.; Xu, K.; Xu, Z.P. Nanotechnology in the management of cervical cancer. Rev. Med. Virol., 2015, 25(Suppl. 1), 72-83.
[5]
Yu, Y.; Xu, S.; You, H.; Zhang, Y.; Yang, B.; Sun, X.; Yang, L.; Chen, Y.; Fu, S.; Wu, J. In vivo synergistic anti-tumor effect of paclitaxel nanoparticles combined with radiotherapy on human cervical carcinoma. Drug Deliv., 2017, 24(1), 75-82.
[6]
Conte, C.; Maiolino, S.; Pellosi, D.S.; Miro, A.; Ungaro, F.; Quaglia, F. Polymeric nanoparticles for cancer photodynamic therapy. Top. Curr. Chem., 2016, 370, 61-112.
[7]
Chen, Q.; Ke, H.; Dai, Z.; Liu, Z. Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials, 2015, 73, 214-230.
[8]
Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev., 2015, 115(4), 1990-2042.
[9]
Eshghi, H.; Sazgarnia, A.; Rahimizadeh, M.; Attaran, N.; Bakavoli, M.; Soudmand, S. Protoporphyrin IX-gold nanoparticle conjugates as an efficient photosensitizer in cervical cancer therapy. Photodiagn. Photodyn. Ther., 2013, 10(3), 304-312.
[10]
Shen, Y.; Shuhendler, A.J.; Ye, D.; Xu, J.J.; Chen, H.Y. Two-photon excitation nanoparticles for photodynamic therapy. Chem. Soc. Rev., 2016, 45(24), 6725-6741.
[11]
Castano, A.P.; Demidova, T.N.; Hamblin, M.R. Mechanisms in photodynamic therapy: Part one-photosensitizers, photochemistry and cellular localization. Photodiagn. Photodyn. Ther., 2004, 1(4), 279-293.
[12]
Schmitt, J.; Heitz, V.; Sour, A.; Bolze, F.; Ftouni, H.; Nicoud, J.F.; Flamigni, L.; Ventura, B. Diketopyrrolopyrrole-porphyrin conjugates with high two-photon absorption and singlet oxygen generation for two-photon photodynamic therapy. Angew. Chem. Int. Ed. Engl., 2015, 54(1), 169-173.
[13]
Wang, H.; Yang, X.; Shao, W.; Chen, S.; Xie, J.; Zhang, X.; Wang, J.; Xie, Y. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc., 2015, 137(35), 11376-11382.
[14]
Lu, K.; He, C.; Lin, W. A chlorin-based nanoscale metal-organic framework for photodynamic therapy of colon cancers. J. Am. Chem. Soc., 2015, 137(24), 7600-7603.
[15]
Kharkwal, G.B.; Sharma, S.K.; Huang, Y.Y.; Dai, T.; Hamblinm, M.R. Photodynamic therapy for infections: Clinical applications. Lasers Surg. Med., 2011, 43(7), 755-767.
[16]
Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387.
[17]
Calixto, G.M.; Bernegossi, J.; de Freitas, L.M.; Fontana, C.R.; Chorilli, M. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: A review. Molecules, 2016, 21(3), 342.
[18]
Ding, H.; Yu, H.; Dong, Y.; Tian, R.; Huang, G.; Boothman, D.A.; Sumer, B.D.; Gao, J. Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia. J. Control. Release, 2011, 156(3), 276-280.
[19]
Ge, J.; Lan, M.; Zhou, B.; Liu, W.; Guo, L.; Wang, H.; Jia, Q.; Niu, G.; Huang, X.; Zhou, H.; Meng, X.; Wang, P.; Lee, C-S.; Zhang, W.; Han, X. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun., 2014, 5, 4596.
[20]
Zhou, Z.; Song, J.; Nie, L.; Chen, X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev., 2016, 45(23), 6597-6626.
[21]
Yoo, J.O.; Ha, K.S. New insights into the mechanisms for photodynamic therapy-induced cancer cell death. Int. Rev. Cell Mol. Biol., 2012, 295, 139-174.
