Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Role of Dietary Gluten in Development of Celiac Disease and Type I Diabetes: Management Beyond Gluten-Free Diet

Author(s): Jinli Pei, Shuangshuang Wei, Yechun Pei, Hao Wu and Dayong Wang*

Volume 27, Issue 21, 2020

Page: [3555 - 3576] Pages: 22

DOI: 10.2174/0929867326666190409120716

Price: $65

Abstract

Gluten triggers Celiac Disease (CD) and type I diabetes in genetically predisposed population of human leukocyte antigen DQ2/DQ8+ and associates with disorders such as schizophrenia and autism. Application of a strict gluten-free diet is the only well-established treatment for patients with CD, whereas the treatment for patients with celiac type I diabetes may be depend on the timing and frequency of the diet. The application of a gluten-free diet in patients with CD may contribute to the development of metabolic syndrome and nonalcoholic fatty liver disease and may also lead to a high glycemic index, low fiber diet and micronutrient deficiencies. The alteration of copper bioavailability (deficient, excess or aberrant coordination) may contribute to the onset and progress of related pathologies. Therefore, nutrient intake of patients on a gluten-free diet should be the focus of future researches. Other gluten-based therapies have been rising with interest such as enzymatic pretreatment of gluten, oral enzyme supplements to digest dietary gluten, gluten removal by breeding wheat varieties with reduced or deleted gluten toxicity, the development of polymeric binders to suppress gluten induced pathology.

Keywords: Dietary gluten, celiac disease, Type I diabetes, gluten-free diet, nutrient intake, copper homeostasis, gluten-based therapies.

[1]
Jabri, B.; Sollid, L.M. Tissue-mediated control of immunopathology in coeliac disease. Nat. Rev. Immunol., 2009, 9(12), 858-870.
[http://dx.doi.org/10.1038/nri2670] [PMID: 19935805]
[2]
Medrano, L.M.; Dema, B.; López-Larios, A.; Maluenda, C.; Bodas, A.; López-Palacios, N.; Figueredo, M.A.; Fernández-Arquero, M.; Núñez, C. HLA and celiac disease susceptibility: new genetic factors bring open questions about the HLA influence and gene-dosage effects. PLoS One, 2012, 7(10), e48403
[http://dx.doi.org/10.1371/journal.pone.0048403] [PMID: 23119005]
[3]
Zevallos, V.F.; Raker, V.; Tenzer, S.; Jimenez-Calvente, C.; Ashfaq-Khan, M.; Rüssel, N.; Pickert, G.; Schild, H.; Steinbrink, K.; Schuppan, D. Nutritional wheat amylase-trypsin inhibitors promote intestinal inflammation via activation of myeloid cells. Gastroenterology, 2017, 152(5), 1100-1113.e12.
[http://dx.doi.org/10.1053/j.gastro.2016.12.006] [PMID: 27993525]
[4]
Volta, U.; Caio, G.; Tovoli, F.; Giorgio, R.D. Non-celiac gluten sensitivity: An emerging syndrome with many unsettled issues. Ital. J. Med., 2013, 8(4), 225.
[http://dx.doi.org/10.4081/itjm.2013.461]
[5]
WK D. HA, W.; JH, V.D.K.. The presence in wheat of a factor having a deleterious effect in cases of coeliac disease. Acta Paediatr. (Stockh.), 1953, 42, 34-42.
[http://dx.doi.org/10.1111/j.1651-2227.1953.tb05563.x]
[6]
Arentz-Hansen, H.; Fleckenstein, B.; Molberg, Ø.; Scott, H.; Koning, F.; Jung, G.; Roepstorff, P.; Lundin, K.E.; Sollid, L.M. The molecular basis for oat intolerance in patients with celiac disease. PLoS Med., 2004, 1(1), e1
[http://dx.doi.org/10.1371/journal.pmed.0010001] [PMID: 15526039]
[7]
Thompson, T. Gluten contamination of commercial oat products in the United States. N. Engl. J. Med., 2004, 351(19), 2021-2022.
[http://dx.doi.org/10.1056/NEJM200411043511924] [PMID: 15525734]
[8]
Catassi, C.; Kryszak, D.; Bhatti, B.; Sturgeon, C.; Helzlsouer, K.; Clipp, S.L.; Gelfond, D.; Puppa, E.; Sferruzza, A.; Fasano, A. Natural history of celiac disease autoimmunity in a USA cohort followed since 1974. Ann. Med., 2010, 42(7), 530-538.
[http://dx.doi.org/10.3109/07853890.2010.514285] [PMID: 20868314]
[9]
Rubio-Tapia, A.; Kyle, R.A.; Kaplan, E.L.; Johnson, D.R.; Page, W.; Erdtmann, F.; Brantner, T.L.; Kim, W.R.; Phelps, T.K.; Lahr, B.D.; Zinsmeister, A.R.; Melton, L.J., III; Murray, J.A. Increased prevalence and mortality in undiagnosed celiac disease. Gastroenterology, 2009, 137(1), 88-93.
[http://dx.doi.org/10.1053/j.gastro.2009.03.059] [PMID: 19362553]
[10]
Vilppula, A.; Kaukinen, K.; Luostarinen, L.; Krekelä, I.; Patrikainen, H.; Valve, R.; Mäki, M.; Collin, P. Increasing prevalence and high incidence of celiac disease in elderly people: a population-based study. BMC Gastroenterol., 2009, 9(1), 49.
[http://dx.doi.org/10.1186/1471-230X-9-49] [PMID: 19558729]
[11]
Sollid, L.M.; Jabri, B. Triggers and drivers of autoimmunity: lessons from coeliac disease. Nat. Rev. Immunol., 2013, 13(4), 294-302.
[http://dx.doi.org/10.1038/nri3407] [PMID: 23493116]
[12]
Antvorskov, J.C.; Josefsen, K.; Engkilde, K.; Funda, D.P.; Buschard, K. Dietary gluten and the development of type 1 diabetes. Diabetologia, 2014, 57(9), 1770-1780.
[http://dx.doi.org/10.1007/s00125-014-3265-1] [PMID: 24871322]
[13]
Waldron-Lynch, F.; O’Loughlin, A.; Dunne, F. Review: Gluten and glucose management in type 1 diabetes. Br. J. Diabetes Vasc. Dis., 2008, 8(2), 67-71.
[http://dx.doi.org/10.1177/14746514080080020301]
[14]
Akerblom, H.K.; Vaarala, O.; Hyöty, H.; Ilonen, J.; Knip, M. Environmental factors in the etiology of type 1 diabetes. Am. J. Med. Genet., 2002, 115(1), 18-29.
[http://dx.doi.org/10.1002/ajmg.10340] [PMID: 12116173]
[15]
Group, E.A.S. EURODIAB ACE Study Group. Variation and trends in incidence of childhood diabetes in Europe. Lancet, 2000, 355(9207), 873-876.
[http://dx.doi.org/10.1016/S0140-6736(99)07125-1] [PMID: 10752702]
[16]
Stockman, J.A. The rising incidence of childhood type 1 diabetes and reduced contribution of high-risk HLA haplotypes. Yearbook of Pediatrics, 2006, 2006, 137-138.
[http://dx.doi.org/10.1016/S0084-3954(07)70097-0]
[17]
Steck, A.K.; Armstrong, T.K.; Babu, S.R.; Eisenbarth, G.S. Type 1 Diabetes Genetics Consortium. Stepwise or linear decrease in penetrance of type 1 diabetes with lower-risk HLA genotypes over the past 40 years. Diabetes, 2011, 60(3), 1045-1049.
[http://dx.doi.org/10.2337/db10-1419] [PMID: 21307077]
[18]
Abdelmoez Ali, B.; Ahmed Elfoly, M.; Ghazawy, E.R.; Bersom, R.R. Environmental factors and the risk of type 1 diabetes mellitus-A case-control study. J. Diabetes Metab., 2017, 8(2)
[http://dx.doi.org/10.4172/2155-6156.1000723]
[19]
Eringsmark Regnéll, S.; Lernmark, A. The environment and the origins of islet autoimmunity and Type 1 diabetes. Diabet. Med., 2013, 30(2), 155-160.
[http://dx.doi.org/10.1111/dme.12099] [PMID: 23252770]
[20]
Lefebvre, D.E.; Powell, K.L.; Strom, A.; Scott, F.W. Dietary proteins as environmental modifiers of type 1 diabetes mellitus. Annu. Rev. Nutr., 2006, 26, 175-202.
[http://dx.doi.org/10.1146/annurev.nutr.26.061505.111206] [PMID: 16848704]
[21]
Patrick, C.; Wang, G.S.; Lefebvre, D.E.; Crookshank, J.A.; Sonier, B.; Eberhard, C.; Mojibian, M.; Kennedy, C.R.; Brooks, S.P.; Kalmokoff, M.L.; Maglio, M.; Troncone, R.; Poussier, P.; Scott, F.W. Promotion of autoimmune diabetes by cereal diet in the presence or absence of microbes associated with gut immune activation, regulatory imbalance, and altered cathelicidin antimicrobial Peptide. Diabetes, 2013, 62(6), 2036-2047.
[http://dx.doi.org/10.2337/db12-1243] [PMID: 23349499]
[22]
Landin-Olsson, M.; Hillman, M.; Erlanson-Albertsson, C. Is type 1 diabetes a food-induced disease? Med. Hypotheses, 2013, 81(2), 338-342.
[http://dx.doi.org/10.1016/j.mehy.2013.03.046] [PMID: 23688738]
[23]
Belderok, B. Developments in bread-making processes. Plant Foods Hum. Nutr., 2000, 55(1), 1-86.
[http://dx.doi.org/10.1023/A:1008199314267] [PMID: 10823487]
[24]
Funda, D.P.; Kaas, A.; Bock, T.; Tlaskalová-Hogenová, H.; Buschard, K. Gluten-free diet prevents diabetes in NOD mice. Diabetes Metab. Res. Rev., 1999, 15(5), 323-327.
[http://dx.doi.org/10.1002/(SICI)1520-7560(199909/10)15: 5<323::AID-DMRR53>3.0.CO;2-P] [PMID: 10585617]
[25]
Ventura, A.; Neri, E.; Ughi, C.; Leopaldi, A.; Città, A.; Not, T. Gluten-dependent diabetes-related and thyroid-related autoantibodies in patients with celiac disease. J. Pediatr., 2000, 137(2), 263-265.
[http://dx.doi.org/10.1067/mpd.2000.107160] [PMID: 10931424]
[26]
Norris, J.M.; Barriga, K.; Klingensmith, G.; Hoffman, M.; Eisenbarth, G.S.; Erlich, H.A.; Rewers, M. Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA, 2003, 290(13), 1713-1720.
[http://dx.doi.org/10.1001/jama.290.13.1713] [PMID: 14519705]
[27]
Norris, J.M.; Yin, X.; Barriga, K.; Eisenbarth, G.S.; Rewers, M. Timing of Cereal Introduction in the infant diet is associated with earlier onset but not later onset islet autoimmunity: the diabetes autoimmunity study in the young (DAISY). Diabetes, 2007, 56.
[28]
Chmiel, R.; Beyerlein, A.; Knopff, A.; Hummel, S.; Ziegler, A.G.; Winkler, C. Early infant feeding and risk of developing islet autoimmunity and type 1 diabetes. Acta Diabetol., 2015, 52(3), 621-624.