[22]
Mielczarek-Badora, E.; Szulc, M. Photodynamic therapy and its role in periodontitis treatment. Postepy Hig. Med. Dosw., 2013, 67, 1058-1065.
[23]
Chen, Y.; Shea, C.R.; Calzavara-Pinton, P. Molecular mechanism of photodynamic therapy. J. Central South Univ. Med. Sci., 2014, 39(1), 102-108.
[24]
Feng, J.B.; Bai, Y.X. The development of photodynamic therapy for malignant tumor. Pract. Oncol. J., 2012, 26(6), 573-576.
[25]
Topaloglu, N.; Guney, M.; Aysan, N.; Gulsoy, M.; Yuksel, S. The role of reactive oxygen species in the antibacterial photodynamic treatment: Photoinactivation vs. proliferation. Lett. Appl. Microbiol., 2016, 62(3), 230-236.
[26]
Bartosz, G. Reactive oxygen species: Destroyers or messengers? Biochem. Pharmacol., 2009, 77(8), 1303-1315.
[27]
Salunkhe, P.; Topfer, T.; Buer, J.; Tummler, B. Genome-wide transcriptional profiling of the steady-state response of Pseudomonas aeruginosa to hydrogen peroxide. J. Bacteriol., 2005, 187(8), 2565-2572.
[28]
Kotulska, M.; Kulbacka, J.; Saczko, J. Advances in photodynamic therapy assisted by electroporation. Curr. Drug Metab., 2013, 14(3), 309-318.
[29]
Edinger, A.L.; Thompson, C.B. Death by design: Apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol., 2004, 16(6), 663-669.
[30]
Buytaert, E.; Dewaele, M.; Agostinis, P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim. Biophys. Acta, 2007, 1776(1), 86-107.
[31]
Granville, D.J.; Cassidy, B.A.; Ruehlmann, D.O.; Choy, J.C.; Brenner, C.; Kroemer, G.; van Breemen, C.; Margaron, P.; Hunt, D.W.; McManus, B.M. Mitochondrial release of apoptosis-inducing factor and cytochrome c during smooth muscle cell apoptosis. Am. J. Pathol., 2001, 159(1), 305-311.
[32]
Yokota, T.; Ikeda, H.; Inokuchi, T.; Sano, K.; Koji, T. Enhanced cell death in NR-S1 tumor by photodynamic therapy: Possible involvement of Fas and Fas ligand system. Lasers Surg. Med., 2000, 26(5), 449-460.
[33]
Reiter, I.; Schwamberger, G.; Krammer, B. Effect of photodynamic pretreatment on the susceptibility of murine tumor cells to macrophage antitumor mechanisms. Photochem. Photobiol., 1997, 66(3), 384-388.
[34]
Agostinis, P.; Buytaert, E.; Breyssens, H.; Hendrickx, N. Regulatory pathways in photodynamic therapy induced apoptosis. Photochem. Photobiol. Sci., 2004, 3(8), 721-729.
[35]
Buytaert, E.; Callewaert, G.; Vandenheede, J.R.; Agostinis, P. Deficiency in apoptotic effectors Bax and Bak reveals an autophagic cell death pathway initiated by photodamage to the endoplasmic reticulum. Autophagy, 2006, 2(3), 238-240.
[36]
Scherz-Shouval, R.; Elazar, Z. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol., 2007, 17(9), 422-427.
[37]
Reiners, J.J., Jr; Agostinis, P.; Berg, K.; Oleinick, N.L.; Kessel, D. Assessing autophagy in the context of photodynamic therapy. Autophagy, 2010, 6(1), 7-18.
[38]
Janku, F.; McConkey, D.J.; Hong, D.S.; Kurzrock, R. Autophagy as a target for anticancer therapy. Nat. Rev. Clin. Oncol., 2011, 8(9), 528-539.