[http://dx.doi.org/10.1007/s00592-014-0628-5] [PMID: 25038720]
[29]
Rosenbauer, J.; Herzig, P.; Giani, G. Early infant feeding and risk of type 1 diabetes mellitus-a nationwide population-based case-control study in pre-school children. Diabetes Metab. Res. Rev., 2008, 24(3), 211-222.
[http://dx.doi.org/10.1002/dmrr.791] [PMID: 17968982]
[30]
Hooft, C. Fau - Devos, E.; Devos E Fau - Van Damme, J.; Van Damme, J., Coeliac disease in a diabetic child. Lancet, 1969, 294(7612)
[31]
Viken, M.K.; Flåm, S.T.; Skrivarhaug, T.; Amundsen, S.S.; Sollid, L.M.; Drivvoll, A.K.; Joner, G.; Dahl-Jørgensen, K.; Lie, B.A. HLA class II alleles in Norwegian patients with coexisting type 1 diabetes and celiac disease. HLA, 2017, 89(5), 278-284.
[http://dx.doi.org/10.1111/tan.12986] [PMID: 28247576]
[32]
Ricaño-Ponce, I.; Wijmenga, C. Mapping of immune-mediated disease genes. Annu. Rev. Genomics Hum. Genet., 2013, 14, 325-353.
[http://dx.doi.org/10.1146/annurev-genom-091212-153450] [PMID: 23834318]
[33]
Cotsapas, C.; Voight, B.F.; Rossin, E.; Lage, K.; Neale, B.M.; Wallace, C.; Abecasis, G.R.; Barrett, J.C.; Behrens, T.; Cho, J.; De Jager, P.L.; Elder, J.T.; Graham, R.R.; Gregersen, P.; Klareskog, L.; Siminovitch, K.A.; van Heel, D.A.; Wijmenga, C.; Worthington, J.; Todd, J.A.; Hafler, D.A.; Rich, S.S.; Daly, M.J. FOCiS Network of Consortia. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet., 2011, 7(8), e1002254
[http://dx.doi.org/10.1371/journal.pgen.1002254] [PMID: 21852963]
[34]
Lundin, K.E.; Wijmenga, C. Coeliac disease and autoimmune disease-genetic overlap and screening. Nat. Rev. Gastroenterol. Hepatol., 2015, 12(9), 507-515.
[http://dx.doi.org/10.1038/nrgastro.2015.136] [PMID: 26303674]
[35]
Volta, U.; Tovoli, F.; Caio, G. Clinical and immunological features of celiac disease in patients with Type 1 diabetes mellitus. Expert Rev. Gastroenterol. Hepatol., 2011, 5(4), 479-487.
[http://dx.doi.org/10.1586/egh.11.38] [PMID: 21780895]
[36]
Canova, C.; Pitter, G.; Ludvigsson, J.F.; Romor, P.; Zanier, L.; Zanotti, R.; Simonato, L. Celiac disease and risk of autoimmune disorders: a population-based matched birth cohort study. J. Pediatr., 2016, 174, 146-152.e1.
[http://dx.doi.org/10.1016/j.jpeds.2016.02.058] [PMID: 27021409]
[37]
Spijkerman, M.; Tan, I.L.; Kolkman, J.J.; Withoff, S.; Wijmenga, C.; Visschedijk, M.C.; Weersma, R.K. A large variety of clinical features and concomitant disorders in celiac disease - A cohort study in the Netherlands. Dig. Liver Dis., 2016, 48(5), 499-505.
[http://dx.doi.org/10.1016/j.dld.2016.01.006] [PMID: 26854256]
[38]
Ramakrishna, B.S.; Makharia, G.K.; Chetri, K.; Dutta, S.; Mathur, P.; Ahuja, V.; Amarchand, R.; Balamurugan, R.; Chowdhury, S.D.; Daniel, D.; Das, A.; George, G.; Gupta, S.D.; Krishnan, A.; Prasad, J.H.; Kaur, G.; Pugazhendhi, S.; Pulimood, A.; Ramakrishna, K.; Verma, A.K. Prevalence of adult celiac disease in india: regional variations and associations. Am. J. Gastroenterol., 2016, 111(1), 115-123.
[http://dx.doi.org/10.1038/ajg.2015.398] [PMID: 26729543]
[39]
Fukunaga, M.; Ishimura, N.; Fukuyama, C.; Izumi, D.; Ishikawa, N.; Araki, A.; Oka, A.; Mishiro, T.; Ishihara, S.; Maruyama, R.; Adachi, K.; Kinoshita, Y. Celiac disease in non-clinical populations of Japan. J. Gastroenterol., 2018, 53(2), 208-214.
[http://dx.doi.org/10.1007/s00535-017-1339-9] [PMID: 28389733]
[40]
Dalgic, B.; Sari, S.; Basturk, B.; Ensari, A.; Egritas, O.; Bukulmez, A.; Baris, Z.; Group, T.C.S. Turkish Celiac Study Group. Prevalence of celiac disease in healthy Turkish school children. Am. J. Gastroenterol., 2011, 106(8), 1512-1517.
[http://dx.doi.org/10.1038/ajg.2011.183] [PMID: 21691340]
[41]
Mohammadibakhsh, R.; Sohrabi, R.; Salemi, M.; Mirghaed, M.T.; Behzadifar, M. Celiac disease in Iran: a systematic review and meta-analysis. Electron. Physician, 2017, 9(3), 3883-3895.
[http://dx.doi.org/10.19082/3883] [PMID: 28461861]
[42]
Al-Hussaini, A.; Troncone, R.; Khormi, M.; AlTuraiki, M.; Alkhamis, W.; Alrajhi, M.; Halal, T.; Fagih, M.; Alharbi, S.; Bashir, M.S.; Chentoufi, A.A. Mass screening for celiac disease among school-aged children: toward exploring celiac iceberg in Saudi Arabia. J. Pediatr. Gastroenterol. Nutr., 2017, 65(6), 646-651.
[http://dx.doi.org/10.1097/MPG.0000000000001681] [PMID: 28753180]
[43]
Unalp-Arida, A.; Ruhl, C.E.; Choung, R.S.; Brantner, T.L.; Murray, J.A. Lower prevalence of celiac disease and gluten-related disorders in persons living in southern vs northern latitudes of the United States. Gastroenterology, 2017, 152(8), 1922-1932.
[http://dx.doi.org/10.1053/j.gastro.2017.02.012] [PMID: 28238771]
[44]
Laass, M.W.; Schmitz, R.; Uhlig, H.H.; Zimmer, K.P.; Thamm, M.; Koletzko, S. The prevalence of celiac disease in children and adolescents in Germany. Dtsch. Arztebl. Int., 2015, 112(33-34), 553-560.
[http://dx.doi.org/10.3238/arztebl.2015.0553] [PMID: 26356552]
[45]
Johannsson, G.F.; Kristjansson, G.; Cariglia, N.; Thorsteinsson, V. The prevalence of celiac disease in blood donors in Iceland. Dig. Dis. Sci., 2009, 54(2), 348-350.
[http://dx.doi.org/10.1007/s10620-008-0365-0] [PMID: 18600451]
[46]
Chin, M.W.; Mallon, D.F.; Cullen, D.J.; Olynyk, J.K.; Mollison, L.C.; Pearce, C.B. Screening for coeliac disease using anti-tissue transglutaminase antibody assays, and prevalence of the disease in an Australian community. Med. J. Aust., 2009, 190(8), 429-432.
[http://dx.doi.org/10.5694/j.1326-5377.2009.tb02491.x] [PMID: 19374615]
[47]
Galván, J.A.; Castañeda, C.; Rodríguez, E.A.; Alvarez, R.; Turcaz, N.; Novoa, L.I.; Palenzuela, D.O. Screening for celiac disease in a healthy Cuban children cohort from Pinar del Río province. Biotecnol. Apl., 2010, 27, 291-293.
[48]
Israeli, E.; Hershcovici, T.; Grotto, I.; Rouach, Z.; Branski, D.; Goldin, E. Prevalence of celiac disease in an adult Jewish population in Israel. Isr. Med. Assoc. J., 2010, 12(5), 266-269.
[PMID: 20929076]
[49]
Sárdy, M.; Kornseé, Z.; Kelemen, D.; Papp, S.; Medvecz, M.; Kárpáti, S. Celiac disease screening among healthy blood donors in Hungary. Z. Gastroenterol., 2013, 51(11), 1235-1239.
[http://dx.doi.org/10.1055/s-0033-1335450] [PMID: 24243570]
[50]
Alencar, M.L.; Ortiz-Agostinho, C.L.; Nishitokukado, L.; Damião, A.O.; Abrantes-Lemos, C.P.; Leite, A.Z.; Brito, Td.; Chamone, Dde.A.; Silva, M.E.R.; Giannella-Neto, D.; Sipahi, A.M. Prevalence of celiac disease among blood donors in São Paulo: the most populated city in Brazil. Clinics (São Paulo), 2012, 67(9), 1013-1018.
[http://dx.doi.org/10.6061/clinics/2012(09)05] [PMID: 23018296]
[51]
Fasano; Catassi; Kryszak; AbuZakry, P0438 Prevalence of Celiac Disease Among Schoolchildren in Egypt: Results of A Pilot Study. Diabet. Med., 2004, 39(Suppl. 1), S222.
[52]
Singh, P.; Arora, A.; Strand, T.A.; Leffler, D.A.; Catassi, C.; Green, P.H.; Kelly, C.P.; Ahuja, V.; Makharia, G.K. Global prevalence of celiac disease: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol., 2018, 16(6), 823-836.e2.
[http://dx.doi.org/10.1016/j.cgh.2017.06.037] [PMID: 29551598]
[53]
Zhao, Z.; Zou, J.; Zhao, L.; Cheng, Y.; Cai, H.; Li, M.; Liu, E.; Yu, L.; Liu, Y. Celiac disease autoimmunity in patients with autoimmune diabetes and thyroid disease among chinese population. PLoS One, 2016, 11(7), e0157510
[http://dx.doi.org/10.1371/journal.pone.0157510] [PMID: 27427767]
[54]
Bhadada, S.K.; Kochhar, R.; Bhansali, A.; Dutta, U.; Kumar, P.R.; Poornachandra, K.S.; Vaiphei, K.; Nain, C.K.; Singh, K. Prevalence and clinical profile of celiac disease in type 1 diabetes mellitus in north India. J. Gastroenterol. Hepatol., 2011, 26(2), 378-381.
[http://dx.doi.org/10.1111/j.1440-1746.2010.06508.x] [PMID: 21261730]
[55]
Joshi, R.; Madvariya, M. Prevalence and clinical profile of celiac disease in children with type 1 diabetes mellitus. Indian J. Endocrinol. Metab., 2015, 19(6), 797-803.
[http://dx.doi.org/10.4103/2230-8210.167555] [PMID: 26693431]
[56]
Srivastava, A.; Chaturvedi, S.; Dabadghao, P.; Mathias, A.; Shukla, U.; Singh, U.; Yachha, S.K. Prevalence of celiac disease in Indian children with type 1 diabetes. Indian J. Gastroenterol., 2016, 35(5), 372-378.
[http://dx.doi.org/10.1007/s12664-016-0692-6] [PMID: 27663711]
[57]
Saadah, O.I.; Al-Agha, A.E.; Al Nahdi, H.M.; Bokhary, R.Y.; Bin Talib, Y.Y.; Al-Mughales, J.A.; Al Bokhari, S.M. Prevalence of celiac disease in children with type 1 diabetes mellitus screened by anti-tissue transglutaminase antibody from Western Saudi Arabia. Saudi Med. J., 2012, 33(5), 541-546.
[PMID: 22588816]
[58]
Al-Hakami, A.M. Seroprevalence of coeliac disease in at-risk subjects at the main tertiary hospital, southwest of Saudi Arabia. Arab J. Gastroenterol., 2016, 17(1), 41-44.
[http://dx.doi.org/10.1016/j.ajg.2016.03.002] [PMID: 27067921]
[59]
Al-Hussaini, A.; Sulaiman, N.; Al-Zahrani, M.; Alenizi, A. High prevalence of celiac disease among Saudi children with type 1 diabetes: a prospective cross-sectional study. BMC Gastroenterol., 2012, 12(1), 180-180.
[http://dx.doi.org/10.1186/1471-230X-12-180] [PMID: 23259699]
[60]
Yildirmaz, S.; Altay, D.; Esen, I.; Dogan, Y. prevalence of celiac disease in children with type 1 diabetes mellitus in southeast region of Turkey. Int. J. Clin. Ped., 2016, 5(2), 32-35.
[http://dx.doi.org/10.14740/ijcp239w]
[61]
Sari, S.; Yeşilkaya, E.; Eğritaş, O.; Bideci, A.; Cinaz, P.; Dalgiç, B. Prevalence of Celiac disease in Turkish children with type 1 diabetes mellitus and their non-diabetic first-degree relatives. Turk. J. Gastroenterol., 2010, 21(1), 34-38.
[http://dx.doi.org/10.4318/tjg.2010.0045] [PMID: 20533110]
[62]
Al-Sinani, S.; Sharef, S.W.; Al-Yaarubi, S.; Al-Zakwani, I.; Al-Naamani, K.; Al-Hajri, A.; Al-Hasani, S. Prevalence of celiac disease in omani children with type 1 diabetes mellitus: a cross sectional study. Oman Med. J., 2013, 28(4), 260-263.
[http://dx.doi.org/10.5001/omj.2013.73] [PMID: 23904919]
[63]
Honar, N.; Karamizadeh, Z.; Saki, F. Prevalence of celiac disease in patients with type 1 diabetes mellitus in the south of Iran. Turk. J. Gastroenterol., 2013, 24(2), 122-126.
[http://dx.doi.org/10.4318/tjg.2013.0541] [PMID: 23934458]
[64]
Abbas, A.; Hussain, W.; Malik, M.I.; Khan, F.; Ahsan, O.; Afzal, A. Celiac disease and glycemic control among patients with type 1 diabetes mellitus. Annals of Pakistan Institute of Medical Sciences, 2018.
[65]
Mansour, A.A.; Najeeb, A.A. Coeliac disease in Iraqi type 1 diabetic patients. Arab J. Gastroenterol., 2011, 12(2), 103-105.
[http://dx.doi.org/10.1016/j.ajg.2011.04.007] [PMID: 21684484]
[66]
Liu, E.; Dong, F.; Baron, A.E.; Taki, I.; Norris, J.M.; Frohnert, B.I.; Hoffenberg, E.J.; Rewers, M. High incidence of celiac disease in a long-term study of adolescents with susceptibility genotypes Gastroenterology, 2017, 152(6), 1329-1336., e1321
[http://dx.doi.org/10.1053/j.gastro.2017.02.002] [PMID: 28188747]
[67]
Albatayneh, E.M.; Alnawaiseh, N.A.; Al-Sarayreh, S.A.; Al-saraireh, Y.M.; Al-Zayadneh, E.M.; Abu-lobbad, M.A. Serologic screening of celiac disease in patients with type 1 diabetes. J. Endocrinol. Metab., 2018, 8(2-3), 37-42.
[http://dx.doi.org/10.14740/jem507w]
[68]
Bybrant, M.C.; Örtqvist, E.; Lantz, S.; Grahnquist, L. High prevalence of celiac disease in Swedish children and adolescents with type 1 diabetes and the relation to the Swedish epidemic of celiac disease: a cohort study. Scand. J. Gastroenterol., 2014, 49(1), 52-58.
[http://dx.doi.org/10.3109/00365521.2013.846403] [PMID: 24164443]
[69]
Adlercreutz, E.H.; Svensson, J.; Hansen, D.; Buschard, K.; Lernmark, Å.; Mortensen, H.B.; Agardh, D. Prevalence of celiac disease autoimmunity in children with type 1 diabetes: regional variations across the Øresund strait between Denmark and southernmost Sweden. Pediatr. Diabetes, 2015, 16(7), 504-509.
[http://dx.doi.org/10.1111/pedi.12200] [PMID: 25131687]
[70]
Nikulina, M.; Habich, C.; Flohé, S.B.; Scott, F.W.; Kolb, H. Wheat gluten causes dendritic cell maturation and chemokine secretion. J. Immunol., 2004, 173(3), 1925-1933.
[http://dx.doi.org/10.4049/jimmunol.173.3.1925] [PMID: 15265926]
[71]
Békés, F. New aspects in quality related wheat research: 1. Challenges and achievements. Cereal Res. Commun., 2012, 40(2), 159-184.
[http://dx.doi.org/10.1556/CRC.40.2012.2.1]
[72]
Delcour, J.A.; Joye, I.J.; Pareyt, B. Wheat gluten functionality as a quality determinant in cereal-based food products. Annu. Rev. Food Sci. Technol., 2012, 3, 469-492.
[http://dx.doi.org/10.1146/annurev-food-022811-101303]
[73]
Hanne, S.; Claus, K.; Dorit, A.; Hans, S. Deamidation and cross-linking of gliadin peptides by transglutaminases and the relation to celiac disease. Biochimica et. Biophysica Acta, 2004, 2004(1609), 220-230.
[74]
du Pré, M.F.; Sollid, L.M. T-cell and B-cell immunity in celiac disease. Best Pract. Res. Clin. Gastroenterol., 2015, 29(3), 413-423.
[http://dx.doi.org/10.1016/j.bpg.2015.04.001] [PMID: 26060106]
[75]
Castillo, N.E.; Theethira, T.G.; Leffler, D.A. The present and the future in the diagnosis and management of celiac disease. Gastroenterol. Rep. (Oxf.), 2015, 3(1), 3-11.
[http://dx.doi.org/10.1093/gastro/gou065] [PMID: 25326000]
[76]
Stamnaes, J.; Sollid, L.M. Celiac disease: Autoimmunity in response to food antigen. Semin. Immunol., 2015, 27(5), 343-352.
[http://dx.doi.org/10.1016/j.smim.2015.11.001] [PMID: 26603490]
[77]
Scherf, K.A.; Koehler, P.; Wieser, H. Gluten and wheat sensitivities - an overview. J. Cereal Sci., 2016, 67, 2-11.
[http://dx.doi.org/10.1016/j.jcs.2015.07.008]
[78]
Wang, D.W.; Li, D.; Wang, J.; Zhao, Y.; Wang, Z.; Yue, G.; Liu, X.; Qin, H.; Zhang, K.; Dong, L.; Wang, D. Genome-wide analysis of complex wheat gliadins, the dominant carriers of celiac disease epitopes. Sci. Rep., 2017, 7, 44609.
[http://dx.doi.org/10.1038/srep44609] [PMID: 28300172]
[79]
Shan, L.; Molberg, Ø.; Parrot, I.; Hausch, F.; Filiz, F.; Gray, G.M.; Sollid, L.M.; Khosla, C. Structural basis for gluten intolerance in celiac sprue. Science, 2002, 297(27), 2275-2279.
[http://dx.doi.org/10.1126/science.1074129]
[80]
Cornell, H.J.; Stelmasiak, T. The significance of key amino acid sequence in the digestibility and toxicity of gliadin peptides in celiac disease. International Journal of Celiac Disease, 2016, 4(4), 113-120.
[http://dx.doi.org/10.12691/ijcd-4-4-2]
[81]
Salentijn, E.M.; Mitea, D.C.; Goryunova, S.V.; van der Meer, I.M.; Padioleau, I.; Gilissen, L.J.; Koning, F.; Smulders, M.J. Celiac disease T-cell epitopes from gamma-gliadins: immunoreactivity depends on the genome of origin, transcript frequency, and flanking protein variation. BMC Genomics, 2012, 13(1), 277.
[http://dx.doi.org/10.1186/1471-2164-13-277] [PMID: 22726570]
[82]
Camarca, A.; Anderson, R.P.; Mamone, G.; Fierro, O.; Facchiano, A.; Costantini, S.; Zanzi, D.; Sidney, J.; Auricchio, S.; Sette, A.; Troncone, R.; Gianfrani, C. Intestinal T cell responses to gluten peptides are largely heterogeneous: implications for a peptide-based therapy in celiac disease. J. Immunol., 2009, 182(7), 4158-4166.
[http://dx.doi.org/10.4049/jimmunol.0803181] [PMID: 19299713]
[83]
Vader, W.; Kooy, Y.; Van Veelen, P.; De Ru, A.; Harris, D.; Benckhuijsen, W.; Peña, S.; Mearin, L.; Drijfhout, J.W.; Koning, F. The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology, 2002, 122(7), 1729-1737.
[http://dx.doi.org/10.1053/gast.2002.33606] [PMID: 12055577]
[84]
Matsuo, H.; Dahlström, J.; Tanaka, A.; Kohno, K.; Takahashi, H.; Furumura, M.; Morita, E. Sensitivity and specificity of recombinant ω-5 gliadin-specific IgE measurement for the diagnosis of wheat-dependent exercise-induced anaphylaxis. Allergy, 2008, 63(2), 233-236.
[http://dx.doi.org/10.1111/j.1398-9995.2007.01504.x] [PMID: 18186814]
[85]
Kohno, K.; Takahashi, H.; Endo, T.R.; Matsuo, H.; Shiwaku, K.; Morita, E. Characterization of a hypoallergenic wheat line lacking ω-5 gliadin. Allergol. Int., 2016, 65(4), 400-405.
[http://dx.doi.org/10.1016/j.alit.2016.03.002] [PMID: 27103182]
[86]
Beales, P.E.; Elliott, R.B.; Flohé, S.; Hill, J.P.; Kolb, H.; Pozzilli, P.; Wang, G.S.; Wasmuth, H.; Scott, F.W. A multi-centre, blinded international trial of the effect of A(1) and A(2) beta-casein variants on diabetes incidence in two rodent models of spontaneous Type I diabetes. Diabetologia, 2002, 45(9), 1240-1246.
[http://dx.doi.org/10.1007/s00125-002-0898-2] [PMID: 12242456]
[87]
Crookshank, J.A.; Wang, G.S.; Patrick, C.; Scott, F.W. International Symposium on Maintenance & Rehabilitation of Pavements & Technological Control Segundo Simposio Sobre Manutencao E Rehabilitacao De Pavimentos E Controle Technologico, 2001, p. 437.