[39]
Galluzzi, L.; Vanden Berghe, T.; Vanlangenakker, N.; Buettner, S.; Eisenberg, T.; Vandenabeele, P.; Madeo, F.; Kroemer, G. Programmed necrosis from molecules to health and disease. Int. Rev. Cell Mol. Biol., 2011, 289, 1-35.
[40]
Yoo, J.O.; Lim, Y.C.; Kim, Y.M.; Ha, K.S. Differential cytotoxic responses to low- and high-dose photodynamic therapy in human gastric and bladder cancer cells. J. Cell. Biochem., 2011, 112(10), 3061-3071.
[41]
Christofferson, D.E.; Yuan, J. Necroptosis as an alternative form of programmed cell death. Curr. Opin. Cell Biol., 2010, 22(2), 263-268.
[42]
Saini, R.; Lee, N.V.; Liu, K.Y.; Poh, C.F. Prospects in the application of photodynamic therapy in oral cancer and premalignant lesions. Cancers, 2016, 8(9), 83.
[43]
Li, R.; Zhang, Y.; Mohamed, M.A.; Wei, X.; Cheng, C. Macrophages play an essential role in the long effects of low-dose photodynamic therapy on vessel permeability. Int. J. Biochem. Cell Biol., 2016, 71, 55-61.
[44]
Golstein, P.; Kroemer, G. Cell death by necrosis: Towards a molecular definition. Trends Biochem. Sci., 2007, 32(1), 37-43.
[45]
Harvey, E.H.; Webber, J.; Kessel, D.; Fromm, D. Killing tumor cells: the effect of photodynamic therapy using mono-L-aspartyl chlorine and NS-398. Am. Surg., 2005, 189(3), 302-305.
[46]
Ferrario, A.; Chantrain, C.F.; von Tiehl, K.; Buckley, S.; Rucker, N.; Shalinsky, D.R.; Shimada, H.; DeClerck, Y.A.; Gomer, C.J. The matrix metalloproteinase inhibitor prinomastat enhances photodynamic therapy responsiveness in a mouse tumor model. Cancer Res., 2004, 64(7), 2328-2332.
[47]
Wachowska, M.; Muchowicz, A.; Demkow, U. Immunological aspects of antitumor photodynamic therapy outcome. Cent. Eur. J. Immunol., 2015, 40(4), 481-485.
[48]
Kubiak, M.; Lysenko, L.; Gerber, H.; Nowak, R. Cell reactions and immune responses to photodynamic therapy in oncology. Postepy Hig. Med. Dosw., 2016, 70, 735-742.
[49]
de Vree, W.J.; Essers, M.C.; Koster, J.F.; Sluiter, W. Role of interleukin 1 and granulocyte colony-stimulating factor in photofrin-based photodynamic therapy of rat rhabdomyosarcoma tumors. Cancer Res., 1997, 57(13), 2555-2558.
[50]
Golab, J.; Wilczyński, G.; Zagozdzon, R.; Stokłosa, T.; Dabrowska, A.; Rybczyńska, J.; Wasik, M.; Machaj, E.; Ołda, T.; Kozar, K.; Kamiński, R.; Giermasz, A.; Czajka, A.; Lasek, W.; Feleszko, W.; Jakóbisiak, M. Potentiation of the anti-tumour effects of Photofrin-based photodynamic therapy by localized treatment with G-CSF. Br. J. Cancer, 2000, 82(8), 1485-1491.
[51]
Mroz, P.; Hamblin, M.R. The immunosuppressive side of PDT. Photochem. Photobiol. Sci., 2011, 10(5), 751-758.
[52]
Elmets, C.A.; Bowen, K.D. Immunological suppression in mice treated with hematoporphyrin derivative photoradiation. Cancer Res., 1986, 46(1), 1608-1611.
[53]
Yu, M.; Guo, F.; Wang, J.; Tan, F.; Li, N. Photosensitizer-loaded pH-responsive hollow gold nanospheres for single light-induced photothermal/photodynamic therapy. ACS Appl. Mater. Interfaces, 2015, 7(32), 17592-17597.