[88]
Funda, D.P.; Kaas, A.; Tlaskalová-Hogenová, H.; Buschard, K. Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes. Diabetes Metab. Res. Rev., 2008, 24(1), 59-63.
[http://dx.doi.org/10.1002/dmrr.748] [PMID: 17607660]
[89]
Scott, F.W.; Rowsell, P.; Wang, G-S.; Burghardt, K.; Kolb, H.; Flohé, S. Oral exposure to diabetes-promoting food or immunomodulators in neonates alters gut cytokines and diabetes. Diabetes, 2002, 51(1), 73-78.
[http://dx.doi.org/10.2337/diabetes.51.1.73] [PMID: 11756325]
[90]
Larsen, J.; Weile, C.; Antvorskov, J.C.; Engkilde, K.; Nielsen, S.M.B.; Josefsen, K.; Buschard, K. Effect of dietary gluten on dendritic cells and innate immune subsets in BALB/c and NOD mice. PLoS One, 2015, 10(3), e0118618
[http://dx.doi.org/10.1371/journal.pone.0118618] [PMID: 25738288]
[91]
Adlercreutz, E.; Weile, C.; Larsen, J.; Engkilde, K.; Agardh, D.; Buschard, K.; Antvorskov, J.C. A gluten free diet lowers NKG2D and ligand expression in BALB/c and NOD mice. Clin. Exp. Med., 2014, 177(2)
[PMID: 24673402]
[92]
Wang, G-S.; Gruber, H.; Smyth, P.; Pulido, O.; Rosenberg, L.; Duguid, W.; Scott, F.W. Hydrolysed casein diet protects BB rats from developing diabetes by promoting islet neogenesis. J. Autoimmun., 2000, 15(4), 407-416.
[http://dx.doi.org/10.1006/jaut.2000.0453] [PMID: 11090239]
[93]
Scott, F.W.; Cloutier, H.E.; Kleemann, R.; Wöerz-Pagenstert, U.; Rowsell, P.; Modler, H.W.; Kolb, H. Potential mechanisms by which certain foods promote or inhibit the development of spontaneous diabetes in BB rats: dose, timing, early effect on islet area, and switch in infiltrate from Th1 to Th2 cells. Diabetes, 1997, 46(4), 589-598.
[http://dx.doi.org/10.2337/diab.46.4.589] [PMID: 9075798]
[94]
Ziegler, A-G.; Schmid, S.; Huber, D.; Hummel, M.; Bonifacio, E. Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA, 2003, 290(13), 1721-1728.
[http://dx.doi.org/10.1001/jama.290.13.1721] [PMID: 14519706]
[95]
Troncone, R.; Franzese, A.; Mazzarella, G.; Paparo, F.; Auricchio, R.; Coto, I.; Mayer, M.; Greco, L. Gluten sensitivity in a subset of children with insulin dependent diabetes mellitus. Am. J. Gastroenterol., 2003, 98(3), 590-595.
[http://dx.doi.org/10.1111/j.1572-0241.2003.07301.x] [PMID: 12650792]
[96]
Auricchio, R.; Paparo, F.; Maglio, M.; Franzese, A.; Lombardi, F.; Valerio, G.; Nardone, G.; Percopo, S.; Greco, L.; Troncone, R. In vitro-deranged intestinal immune response to gliadin in type 1 diabetes. Diabetes, 2004, 53(7), 1680-1683.
[http://dx.doi.org/10.2337/diabetes.53.7.1680] [PMID: 15220190]
[97]
Larsen, J.; Dall, M.; Antvorskov, J.C.; Weile, C.; Engkilde, K.; Josefsen, K.; Buschard, K. Dietary gluten increases natural killer cell cytotoxicity and cytokine secretion. Eur. J. Immunol., 2014, 44(10), 3056-3067.
[http://dx.doi.org/10.1002/eji.201344264] [PMID: 25043259]
[98]
Cosnes, J.; Cellier, C.; Viola, S.; Colombel, J.F.; Michaud, L.; Sarles, J.; Hugot, J.P.; Ginies, J.L.; Dabadie, A.; Mouterde, O.; Allez, M.; Nion-Larmurier, I. Groupe D’Etude et de Recherche Sur la Maladie Coeliaque. Incidence of autoimmune diseases in celiac disease: protective effect of the gluten-free diet. Clin. Gastroenterol. Hepatol., 2008, 6(7), 753-758.
[http://dx.doi.org/10.1016/j.cgh.2007.12.022] [PMID: 18255352]
[99]
Kabbani, T.A.; Kelly, C.P.; Betensky, R.A.; Hansen, J.; Pallav, K.; Villafuerte-Gálvez, J.A.; Vanga, R.; Mukherjee, R.; Novero, A.; Dennis, M.; Leffler, D.A. Patients with celiac disease have a lower prevalence of non-insulin-dependent diabetes mellitus and metabolic syndrome. Gastroenterology, 2013, 144(5), 912-917.e1.
[http://dx.doi.org/10.1053/j.gastro.2013.01.033] [PMID: 23354016]
[100]
Adlercreutz, E.H.; Weile, C.; Larsen, J.; Engkilde, K.; Agardh, D.; Buschard, K.; Antvorskov, J.C. A gluten-free diet lowers NKG2D and ligand expression in BALB/c and non-obese diabetic (NOD) mice. Clin. Exp. Immunol., 2014, 177(2), 391-403.
[http://dx.doi.org/10.1111/cei.12340] [PMID: 24673402]
[101]
Zipris, D. Innate immunity in type 1 diabetes. Diabetes Metab. Res. Rev., 2011, 27(8), 824-829.
[http://dx.doi.org/10.1002/dmrr.1256] [PMID: 22069267]
[102]
Fasano, A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol. Rev., 2011, 91(1), 151-175.
[http://dx.doi.org/10.1152/physrev.00003.2008] [PMID: 21248165]
[103]
Antvorskov, J.C.; Fundova, P.; Buschard, K.; Funda, D.P. Impact of dietary gluten on regulatory T cells and Th17 cells in BALB/c mice. PLoS One, 2012, 7(3), e33315
[http://dx.doi.org/10.1371/journal.pone.0033315] [PMID: 22428018]
[104]
Antvorskov, J.C.; Fundova, P.; Buschard, K.; Funda, D.P. Dietary gluten alters the balance of pro-inflammatory and anti-inflammatory cytokines in T cells of BALB/c mice. Immunology, 2012, 138(1), 23-33.
[http://dx.doi.org/10.1111/imm.12007] [PMID: 22913724]
[105]
Cinova, J.; Palová-Jelínková, L.; Smythies, L.E.; Cerná, M.; Pecharová, B.; Dvorák, M.; Fruhauf, P.; Tlaskalová-Hogenová, H.; Smith, P.D.; Tucková, L. Gliadin peptides activate blood monocytes from patients with celiac disease. J. Clin. Immunol., 2007, 27(2), 201-209.
[http://dx.doi.org/10.1007/s10875-006-9061-z] [PMID: 17260166]
[106]
Palová-Jelínková, L.; Rozková, D.; Pecharová, B.; Bártová, J.; Sedivá, A.; Tlaskalová-Hogenová, H.; Spísek, R.; Tucková, L. Gliadin fragments induce phenotypic and functional maturation of human dendritic cells. J. Immunol., 2005, 175(10), 7038-7045.
[http://dx.doi.org/10.4049/jimmunol.175.10.7038] [PMID: 16272365]
[107]
Junker, Y.; Zeissig, S.; Kim, S.J.; Barisani, D.; Wieser, H.; Leffler, D.A.; Zevallos, V.; Libermann, T.A.; Dillon, S.; Freitag, T.L.; Kelly, C.P.; Schuppan, D. Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J. Exp. Med., 2012, 209(13), 2395-2408.
[http://dx.doi.org/10.1084/jem.20102660] [PMID: 23209313]
[108]
Terrazzano, G.; Sica, M.; Gianfrani, C.; Mazzarella, G.; Maurano, F.; De Giulio, B.; de Saint-Mezard, S.; Zanzi, D.; Maiuri, L.; Londei, M.; Jabri, B.; Troncone, R.; Auricchio, S.; Zappacosta, S.; Carbone, E. Gliadin regulates the NK-dendritic cell cross-talk by HLA-E surface stabilization. J. Immunol., 2007, 179(1), 372-381.
[http://dx.doi.org/10.4049/jimmunol.179.1.372] [PMID: 17579058]
[109]
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature, 2014, 511(7510), 421-427.
[http://dx.doi.org/10.1038/nature13595] [PMID: 25056061]
[110]
Purcell, S.M.; Wray, N.R.; Stone, J.L.; Visscher, P.M.; O’Donovan, M.C.; Sullivan, P.F.; Sklar, P. International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 2009, 460(7256), 748-752.
[http://dx.doi.org/10.1038/nature08185] [PMID: 19571811]
[111]
Ergün, C.; Urhan, M.; Ayer, A. A review on the relationship between gluten and schizophrenia: Is gluten the cause? Nutr. Neurosci., 2018, 21(7), 455-466.
[http://dx.doi.org/10.1080/1028415X.2017.1313569] [PMID: 28393621]
[112]
Jackson, J.; Eaton, W.; Cascella, N.; Fasano, A.; Warfel, D.; Feldman, S.; Richardson, C.; Vyas, G.; Linthicum, J.; Santora, D.; Warren, K.R.; Carpenter, W.T., Jr; Kelly, D.L. A gluten-free diet in people with schizophrenia and anti-tissue transglutaminase or anti-gliadin antibodies. Schizophr. Res., 2012, 140(1-3), 262-263.
[http://dx.doi.org/10.1016/j.schres.2012.06.011] [PMID: 22771303]
[113]
Jin, S.Z.; Wu, N.; Xu, Q.; Zhang, X.; Ju, G.Z.; Law, M.H.; Wei, J. A study of circulating gliadin antibodies in schizophrenia among a Chinese population. Schizophr. Bull., 2012, 38(3), 514-518.
[http://dx.doi.org/10.1093/schbul/sbq111] [PMID: 20884755]
[114]
Yang, H.; Jiang, Y.; Chen, Z.; Wu, J.; Qiu, C.; Meng, Q. A study of anti-gliadin antibodies in first-episode patients with schizophrenia among a Chinese population. Psychiatry Res., 2019, 272, 454-457.
[http://dx.doi.org/10.1016/j.psychres.2018.12.161] [PMID: 30611964]
[115]
Kang, V.; Wagner, G.C.; Ming, X. Gastrointestinal dysfunction in children with autism spectrum disorders. Autism Res., 2014, 7(4), 501-506.
[http://dx.doi.org/10.1002/aur.1386] [PMID: 24753336]
[116]
Fiorentino, M.; Sapone, A.; Senger, S.; Camhi, S.S.; Kadzielski, S.M.; Buie, T.M.; Kelly, D.L.; Cascella, N.; Fasano, A. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol. Autism, 2016, 7(1), 49.
[http://dx.doi.org/10.1186/s13229-016-0110-z] [PMID: 27957319]
[117]
Vissoker, R.E.; Latzer, Y.; Gal, E. Eating and feeding problems and gastrointestinal dysfunction in autism spectrum disorders. Res. Autism Spectr. Disord., 2015, 12(1), 10-21.