[54]
Gao, L.; Zhang, C.; Gao, D.; Liu, H.; Yu, X.; Lai, J.; Wang, F.; Lin, J.; Liu, Z. Enhanced anti-tumor efficacy through a combination of integrin alphavbeta6-targeted photodynamic therapy and immune checkpoint inhibition. Theranostics, 2016, 6(5), 627-637.
[55]
Maeding, N.; Verwanger, T.; Krammer, B. Boosting tumor-specific immunity using PDT. Cancers, 2016, 8(10)E91
[56]
Hani, U.; Osmani, R.A.; Bhosale, R.R.; Shivakumar, H.G.; Kulkarni, P.K. Current perspectives on novel drug delivery systems and approaches for management of cervical cancer: A comprehensive review. Curr. Drug Targets, 2016, 17(3), 337-352.
[57]
Huang, H.F.; Yan, X.; Guo, H.Q. Nanotechnology and photodynamic therapy of bladder cancer. J. Clin. Urol., 2010, 25(2), 158-160.
[58]
Li, W.; Tan, G.; Cheng, J. A novel photosensitizer 3(1),13(1)-Phenylhydrazine-mppa (BPHM) and its in vitro photodynamic therapy against HeLa cells. Molecules, 2016, 21(5), 557-568.
[59]
Li, P.X.; Mu, J.H.; Xiao, H.L.; Li, D.H. Antitumor effect of photodynamic therapy with a novel targeted photosensitizer on cervical carcinoma. Oncol. Rep., 2015, 33(1), 125-132.
[60]
Ferreira, D.P.; Conceição, D.S.; Fernandes, F.; Sousa, T.; Calhelha, R.C.; Ferreira, I.C.; Santos, P.F.; Vieira Ferreira, L.F. Characterization of a squaraine/chitosan system for photodynamic therapy of cancer. J. Phys. Chem. B, 2016, 120, 1212-1220.
[61]
Ahn, J.C.; Biswas, R.; Moon, J.H.; Chung, P.S. Cellular uptake of 9-hydroxypheophorbide-alpha and its photoactivation to induce ER stress-related apoptosis in human cervical cancer cells. Lasers Med. Sci., 2014, 29(1), 289-299.
[62]
Zhang, C.Y.; Zhang, L.J.; Li, J.W.; Li, J.H.; Wu, Z.M.; Zhang, L.X.; Chen, N.; Yan, Y.J.; Chen, Z.L. In vitro and in vivo antitumor activity of a novel chlorin derivative for photodynamic therapy. Neoplasma, 2016, 63(1), 37-43.
[63]
Saczko, J.; Skrzypek, W.; Chwiłkowska, A.; Choromańska, A.; Poła, A.; Gamian, A.; Kulbacka, J. Photo-oxidative action in cervix carcinoma cells induced by HPD - mediated photodynamic therapy. Exp. Oncol., 2009, 31(4), 195-199.
[64]
Lincoln, R.; Durantini, A.M.; Greene, L.E.; Martínez, S.R.; Knox, R.; Becerra, M.C.; Cosa, G. Meso-Acetoxymethyl BODIPY dyes for photodynamic therapy: Improved photostability of singlet oxygen photosensitizers. Photochem. Photobiol. Sci., 2017, 16(2), 178-184.
[65]
Hodgkinson, N.; Kruger, C.A.; Mokwena, M.; Abrahamse, H. Cervical cancer cells (HeLa) response to photodynamic therapy using a zinc phthalocyanine photosensitizer. J. Photochem. Photobiol. Bol. Biol., 2017, 177, 32-38.
[66]
Magalhaes, A.F.; Graca, V.C.; Calhelha, R.; Ferreira, I.; Santos, P. Aminosquaraines as potential photodynamic agents: Synthesis and evaluation of in vitro cytotoxicity. Bioorg. Med. Chem. Lett., 2017, 27(18), 4467-4470.
[67]
de Freitas, L.M.; Serafim, R.B.; de Sousa, J.F.; Moreira, T.F.; Dos Santos, C.T.; Baviera, A.M.; Valente, V.; Soares, C.P.; Fontana, C.R. Photodynamic therapy combined to cisplatin potentiates cell death responses of cervical cancer cells. BMC Cancer, 2017, 17(1), 123.
[68]
Ung, P.; Clerc, M.; Huang, H.; Qiu, K.; Chao, H.; Seitz, M.; Boyd, B.; Graham, B.; Gasser, G. Extending the excitation wavelength of potential photosensitizers via appendage of a kinetically stable terbium (III) macrocyclic complex for applications in photodynamic therapy. Inorg. Chem., 2017, 56(14), 7960-7974.
[69]
Wei, X.Q.; Ma, H.Q.; Liu, A.H.; Zhang, Y.Z. Synergistic anticancer activity of 5-aminolevulinic acid photodynamic therapy in combination with low-dose cisplatin on Hela cells. Asian Pac. J. Cancer Prev., 2013, 14(5), 3023-3028.
[70]
Villanueva, A.; Stockert, J.C.; Canete, M.; Acedo, P. A new protocol in photodynamic therapy: Enhanced tumour cell death by combining two different photosensitizers. Photochem. Photobiol. Sci., 2010, 9(3), 295-297.
[71]
Xie, Y.; Huang, G.W.; Huang, Y.Y. Photodynamic therapy with nanoparticles for cancer treatment: A review. Chinese J. Laser Med. Surg., 2009, 18(1), 55-58.
[72]
Xia, C.H.; Wang, B.Q.; Wang, Y. Research progress of photodynamic antitumor of nano-Ti02 photosensitizer. J. Qiqihaer Med. College, 2011, 32(12), 1975-1976.
[73]
Vega, D.L.; Lodge, P.; Vivero-Escoto, J.L. Redox-responsive porphyrin-based polysilsesquioxane nanoparticles for photodynamic therapy of cancer cells. Int. J. Mol. Sci., 2015, 17(1)E56
[74]
Wieder, M.E.; Hone, D.C.; Cook, M.J.; Handsley, M.M.; Gavrilovic, J.; Russell, D.A. Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: Cancer therapy using a ‘Trojan horse’. Photochem. Photobiol. Sci., 2006, 5(8), 727-734.
[75]
Li, L.; Li, Y. Research progress of nanoparticles in photodynamic therapy. Dent. Health, 2016, 3(9), 253-254.
[76]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[77]
Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev., 2011, 63(3), 136-151.
[78]
Azzopardi, E.A.; Ferguson, E.L.; Thomas, D.W. The enhanced permeability retention effect: A new paradigm for drug targeting in infection. J. Antimicrob. Chemother., 2013, 68(2), 257-274.
[79]
Stylianopoulos, T.; Jain, R.K. Design considerations for nanotherapeutics in oncology. Nanomed. Nanotechnol. Biol. Med, 2015, 11(8), 1893-1907.
[80]
Butler, T.P.; Grantham, F.H.; Gullino, P.M. Bulk transfer of fluid in the interstitial compartment of mammary tumors. Cancer Res., 1975, 35(11 Pt 1), 3084-3088.
[81]
Jain, R.K. Normalizing tumor microenvironment to treat cancer: Bench to bedside to biomarkers. J. Clin. Oncol., 2013, 31(17), 2205-2218.
[82]
Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 131-135.
[83]
Prabhakar, U.; Maeda, H.; Jain, R.K.; Sevick-Muraca, E.M.; Zamboni, W.; Farokhzad, O.C.; Barry, S.T.; Gabizon, A.; Grodzinski, P.; Blakey, D.C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res., 2013, 73(8), 2412-2417.
[84]
Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev., 2013, 65(1), 71-79.
[85]
Hashizume, H.; Baluk, P.; Morikawa, S.; McLean, J.W.; Thurston, G.; Roberge, S.; Jain, R.K.; McDonald, D.M. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol., 2000, 156(4), 1363-1380.
[86]
Gindy, M.E.; Prud’homme, R.K. Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opin. Drug Deliv., 2009, 6(8), 865-878.