[http://dx.doi.org/10.1016/j.rasd.2014.12.010]
[118]
Jackson, J.; Eaton, W.; Cascella, N.; Fasano, A.; Santora, D.; Sullivan, K.; Feldman, S.; Raley, H.; McMahon, R.P.; Carpenter, W.T., Jr; Demyanovich, H.; Kelly, D.L. Gluten sensitivity and relationship to psychiatric symptoms in people with schizophrenia. Schizophr. Res., 2014, 159(2-3), 539-542.
[http://dx.doi.org/10.1016/j.schres.2014.09.023] [PMID: 25311778]
[119]
Dickerson, F.; Stallings, C.; Origoni, A.; Vaughan, C.; Khushalani, S.; Leister, F.; Yang, S.; Krivogorsky, B.; Alaedini, A.; Yolken, R. Markers of gluten sensitivity and celiac disease in recent-onset psychosis and multi-episode schizophrenia. Biol. Psychiatry, 2010, 68(1), 100-104.
[http://dx.doi.org/10.1016/j.biopsych.2010.03.021] [PMID: 20471632]
[120]
Dalton, N.; Chandler, S.; Turner, C.; Charman, T.; Pickles, A.; Loucas, T.; Simonoff, E.; Sullivan, P.; Baird, G. Gut permeability in autism spectrum disorders. Autism Res., 2014, 7(3), 305-313.
[http://dx.doi.org/10.1002/aur.1350] [PMID: 24339339]
[121]
Reichelt, K.L.; Knivsberg, A.M. The possibility and probability of a gut-to-brain connection in autism. Ann. Clin. Psychiatry, 2009, 21(4), 205-211.
[PMID: 19917211]
[122]
Shattock, P.; Whiteley, P. Biochemical aspects in autism spectrum disorders: updating the opioid-excess theory and presenting new opportunities for biomedical intervention. Expert Opin. Ther. Targets, 2002, 6(2), 175-183.
[http://dx.doi.org/10.1517/14728222.6.2.175] [PMID: 12223079]
[123]
Pietzak, M. Celiac disease, wheat allergy, and gluten sensitivity: when gluten free is not a fad. JPEN J. Parenter. Enteral Nutr., 2012, 36(Suppl. 1), 68S-75S.
[http://dx.doi.org/10.1177/0148607111426276] [PMID: 22237879]
[124]
Di Sabatino, A.; Corazza, G.R. Coeliac disease. Lancet, 2009, 373(9673), 1480-1493.
[http://dx.doi.org/10.1016/S0140-6736(09)60254-3] [PMID: 19394538]
[125]
Sansotta, N.; Guandalini, S.; Amirikian, K.; Jericho, H. Celiac disease symptom resolution: effectiveness of the gluten free diet. J. Pediatr. Gastroenterol. Nutr., 2017, 66(1), 48-52.
[http://dx.doi.org/10.1097/MPG.0000000000001634] [PMID: 28514243]
[126]
Laurikka, P.; Salmi, T.; Collin, P.; Huhtala, H.; Mäki, M.; Kaukinen, K.; Kurppa, K. Gastrointestinal symptoms in celiac disease patients on a long-term gluten-free diet. Nutrients, 2016, 8(7), 429.
[http://dx.doi.org/10.3390/nu8070429] [PMID: 27428994]
[127]
Yerushalmy-Feler, A.; Tauman, R.; Derowe, A.; Averbuch, E.; Ben-Tov, A.; Weintraub, Y.; Weiner, D.; Amir, A.; Moran-Lev, H.; Cohen, S. Gluten-free diet may improve obstructive sleep apnea-related symptoms in children with celiac disease. BMC Pediatr., 2018, 18(1), 35.
[http://dx.doi.org/10.1186/s12887-018-1039-5] [PMID: 29415685]
[128]
Imperatore, N.; Tortora, R.; De Palma, G.D.; Capone, P.; Gerbino, N.; Donetto, S.; Testa, A.; Caporaso, N.; Rispo, A. Beneficial effects of gluten free diet in potential coeliac disease in adult population. Dig. Liver Dis., 2017, 49(8), 878-882.
[http://dx.doi.org/10.1016/j.dld.2017.03.009] [PMID: 28396103]
[129]
Leonard, M.M.; Weir, D.C.; DeGroote, M.; Mitchell, P.D.; Singh, P.; Silvester, J.A.; Leichtner, A.M.; Fasano, A. Value of IgA tTG in predicting mucosal recovery in children with celiac disease on a gluten-free diet. J. Pediatr. Gastroenterol. Nutr., 2017, 64(2), 286-291.
[http://dx.doi.org/10.1097/MPG.0000000000001460] [PMID: 28112686]
[130]
Koletzko, S.; Auricchio, R.; Dolinsek, J.; Gillett, P.; Korponay-Szabo, I.; Kurppa, K.; Mearin, M.L.; Mäki, M.; Popp, A.; Ribes, C.; Shamir, R.; Stordal, K.; Troncone, R.; Werkstetter, K.; Wessels, M.; Zimmer, K.P.; Husby, S. No need for routine endoscopy in children with celiac disease on a gluten-free diet. J. Pediatr. Gastroenterol. Nutr., 2017, 65(3), 267-269.
[http://dx.doi.org/10.1097/MPG.0000000000001628] [PMID: 28489675]
[131]
Hære, P.; Høie, O.; Schulz, T.; Schönhardt, I.; Raki, M.; Lundin, K.E. Long-term mucosal recovery and healing in celiac disease is the rule - not the exception. Scand. J. Gastroenterol., 2016, 51(12), 1439-1446.
[http://dx.doi.org/10.1080/00365521.2016.1218540] [PMID: 27534885]
[132]
Pekki, H.; Kurppa, K.; Mäki, M.; Huhtala, H.; Sievänen, H.; Laurila, K.; Collin, P.; Kaukinen, K. Predictors and significance of incomplete mucosal recovery in celiac disease after 1 year on a gluten-free diet. Am. J. Gastroenterol., 2015, 110(7), 1078-1085.
[http://dx.doi.org/10.1038/ajg.2015.155] [PMID: 26032154]
[133]
Newnham, E.D.; Shepherd, S.J.; Strauss, B.J.; Hosking, P.; Gibson, P.R. Adherence to the gluten-free diet can achieve the therapeutic goals in almost all patients with coeliac disease: A 5-year longitudinal study from diagnosis. J. Gastroenterol. Hepatol., 2016, 31(2), 342-349.
[http://dx.doi.org/10.1111/jgh.13060] [PMID: 26212198]
[134]
Camarca, M.E.; Mozzillo, E.; Nugnes, R.; Zito, E.; Falco, M.; Fattorusso, V.; Mobilia, S.; Buono, P.; Valerio, G.; Troncone, R.; Franzese, A. Celiac disease in type 1 diabetes mellitus. Ital. J. Pediatr., 2012, 38, 10.
[http://dx.doi.org/10.1186/1824-7288-38-10] [PMID: 22449104]
[135]
Tuire, I.; Marja-Leena, L.; Teea, S.; Katri, H.; Jukka, P.; Päivi, S.; Heini, H.; Markku, M.; Pekka, C.; Katri, K. Persistent duodenal intraepithelial lymphocytosis despite a long-term strict gluten-free diet in celiac disease. Am. J. Gastroenterol., 2012, 107(10), 1563-1569.
[http://dx.doi.org/10.1038/ajg.2012.220] [PMID: 22825364]
[136]
Lähdeaho, M-L.; Mäki, M.; Laurila, K.; Huhtala, H.; Kaukinen, K. Small- bowel mucosal changes and antibody responses after low- and moderate-dose gluten challenge in celiac disease. BMC Gastroenterol., 2011, 11(129), 129.
[http://dx.doi.org/10.1186/1471-230X-11-129] [PMID: 22115041]
[137]
Tye-Din, J.A.; Anderson, R.P.; Ffrench, R.A.; Brown, G.J.; Hodsman, P.; Siegel, M.; Botwick, W.; Shreeniwas, R. The effects of ALV003 pre-digestion of gluten on immune response and symptoms in celiac disease in vivo. Clin. Immunol., 2010, 134(3), 289-295.
[http://dx.doi.org/10.1016/j.clim.2009.11.001] [PMID: 19942485]
[138]
Hummel, S.; Pflüger, M.; Hummel, M.; Bonifacio, E.; Ziegler, A.G. Primary dietary intervention study to reduce the risk of islet autoimmunity in children at increased risk for type 1 diabetes: the BABYDIET study. Diabetes Care, 2011, 34(6), 1301-1305.
[http://dx.doi.org/10.2337/dc10-2456] [PMID: 21515839]
[139]
Guariso, G.; Conte, S.; Presotto, F.; Basso, D.; Brotto, F.; Visonà Dalla Pozza, L.; Pedini, B.; Betterle, C. Clinical, subclinical and potential autoimmune diseases in an Italian population of children with coeliac disease. Aliment. Pharmacol. Ther., 2007, 26(10), 1409-1417.
[http://dx.doi.org/10.1111/j.1365-2036.2007.03526.x] [PMID: 17892522]
[140]
Sildorf, S.M.; Fredheim, S.; Svensson, J.; Buschard, K. Remission without insulin therapy on gluten-free diet in a 6-year old boy with type 1 diabetes mellitus. BMJ Case Rep., 2012, 2012(7), e478-e480.
[http://dx.doi.org/10.1136/bcr.02.2012.5878] [PMID: 22729336]
[141]
Gopee, E.; van den Oever, E.L.; Cameron, F.; Thomas, M.C. Coeliac disease, gluten-free diet and the development and progression of albuminuria in children with type 1 diabetes. Pediatr. Diabetes, 2013, 14(6), 455-458.
[http://dx.doi.org/10.1111/pedi.12028] [PMID: 23763501]
[142]
Malalasekera, V.; Cameron, F.; Grixti, E.; Thomas, M.C. Potential reno-protective effects of a gluten-free diet in type 1 diabetes. Diabetologia, 2009, 52(5), 798-800.
[http://dx.doi.org/10.1007/s00125-009-1277-z] [PMID: 19219421]
[143]
Viljamaa, M.; Kaukinen, K.; Huhtala, H.; Kyrönpalo, S.; Rasmussen, M.; Collin, P. Coeliac disease, autoimmune diseases and gluten exposure. Scand. J. Gastroenterol., 2005, 40(4), 437-443.
[http://dx.doi.org/10.1080/00365520510012181] [PMID: 16028438]
[144]
Denham, J.M.; Hill, I.D. Celiac disease and autoimmunity: review and controversies. Curr. Allergy Asthma Rep., 2013, 13(4), 347-353.
[http://dx.doi.org/10.1007/s11882-013-0352-1] [PMID: 23681421]
[145]
Pastore, M.R.; Bazzigaluppi, E.; Belloni, C.; Arcovio, C.; Bonifacio, E.; Bosi, E. Six months of gluten-free diet do not influence autoantibody titers, but improve insulin secretion in subjects at high risk for type 1 diabetes. J. Clin. Endocrinol. Metab., 2003, 88(1), 162-165.
[http://dx.doi.org/10.1210/jc.2002-021177] [PMID: 12519846]
[146]
Bosi, E.; Pastore, M.R.; Molteni, L.; Bazzigaluppi, E.; Bonifacio, E.; Piemonti, L. Gluten-free diet in subjects at risk for type 1 diabetes: a tool for delaying progression to clinical disease? Adv. Exp. Med. Biol., 2005, 569, 157-158.