[87]
Kim, K.; Kim, J.H.; Park, H.; Kim, Y.S.; Park, K.; Nam, H.; Lee, S.; Park, J.H.; Park, R.W.; Kim, I.S.; Choi, K.; Kim, S.Y.; Park, K.; Kwon, I.C. Tumor-homing multifunctional nanoparticles for cancer theragnosis: Simultaneous diagnosis, drug delivery, and therapeutic monitoring. J. Control. Release, 2010, 146(2), 219-227.
[88]
Harrington, K.J.; Mohammadtaghi, S.; Uster, P.S.; Glass, D.; Peters, A.M.; Vile, R.G.; Stewart, J.S. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin. Cancer Res., 2001, 7(2), 243-254.
[89]
Tanaka, N.; Kanatani, S.; Tomer, R.; Sahlgren, C.; Kronqvist, P.; Kaczynska, D.; Louhivuori, L.; Kis, L.; Lindh, C.; Mitura, P.; Stepulak, A.; Corvigno, S.; Hartman, J.; Micke, P.; Mezheyeuski, A.; Strell, C.; Carlson, J.W.; Fernández Moro, C.; Dahlstrand, H.; Östman, A.; Matsumoto, K.; Wiklund, P.; Oya, M.; Miyakawa, A.; Deisseroth, K.; Uhlén, P. Whole tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity. Nat. Biomed. Eng., 2017, 1, 796-806.
[90]
Ellahioui, Y.; Patra, M.; Mari, C. Mesoporous silica nanoparticles functionalised with a photoactive ruthenium(ii) complex: Exploring the formulation of a metal-based photodynamic therapy photosensitiser. Dalton Trans., 2018, 48(18), 5940-5951.
[91]
Ikeda, A.; Doi, Y.; Nishiguchi, K.; Kitamura, K.; Hashizume, M.; Kikuchi, J.; Yogo, K.; Ogawa, T.; Takeya, T. Induction of cell death by photodynamic therapy with water-soluble lipid-membrane-incorporated [60]fullerene. Org. Biomol. Chem., 2007, 5(8), 1158-1160.
[92]
Flak, D.; Yate, L.; Nowaczyk, G.; Jurga, S. Hybrid ZnPc@TiO2 nanostructures for targeted photodynamic therapy, bioimaging and doxorubicin delivery. Mater. Sci. Eng. C Mater. Biol. Appl., 2017, 78, 1072-1085.
[93]
Akiyama, M.; Ikeda, A.; Shintani, T.; Doi, Y.; Kikuchi, J.; Ogawa, T.; Yogo, K.; Takeya, T.; Yamamoto, N. Solubilisation of [60]fullerenes using block copolymers and evaluation of their photodynamic activities. Org. Biomol. Chem., 2008, 6(6), 1015-1019.
[94]
Benito, M.; Martin, V.; Blanco, M.D.; Teijon, J.M.; Gomez, C. Cooperative effect of 5-aminolevulinic acid and gold nanoparticles for photodynamic therapy of cancer. J. Pharm. Sci., 2013, 102(8), 2760-2769.
[95]
Ai, J.; Xu, Y.; Lou, B.; Li, D.; Wang, E. Multifunctional AS1411-functionalized fluorescent gold nanoparticles for targeted cancer cell imaging and efficient photodynamic therapy. Talanta, 2014, 118, 54-60.
[96]
Yu, J.; Hsu, C.H.; Huang, C.C.; Chang, P.Y. Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells. ACS Appl. Mater. Interfaces, 2015, 7(1), 432-441.
[97]
Barras, A.; Boussekey, L.; Courtade, E.; Boukherroub, R. Hypericin-loaded lipid nanocapsules for photodynamic cancer therapy in vitro. Nanoscale, 2013, 5(21), 10562-10572.
[98]
Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol., 2010, 7(11), 653-664.
[99]
Shi, L.; Wang, X.L.; Wang, H.W. Application of nanoparticle vectors in photodynamic therapy of tumors. J. Int. Oncol., 2012, 39(3), 193-196.