[http://dx.doi.org/10.1007/1-4020-3535-7_23] [PMID: 16137121]
[147]
Antvorskov, J.C.; Josefsen, K.; Haupt-Jorgensen, M.; Fundova, P.; Funda, D.P.; Buschard, K. Gluten-free diet only during pregnancy efficiently prevents diabetes in NOD mouse offspring. J. Diabetes Res., 2016, 2016(6), 3047574
[http://dx.doi.org/10.1155/2016/3047574] [PMID: 27642610]
[148]
Norris, J.M. Cereal Exposures in the Infant Diet and Risk of Diabetes Au-toimmunity in Children. Immunology Endocrine & Metabolic Agents - Medicinal Chemistry (Formerly Current Medicinal Chemistry - Immunology Endocrine & Metabolic Agents)., 2007, 7(3)
[http://dx.doi.org/10.2174/187152207780832324]
[149]
Kraft, B.D.; Westman, E.C. Schizophrenia, gluten, and low-carbohydrate, ketogenic diets: a case report and review of the literature. Nutr. Metab. (Lond.), 2009, 6, 10.
[http://dx.doi.org/10.1186/1743-7075-6-10] [PMID: 19245705]
[150]
De Santis, A.; Addolorato, G.; Romito, A.; Caputo, S.; Giordano, A.; Gambassi, G.; Taranto, C.; Manna, R.; Gasbarrini, G. Schizophrenic symptoms and SPECT abnormalities in a coeliac patient: regression after a gluten-free diet. J. Intern. Med., 1997, 242(5), 421-423.
[http://dx.doi.org/10.1046/j.1365-2796.1997.00200.x] [PMID: 9408073]
[151]
Jansson, B.; Kristjánsson, E.; Nilsson, L. [Schizophrenic psychosis disappearing after patient is given gluten-free diet]. Lakartidningen, 1984, 81(6), 448-449.
[PMID: 6700311]
[152]
Marí-Bauset, S.; Zazpe, I.; Mari-Sanchis, A.; Llopis-González, A.; Morales-Suárez-Varela, M. Evidence of the gluten-free and casein-free diet in autism spectrum disorders: a systematic review. J. Child Neurol., 2014, 29(12), 1718-1727.
[http://dx.doi.org/10.1177/0883073814531330] [PMID: 24789114]
[153]
Elder, J.H.; Kreider, C.M.; Schaefer, N.M.; de Laosa, M.B. A review of gluten- and casein-free diets for treatment of autism: 2005-2015. Nutr. Diet. Suppl., 2015, 7, 87-101.
[http://dx.doi.org/10.2147/NDS.S74718] [PMID: 28111520]
[154]
Lange, K.W.; Hauser, J.; Reissmann, A. Gluten-free and casein-free diets in the therapy of autism. Curr. Opin. Clin. Nutr. Metab. Care, 2015, 18(6), 572-575.
[http://dx.doi.org/10.1097/MCO.0000000000000228] [PMID: 26418822]
[155]
Piwowarczyk, A.; Horvath, A.; Łukasik, J.; Pisula, E.; Szajewska, H. Gluten- and casein-free diet and autism spectrum disorders in children: a systematic review. Eur. J. Nutr., 2018, 57(2), 433-440.
[http://dx.doi.org/10.1007/s00394-017-1483-2] [PMID: 28612113]
[156]
Reissmann, A.; Hauser, J.; Makulska-Gertruda, E.; Tom, L.; Lange, K.W. Gluten-free and casein-free diets in the treatment of autism. Funct. Food Health Dis., 2014, 4(8), 349-361.
[http://dx.doi.org/10.31989/ffhd.v4i8.146]
[157]
Pennesi, C.M.; Klein, L.C. Effectiveness of the gluten-free, casein-free diet for children diagnosed with autism spectrum disorder: based on parental report. Nutr. Neurosci., 2012, 15(2), 85-91.
[http://dx.doi.org/10.1179/1476830512Y.0000000003] [PMID: 22564339]
[158]
Winburn, E.; Charlton, J.; McConachie, H.; McColl, E.; Parr, J.; O’Hare, A.; Baird, G.; Gringras, P.; Wilson, D.C.; Adamson, A.; Adams, S.; Le Couteur, A. Parents’ and child health professionals’ attitudes towards dietary interventions for children with autism spectrum disorders. J. Autism Dev. Disord., 2014, 44(4), 747-757.
[http://dx.doi.org/10.1007/s10803-013-1922-8] [PMID: 23996225]
[159]
Tortora, R.; Capone, P.; De Stefano, G.; Imperatore, N.; Gerbino, N.; Donetto, S.; Monaco, V.; Caporaso, N.; Rispo, A. Metabolic syndrome in patients with coeliac disease on a gluten-free diet. Aliment. Pharmacol. Ther., 2015, 41(4), 352-359.
[http://dx.doi.org/10.1111/apt.13062] [PMID: 25581084]
[160]
Ciccone, A.; Gabrieli, D.; Cardinale, R.; Di Ruscio, M.; Vernia, F.; Stefanelli, G.; Necozione, S.; Melideo, D.; Viscido, A.; Frieri, G.; Latella, G. Metabolic alterations in celiac disease occurring after following a gluten-free diet. Digestion, 2019, 100(4), 262-268.
[http://dx.doi.org/10.1159/000495749] [PMID: 30554200]
[161]
Reilly, N.R.; Lebwohl, B.; Hultcrantz, R.; Green, P.H.; Ludvigsson, J.F. Increased risk of non-alcoholic fatty liver disease after diagnosis of celiac disease. J. Hepatol., 2015, 62(6), 1405-1411.
[http://dx.doi.org/10.1016/j.jhep.2015.01.013] [PMID: 25617505]
[162]
Tovoli, F.; Negrini, G.; Farì, R.; Guidetti, E.; Faggiano, C.; Napoli, L.; Bolondi, L.; Granito, A. Increased risk of nonalcoholic fatty liver disease in patients with coeliac disease on a gluten-free diet: beyond traditional metabolic factors. Aliment. Pharmacol. Ther., 2018, 48(5), 538-546.
[http://dx.doi.org/10.1111/apt.14910] [PMID: 29984415]
[163]
Lee, A.R.; Ng, D.L.; Dave, E.; Ciaccio, E.J.; Green, P.H. The effect of substituting alternative grains in the diet on the nutritional profile of the gluten-free diet. J. Hum. Nutr. Diet., 2009, 22(4), 359-363.
[http://dx.doi.org/10.1111/j.1365-277X.2009.00970.x] [PMID: 19519750]
[164]
Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International tables of glycemic index and glycemic load values: 2008. Diabetes Care, 2008, 31(12), 2281-2283.
[http://dx.doi.org/10.2337/dc08-1239] [PMID: 18835944]
[165]
Shepherd, S.J.; Gibson, P.R. Nutritional inadequacies of the gluten-free diet in both recently-diagnosed and long-term patients with coeliac disease. J. Hum. Nutr. Diet., 2013, 26(4), 349-358.
[http://dx.doi.org/10.1111/jhn.12018] [PMID: 23198728]
[166]
Hopman, E.G.D.; le Cessie, S.; von Blomberg, B.M.; Mearin, M.L. Nutritional management of the gluten-free diet in young people with celiac disease in The Netherlands. J. Pediatr. Gastroenterol. Nutr., 2006, 43(1), 102-108.
[http://dx.doi.org/10.1097/01.mpg.0000228102.89454.eb] [PMID: 16819385]
[167]
Wild, D.; Robins, G.G.; Burley, V.J.; Howdle, P.D. Evidence of high sugar intake, and low fibre and mineral intake, in the gluten-free diet. Aliment. Pharmacol. Ther., 2010, 32(4), 573-581.
[http://dx.doi.org/10.1111/j.1365-2036.2010.04386.x] [PMID: 20528829]
[168]
Dall’Asta, C.; Scarlato, A.P.; Galaverna, G.; Brighenti, F.; Pellegrini, N. Dietary exposure to fumonisins and evaluation of nutrient intake in a group of adult celiac patients on a gluten-free diet. Mol. Nutr. Food Res., 2012, 56(4), 632-640.
[http://dx.doi.org/10.1002/mnfr.201100515] [PMID: 22495987]
[169]
Vici, G.; Belli, L.; Biondi, M.; Polzonetti, V. Gluten free diet and nutrient deficiencies: A review. Clin. Nutr., 2016, 35(6), 1236-1241.
[http://dx.doi.org/10.1016/j.clnu.2016.05.002] [PMID: 27211234]
[170]
Pham-Short, A.; Donaghue, K.C.; Ambler, G.; Garnett, S.; Craig, M.E. Greater postprandial glucose excursions and inadequate nutrient intake in youth with type 1 diabetes and celiac disease. Sci. Rep., 2017, 7, 45286.
[http://dx.doi.org/10.1038/srep45286] [PMID: 28338063]
[171]
Caruso, R.; Pallone, F.; Stasi, E.; Romeo, S.; Monteleone, G. Appropriate nutrient supplementation in celiac disease. Ann. Med., 2013, 45(8), 522-531.
[http://dx.doi.org/10.3109/07853890.2013.849383] [PMID: 24195595]
[172]
Deora, V.; Aylward, N.; Sokoro, A.; El-Matary, W. Serum vitamins and minerals at diagnosis and follow-up in children with celiac disease. J. Pediatr. Gastroenterol. Nutr., 2017, 65(2), 185-189.
[http://dx.doi.org/10.1097/MPG.0000000000001475] [PMID: 28738401]
[173]
Sue, A.; Dehlsen, K.; Ooi, C.Y. Paediatric patients with coeliac disease on a gluten-free diet: nutritional adequacy and macro- and micronutrient imbalances. Curr. Gastroenterol. Rep., 2018, 20(1), 2.
[http://dx.doi.org/10.1007/s11894-018-0606-0] [PMID: 29356956]
[174]
Raehsler, S.L.; Choung, R.S.; Marietta, E.V.; Murray, J.A. Accumulation of heavy metals in people on a gluten-free diet. Clin. Gastroenterol. Hepatol., 2018, 16(2), 244-251.
[http://dx.doi.org/10.1016/j.cgh.2017.01.034] [PMID: 28223206]
[175]
Halfdanarson, T.R. The increasing relevance of copper deficiency in hematological practice. Blood, 2005, 106(11), 1679.
[http://dx.doi.org/10.1182/blood.V106.11.1679.1679]
[176]
Kumar, N. Copper deficiency myelopathy (human swayback). Mayo Clin. Proc., 2006, 81(10), 1371-1384.
[http://dx.doi.org/10.4065/81.10.1371] [PMID: 17036563]
[177]
Halfdanarson, T.R.; Kumar, N.; Hogan, W.J.; Murray, J.A. Copper deficiency in celiac disease. J. Clin. Gastroenterol., 2009, 43(2), 162-164.
[http://dx.doi.org/10.1097/MCG.0b013e3181354294] [PMID: 18496230]
[178]
Chin, A. Copper deficiency anemia and neutropenia due to ketogenic diet. Pediatrics, 2018, 141(5), e20173286
[http://dx.doi.org/10.1542/peds.2017-3286] [PMID: 29695584]
[179]
Myint, Z.W.; Oo, T.H.; Thein, K.Z.; Tun, A.M.; Saeed, H. Copper deficiency anemia: review article. Ann. Hematol., 2018, 97(9), 1527-1534.
[http://dx.doi.org/10.1007/s00277-018-3407-5] [PMID: 29959467]
[180]
Wolf, R.L.; Lebwohl, B.; Lee, A.R.; Zybert, P.; Reilly, N.R.; Cadenhead, J.; Amengual, C.; Green, P.H.R. Hypervigilance to a gluten-free diet and decreased quality of life in teenagers and adults with celiac disease. Dig. Dis. Sci., 2018, 63(6), 1438-1448.
[http://dx.doi.org/10.1007/s10620-018-4936-4] [PMID: 29387990]
[181]
Jnawali, P.; Kumar, V.; Tanwar, B. Celiac disease: Overview and considerations for development of gluten-free foods. Food Sci. Hum. Wellness, 2016, 5(4), 169-176.
[http://dx.doi.org/10.1016/j.fshw.2016.09.003]
[182]
Sainsbury, K.; Marques, M.M. The relationship between gluten free diet adherence and depressive symptoms in adults with coeliac disease: A systematic review with meta-analysis. Appetite, 2018, 120(1), 578-588.
[http://dx.doi.org/10.1016/j.appet.2017.10.017] [PMID: 29050807]
[183]
Joelson, A.M.; Geller, M.G.; Zylberberg, H.M.; Green, P.H.R.; Lebwohl, B. The effect of depressive symptoms on the association between gluten-free diet adherence and symptoms in celiac disease: analysis of a patient powered research network. Nutrients, 2018, 10(5), E538
[http://dx.doi.org/10.3390/nu10050538] [PMID: 29701659]
[184]
Verma, A.K.; Gatti, S.; Galeazzi, T.; Monachesi, C.; Padella, L.; Baldo, G.D.; Annibali, R.; Lionetti, E.; Catassi, C. Gluten contamination in naturally or labeled gluten-free products marketed in Italy. Nutrients, 2017, 9(2), E115
[http://dx.doi.org/10.3390/nu9020115] [PMID: 28178205]
[185]
Forbes, G.M.; Dods, K. Gluten content of imported gluten-free foods: national and international implications. Med. J. Aust., 2016, 205(7), 316.
[http://dx.doi.org/10.5694/mja16.00485] [PMID: 27681973]
[186]
Hassan, H.; Elaridi, J.; Bassil, M. Evaluation of gluten in gluten-free-labeled foods and assessment of exposure level to gluten among celiac patients in Lebanon. Int. J. Food Sci. Nutr., 2017, 68(7), 881-886.
[http://dx.doi.org/10.1080/09637486.2017.1303461] [PMID: 28325088]
[187]
Silvester, J.A.; Graff, L.A.; Rigaux, L.; Walker, J.R.; Duerksen, D.R. Symptomatic suspected gluten exposure is common among patients with coeliac disease on a gluten-free diet. Aliment. Pharmacol. Ther., 2016, 44(6), 612-619.
[http://dx.doi.org/10.1111/apt.13725] [PMID: 27443825]
[188]
Montserrat Carreras, A.; Andreu Corominas, M.; Ramon Vidal, D.; Genoves Martinez, S.; Bataller Leiva, E. Lactic acid bacteria for coeliac disease. US Patent 20170145379, 2010.
[189]
Greco, L.; Gobbetti, M.; Auricchio, R.; Di Mase, R.; Landolfo, F.; Paparo, F.; Di Cagno, R.; De Angelis, M.; Rizzello, C.G.; Cassone, A.; Terrone, G.; Timpone, L.; D’Aniello, M.; Maglio, M.; Troncone, R.; Auricchio, S. Safety for patients with celiac disease of baked goods made of wheat flour hydrolyzed during food processing. Clin. Gastroenterol. Hepatol., 2011, 9(1), 24-29.
[http://dx.doi.org/10.1016/j.cgh.2010.09.025] [PMID: 20951830]
[190]
Di Cagno, R.; Barbato, M.; Di Camillo, C.; Rizzello, C.G.; De Angelis, M.; Giuliani, G.; De Vincenzi, M.; Gobbetti, M.; Cucchiara, S. Gluten-free sourdough wheat baked goods appear safe for young celiac patients: a pilot study. J. Pediatr. Gastroenterol. Nutr., 2010, 51(6), 777-783.
[http://dx.doi.org/10.1097/MPG.0b013e3181f22ba4] [PMID: 20975578]
[191]
Kocadag Kocazorbaz, E.; Zihnioglu, F. Purification, characterization and the use of recombinant prolyl oligopeptidase from Myxococcus xanthus for gluten hydrolysis. Protein Expr. Purif., 2017, 129, 101-107.
[http://dx.doi.org/10.1016/j.pep.2016.09.016] [PMID: 27693621]
[192]
Colgrave, M.L.; Byrne, K.; Howitt, C.A. Food for thought: Selecting the right enzyme for the digestion of gluten. Food Chem., 2017, 234, 389-397.
[http://dx.doi.org/10.1016/j.foodchem.2017.05.008] [PMID: 28551252]
[193]
Zhou, L.; Wu, Y.; Cheng, Y.; Wang, J.; Lu, J.; Gao, J.; Yuan, J.; Chen, H. Blocking celiac antigenicity of the glutamine-rich gliadin 33-mer peptide by microbial transglutaminase. RSC Advances, 2017, 7(24), 14438-14447.
[http://dx.doi.org/10.1039/C6RA27893K]
[194]
Syage, J.A.; Murray, J.A.; Green, P.H.R.; Khosla, C. Latiglutenase improves symptoms in seropositive celiac disease patients while on a gluten-free diet. Dig. Dis. Sci., 2017, 62(9), 2428-2432.
[http://dx.doi.org/10.1007/s10620-017-4687-7] [PMID: 28755266]
[195]
Syage, J.A.; Murray, J.A.; Green, P.H.R.; Khosla, C.; Adelman, D.C.; Sealey Voyksner, J.A. Oral latiglutenase improves chronic symptoms in seropositive celiac disease patients. Gastroenterology, 2017, 152(5), S163.
[http://dx.doi.org/10.1016/S0016-5085(17)30865-X]
[196]
Moole, H. A systematic review and meta-analysis of randomized con-trolled trials: Efficacy and safety of larazotide acetate in celiac disease patients undergoing a gluten challenge. J. Gastro. Pancreat. Liv. Dis., 2016, 3(3), 01-08.
[http://dx.doi.org/10.15226/2374-815X/3/3/00160]
[197]
Kelly, C.P.; Green, P.H.; Murray, J.A.; Dimarino, A.; Colatrella, A.; Leffler, D.A.; Alexander, T.; Arsenescu, R.; Leon, F.; Jiang, J.G.; Arterburn, L.A.; Paterson, B.M.; Fedorak, R.N. Larazotide Acetate Celiac Disease Study Group. Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment. Pharmacol. Ther., 2013, 37(2), 252-262.
[http://dx.doi.org/10.1111/apt.12147] [PMID: 23163616]
[198]
Khaleghi, S.; Ju, J.M.; Lamba, A.; Murray, J.A. The potential utility of tight junction regulation in celiac disease: focus on larazotide acetate. Therap. Adv. Gastroenterol., 2016, 9(1), 37-49.
[http://dx.doi.org/10.1177/1756283X15616576] [PMID: 26770266]
[199]
van den Broeck, H.C.; van Herpen, T.W.; Schuit, C.; Salentijn, E.M.; Dekking, L.; Bosch, D.; Hamer, R.J.; Smulders, M.J.; Gilissen, L.J.; van der Meer, I.M. Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese Spring deletion lines. BMC Plant Biol., 2009, 9(1), 41.
[http://dx.doi.org/10.1186/1471-2229-9-41] [PMID: 19351412]
[200]
García-Molina, M.D.; Muccilli, V.; Saletti, R.; Foti, S.; Masci, S.; Barro, F. Comparative proteomic analysis of two transgenic low-gliadin wheat lines and non-transgenic wheat control. J. Proteomics, 2017, 165, 102-112.
[http://dx.doi.org/10.1016/j.jprot.2017.06.010] [PMID: 28625740]
[201]
Altenbach, S.B.; Allen, P.V. Transformation of the US bread wheat ‘Butte 86’ and silencing of omega-5 gliadin genes. GM Crops, 2011, 2(1), 66-73.
[http://dx.doi.org/10.4161/gmcr.2.1.15884] [PMID: 21844700]
[202]
Becker, D.; Wieser, H.; Koehler, P.; Folck, A.; Mühling, K.H.; Zörb, C. Protein composition and technofunctional properties of transgenic wheat with reduced alpha gliadin content obtained by RNA interference. J. Appl. Bot. Food Qual., 2012, 85, 23-33.
[203]
Gil-Humanes, J.; Pistón, F.; Barro, F.; Rosell, C.M. The shutdown of celiac disease-related gliadin epitopes in bread wheat by RNAi provides flours with increased stability and better tolerance to over-mixing. PLoS One, 2014, 9(3), e91931
[http://dx.doi.org/10.1371/journal.pone.0091931] [PMID: 24633046]
[204]
Liang, L.; Pinier, M.; Leroux, J.C.; Subirade, M. Interaction of alpha-gliadin with poly(HEMA-co-SS): structural characterization and biological implication. Biopolymers, 2009, 91(2), 169-178.
[http://dx.doi.org/10.1002/bip.21109] [PMID: 18975377]
[205]
Pinier, M.; Verdu, E.F.; Nasser-Eddine, M.; David, C.S.; Vézina, A.; Rivard, N.; Leroux, J.C. Polymeric binders suppress gliadin-induced toxicity in the intestinal epithelium. Gastroenterology, 2009, 136(1), 288-298.
[http://dx.doi.org/10.1053/j.gastro.2008.09.016] [PMID: 18992747]
[206]
McCarville, J.L.; Nisemblat, Y.; Galipeau, H.J.; Jury, J.; Tabakman, R.; Cohen, A.; Naftali, E.; Neiman, B.; Halbfinger, E.; Murray, J.A.; Anbazhagan, A.N.; Dudeja, P.K.; Varvak, A.; Leroux, J.C.; Verdu, E.F. BL-7010 demonstrates specific binding to gliadin and reduces gluten-associated pathology in a chronic mouse model of gliadin sensitivity. PLoS One, 2014, 9(11), e109972
[http://dx.doi.org/10.1371/journal.pone.0109972] [PMID: 25365555]
[207]
Rossi, L.; Arciello, M.; Capo, C.; Rotilio, G. Copper imbalance and oxidative stress in neurodegeneration. Ital. J. Biochem., 2006, 55(3-4), 212-221.
[PMID: 17274527]
[208]
Milanino, R.; Buchner, V. Copper: role of the ‘endogenous’ and ‘exogenous’ metal on the development and control of inflammatory processes. Rev. Environ. Health, 2006, 21(3), 153-215.
[http://dx.doi.org/10.1515/REVEH.2006.21.3.153] [PMID: 17243347]
[209]
Tarantino, G.; Porcu, C.; Arciello, M.; Andreozzi, P.; Balsano, C. Prediction of carotid intima-media thickness in obese patients with low prevalence of comorbidities by serum copper bioavailability. J. Gastroenterol. Hepatol., 2018, 33(8), 1511-1517.
[http://dx.doi.org/10.1111/jgh.14104] [PMID: 29405466]
[210]
Qiu, Q.; Zhang, F.; Zhu, W.; Wu, J.; Liang, M. Copper in diabetes mellitus: a meta-analysis and systematic review of plasma and serum studies. Biol. Trace Elem. Res., 2017, 177(1), 53-63.
[http://dx.doi.org/10.1007/s12011-016-0877-y] [PMID: 27785738]
[211]
Aigner, E.; Strasser, M.; Haufe, H.; Sonnweber, T.; Hohla, F.; Stadlmayr, A.; Solioz, M.; Tilg, H.; Patsch, W.; Weiss, G.; Stickel, F.; Datz, C. A role for low hepatic copper concentrations in nonalcoholic Fatty liver disease. Am. J. Gastroenterol., 2010, 105(9), 1978-1985.
[http://dx.doi.org/10.1038/ajg.2010.170] [PMID: 20407430]
[212]
Relling, D.P.; Esberg, L.B.; Johnson, W.T.; Murphy, E.J.; Carlson, E.C.; Lukaski, H.C.; Saari, J.T.; Ren, J. Dietary interaction of high fat and marginal copper deficiency on cardiac contractile function. Obesity (Silver Spring), 2007, 15(5), 1242-1257.
[http://dx.doi.org/10.1038/oby.2007.146] [PMID: 17495201]
[213]
Tanaka, A.; Kaneto, H.; Miyatsuka, T.; Yamamoto, K.; Yoshiuchi, K.; Yamasaki, Y.; Shimomura, I.; Matsuoka, T.A.; Matsuhisa, M. Role of copper ion in the pathogenesis of type 2 diabetes. Endocr. J., 2009, 56(5), 699-706.
[http://dx.doi.org/10.1507/endocrj.K09E-051] [PMID: 19461160]
[214]
Ma, L.; Li, X.; Wang, Y.; Zheng, W.; Chen, T. Cu(II) inhibits hIAPP fibrillation and promotes hIAPP-induced beta cell apoptosis through induction of ROS-mediated mitochondrial dysfunction. J. Inorg. Biochem., 2014, 140(2), 143-152.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.07.002] [PMID: 25108186]
[215]
Dickey, W.; Kearney, N. Overweight in celiac disease: prevalence, clinical characteristics, and effect of a gluten-free diet. Am. J. Gastroenterol., 2006, 101(10), 2356-2359.
[http://dx.doi.org/10.1111/j.1572-0241.2006.00750.x] [PMID: 17032202]
[216]
Ukkola, A.; Mäki, M.; Kurppa, K.; Collin, P.; Huhtala, H.; Kekkonen, L.; Kaukinen, K. Changes in body mass index on a gluten-free diet in coeliac disease: a nationwide study. Eur. J. Intern. Med., 2012, 23(4), 384-388.
[http://dx.doi.org/10.1016/j.ejim.2011.12.012] [PMID: 22560391]
[217]
Kabbani, T.A.; Goldberg, A.; Kelly, C.P.; Pallav, K.; Tariq, S.; Peer, A.; Hansen, J.; Dennis, M.; Leffler, D.A. Body mass index and the risk of obesity in coeliac disease treated with the gluten-free diet. Aliment. Pharmacol. Ther., 2012, 35(6), 723-729.
[http://dx.doi.org/10.1111/j.1365-2036.2012.05001.x] [PMID: 22316503]
[218]
Patel, K.; Curtis, L.T. A comprehensive approach to treating autism and attention-deficit hyperactivity disorder: a prepilot study. J. Altern. Complement. Med., 2007, 13(10), 1091-1097.
[http://dx.doi.org/10.1089/acm.2007.0611] [PMID: 18166120]
[219]
Knivsberg, A.M.; Reichelt, K.L.; Høien, T.; Nødland, M. Effect of a dietary intervention on autistic behavior. Focus Autism Other Dev. Disabl., 2003, 18(4), 248-257.
[http://dx.doi.org/10.1177/10883576030180040601]
[220]
Whiteley, P.; Shattock, P.; Knivsberg, A.M.; Seim, A.; Reichelt, K.L.; Todd, L.; Carr, K.; Hooper, M. Gluten- and casein-free dietary intervention for autism spectrum conditions. Front. Hum. Neurosci., 2013, 6(1), 344.
[http://dx.doi.org/10.3389/fnhum.2012.00344] [PMID: 23316152]
[221]
Irvin, D. Using analog assessment procedures for determining the effects of a gluten-free and casein-free diet on rate of problem behaviors for an adolescent with autism. Behav. Interv., 2010, 21(4), 281-286.
[http://dx.doi.org/10.1002/bin.205]
[222]
Elder, J.H.; Shankar, M.; Shuster, J.; Theriaque, D.; Burns, S.; Sherrill, L. The gluten-free, casein-free diet in autism: results of a preliminary double blind clinical trial. J. Autism Dev. Disord., 2006, 36(3), 413-420.
[http://dx.doi.org/10.1007/s10803-006-0079-0] [PMID: 16555138]
[223]
Seung, H.; Rogalski, Y.; Shankar, B.A.M.; Elder, J. The Gluten-and Casein-Free Diet and Autism: Communication Outcomes From a Preliminary Double-Blind Clinical Trial. J. Med. Speech-Lang. Pathol., 2007, 15(4), 337-345.
[224]
Adams, J.B.; Audhya, T.; Geis, E.; Gehn, E.; Fimbres, V.; Pollard, E.L.; Mitchell, J.; Ingram, J.; Hellmers, R.; Laake, D.; Matthews, J.S.; Li, K.; Naviaux, J.C.; Naviaux, R.K.; Adams, R.L.; Coleman, D.M.; Quig, D.W. Comprehensive nutritional and dietary intervention for autism spectrum disorder-a randomized, controlled 12-month trial. Nutrients, 2018, 10(3), E369
[http://dx.doi.org/10.3390/nu10030369] [PMID: 29562612]
[225]
Zakharyan, R.; Khoyetsyan, A.; Arakelyan, A.; Boyajyan, A.; Gevorgyan, A.; Stahelova, A.; Mrazek, F.; Petrek, M. Association of C1QB gene polymorphism with schizophrenia in Armenian population. BMC Med. Genet., 2011, 12(1), 126-126.
[http://dx.doi.org/10.1186/1471-2350-12-126] [PMID: 21951915]
[226]
Ashwood, P.; Wills, S.; Van de Water, J. The immune response in autism: a new frontier for autism research. J. Leukoc. Biol., 2006, 80(1), 1-15.
[http://dx.doi.org/10.1189/jlb.1205707] [PMID: 16698940]
[227]
Benoit, M.E.; Tenner, A.J. Complement protein C1q-mediated neuroprotection is correlated with regulation of neuronal gene and microRNA expression. J. Neurosci., 2011, 31(9), 3459-3469.
[http://dx.doi.org/10.1523/JNEUROSCI.3932-10.2011] [PMID: 21368058]
[228]
Pruimboom, L.; de Punder, K. The opioid effects of gluten exorphins: asymptomatic celiac disease. J. Health Popul. Nutr., 2015, 33, 24.
[http://dx.doi.org/10.1186/s41043-015-0032-y] [PMID: 26825414]
[229]
Severance, E.G.; Gressitt, K.L.; Halling, M.; Stallings, C.R.; Origoni, A.E.; Vaughan, C.; Khushalani, S.; Alaedini, A.; Dupont, D.; Dickerson, F.B.; Yolken, R.H. Complement C1q formation of immune complexes with milk caseins and wheat glutens in schizophrenia. Neurobiol. Dis., 2012, 48(3), 447-453.
[http://dx.doi.org/10.1016/j.nbd.2012.07.005] [PMID: 22801085]
[230]
Soedamah-Muthu, S.S.; Fuller, J.H.; Mulnier, H.E.; Raleigh, V.S.; Lawrenson, R.A.; Colhoun, H.M. High risk of cardiovascular disease in patients with type 1 diabetes in the U.K.: a cohort study using the general practice research database. Diabetes Care, 2006, 29(4), 798-804.
[http://dx.doi.org/10.2337/diacare.29.04.06.dc05-1433] [PMID: 16567818]
[231]
Nathan, D.M.; Cleary, P.A.; Backlund, J.Y.C.; Genuth, S.M.; Lachin, J.M.; Orchard, T.J.; Raskin, P.; Zinman, B. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med., 2005, 353(25), 2643-2653.
[http://dx.doi.org/10.1056/NEJMoa052187] [PMID: 16371630]
[232]
Wang, P.; Xu, Y.Y.; Lv, T.T.; Guan, S.Y.; Li, X.M.; Li, X.P.; Pan, H.F. Subclinical atherosclerosis in patients with type 1 diabetes mellitus: a systematic review and meta-analysis. Angiology, 2019, 70(2), 141-159.
[http://dx.doi.org/10.1177/0003319718787366] [PMID: 30009613]
[233]
Crouse, J.R., III; Craven, T.E.; Hagaman, A.P.; Bond, M.G. Association of coronary disease with segment-specific intimal-medial thickening of the extracranial carotid artery. Circulation, 1995, 92(5), 1141-1147.
[http://dx.doi.org/10.1161/01.CIR.92.5.1141] [PMID: 7648658]
[234]
Singh, T.P.; Groehn, H.; Kazmers, A. Vascular function and carotid intimal-medial thickness in children with insulin-dependent diabetes mellitus. J. Am. Coll. Cardiol., 2003, 41(4), 661-665.
[http://dx.doi.org/10.1016/S0735-1097(02)02894-2] [PMID: 12598080]
[235]
Urbina, E.M.; Williams, R.V.; Alpert, B.S.; Collins, R.T.; Daniels, S.R.; Hayman, L.; Jacobson, M.; Mahoney, L.; Mietus-Snyder, M.; Rocchini, A.; Steinberger, J.; McCrindle, B. American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee of the Council on Cardiovascular Disease in the Young. Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association. Hypertension, 2009, 54(5), 919-950.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.192639] [PMID: 19729599]
[236]
Kanters, S.D.; Algra, A.; Banga, J.D. Carotid intima-media thickness in hyperlipidemic type I and type II diabetic patients. Diabetes Care, 1997, 20(3), 276-280.
[http://dx.doi.org/10.2337/diacare.20.3.276] [PMID: 9051371]
[237]
Ramus, S.M.; Petrovic, D. Genetic variations and subclinical markers of carotid atherosclerosis in patients with type 2 diabetes mellitus. Curr. Vasc. Pharmacol., 2018, 16(1)
[http://dx.doi.org/10.2174/1570161116666180206112635] [PMID: 29412115]
[238]
Järvisalo, M.J.; Jartti, L.; Näntö-Salonen, K.; Irjala, K.; Rönnemaa, T.; Hartiala, J.J.; Celermajer, D.S.; Raitakari, O.T. Increased aortic intima-media thickness: a marker of preclinical atherosclerosis in high-risk children. Circulation, 2001, 104(24), 2943-2947.
[http://dx.doi.org/10.1161/hc4901.100522] [PMID: 11739310]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy