[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[3]
Dickens, E.; Ahmed, S. Principles of cancer treatment by chemotherapy. Surgery, 2018, 36(3), 134-138.
[4]
Symonds, R.P.; Foweraker, K. Principles of chemotherapy and radiotherapy. Curr. Obstet. Gynaecol., 2006, 16(2), 100-106.
[6]
Pastorino, F.; Brignole, C.; Di Paolo, D.; Nico, B.; Pezzolo, A.; Marimpietri, D.; Pagnan, G.; Piccardi, F.; Cilli, M.; Longhi, R.; Ribatti, D.; Corti, A.; Allen, T.M.; Ponzoni, M. Targeting liposomal chemotherapy via both tumors cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res., 2006, 66(20), 10073-10082.
[7]
Monsuez, J.J.; Charniot, J.C.; Vignat, N.; Artigou, J.Y. Cardiac side-effects of cancer chemotherapy. Int. J. Cardiol., 2010, 144(1), 3-15.
[8]
Elkhodiry, M.A.; Momah, C.C.; Suwaidi, S.R.; Gadalla, D.; Martins, A.M.; Vitor, R.F.; Husseini, G.A. Synergistic nanomedicine: Passive, active, and ultrasound-triggered drug delivery in cancer treatment. J. Nanosci. Nanotechnol., 2016, 16(1), 1-18.
[9]
Pitt, W.G.; Husseini, G.A.; Roeder, B.L.; Dickinson, D.J.; Warden, D.R.; Hartley, J.M.; Jones, P.W. Preliminary results of combining low frequency low intensity ultrasound and liposomal drug delivery to treat tumors in rats. J. Nanosci. Nanotechnol., 2011, 11(3), 1866-1870.
[10]
Husseini, G.A.; Pitt, W.G.; Martins, A.M. Ultrasonically triggered drug delivery: breaking the barrier. Colloids Surf. B Biointerfaces, 2014, 123, 364-386.
[11]
Collins, I.; Workman, P. New approaches to molecular cancer therapeutics. Nat. Chem. Biol., 2006, 2(12), 689-700.
[12]
Dua, J.S.; Rana, A.C.; Bhandari, A.K. Liposome: Methods of preparation and applications. Intl. J. Pharm. Stud. Res., 2012, 3(2), 14-20.
[13]
Deamer, D.W. From “banghasomes” to liposomes: a memoir of Alec Bangham, 1921-2010. FASEB J., 2010, 24(5), 1308-1310.
[14]
Wagner, A.; Vorauer-Uhl, K. Liposome technology for industrial purposes. J. Drug Deliv., 2011, 2011, 1-9.
[16]
Willis, M.; Forssen, E. Ligand-targeted liposomes. Adv. Drug Deliv. Rev., 1998, 29(3), 249-271.
[17]
Brey, R.N.; Liang, L. Polymerizable fatty acids, phospholipids and
polymerized liposomes therefrom. U.S. Patent US6187335B1, February
13, 2001.
[18]
Leung, S.J.; Romanowski, M. Light-activated content release from liposomes. Theranostics, 2012, 2(10), 1020-1036.
[19]
Gabizon, A.A. Stealth liposomes and tumor targeting: One step further in the quest for the magic bullet. Clin. Cancer Res., 2001, 7(2), 223-225.
[20]
Juliano, R.L.; Stamp, D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem. Biophys. Res. Commun., 1975, 63(3), 651-658.
[21]
Magin, R.L.; Hunter, J.M.; Niesman, M.R.; Bark, G.A. Effect of vesicle size on the clearance, distribution, and tumor uptake of temperature-sensitive liposomes. Cancer Drug Deliv., 1986, 3(4), 223-237.
[22]
Fenske, D.B.; Cullis, P.R. Entrapment of small molecules and nucleic acid-based drugs in liposomes. Methods Enzymol., 2005, 391, 7-40.
[23]
Noble, G.T.; Stefanick, J.F.; Ashley, J.D.; Kiziltepe, T.; Bilgicer, B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol., 2014, 32(1), 32-45.
[24]
Karanth, H.; Murthy, R.S. pH-sensitive liposomes-principle and application in cancer therapy. J. Pharm. Pharmacol., 2007, 59(4), 469-483.
[25]
Barenholz, Y. Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[27]
Wong, A.D.; Ye, M.; Ulmschneider, M.B.; Searson, P.C. Quantitative analysis of the enhanced permeation and retention (EPR) effect. PLoS One, 2015, 10(5)e0123461
[28]
Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics, 2017, 9(2), 12.
[30]
Swenson, C.E.; Perkins, W.R.; Roberts, P.; Janoff, A.S. Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate). Breast, 2001, 10, 1-7.
[32]
Amreddy, N.; Babu, A.; Muralidharan, R.; Panneerselvam, J.; Srivastava, A.; Ahmed, R.; Mehta, M.; Munshi, A.; Ramesh, R. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv. Cancer Res., 2018, 137, 115-170.
[34]
Silverman, J.A.; Deitcher, S.R. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol., 2013, 71(3), 555-564.
[36]
Burade, V.; Bhowmick, S.; Maiti, K.; Zalawadia, R.; Ruan, H.; Thennati, R. Lipodox® (generic doxorubicin hydrochloride liposome injection): In vivo efficacy and bioequivalence versus Caelyx® (doxorubicin hydrochloride liposome injection) in human mammary carcinoma (MX-1) xenograft and syngeneic fibrosarcoma (WEHI 164) mouse mode. BMC Cancer, 2017, 17(1), 405.
[39]
Kim, M.; Williams, S. Daunorubicin and cytarabine liposome in newly diagnosed therapy-related acute myeloid leukemia (AML) or AML with myelodysplasia-related changes. Ann. Pharmacother., 2018, 52(8), 792-800.
[41]
Park, K. Facing the truth about nanotechnology in drug delivery. ACS Nano, 2013, 7(9), 7442-7447.
[42]
Lattin, J.R.; Pitt, W.G.; Belnap, D.M.; Husseini, G.A. Ultrasound-induced calcein release from eLiposomes. Ultrasound Med. Biol., 2012, 38(12), 2163-2173.
[43]
Staples, B.J.; Pitt, W.G.; Roeder, B.L.; Husseini, G.A.; Rajeev, D.; Schaalje, G.B. Distribution of doxorubicin in rats undergoing ultrasonic drug delivery. J. Pharm. Sci., 2010, 99(7), 3122-3131.
[44]
Moussa, H.G.; Martins, A.M.; Husseini, G.A. Review on triggered liposomal drug delivery with a focus on ultrasound. Curr. Cancer Drug Targets, 2015, 15(4), 282-313.
[45]
Khokhlova, T.D.; Haider, Y.; Hwang, J.H. Therapeutic potential of ultrasound microbubbles in gastrointestinal oncology: Recent advances and future prospects. Therap. Adv. Gastroenterol., 2015, 8(6), 384-394.
[46]
Lentacker, I.; Geers, B.; Demeester, J.; De Smedt, S.C.; Sanders, N.N. Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: Cytotoxicity and mechanisms involved. Mol. Ther., 2010, 18(1), 101-108.
[47]
Lattin, J.R.; Pitt, W.G. Factors affecting ultrasonic release from eLiposomes. J. Pharm. Sci., 2015, 104(4), 1373-1384.
[48]
Byrne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev., 2008, 60(15), 1615-1626.
[49]
Torchilin, V.P. Multifunctional nanocarriers. Adv. Drug Deliv. Rev., 2006, 58(14), 1532-1555.
[50]
Hillen, F.; Griffioen, A.W. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev., 2007, 26(3-4), 489-502.
[51]
Zetter, B.R. Angiogenesis and tumor metastasis. Annu. Rev. Med., 1998, 49, 407-424.
[52]
Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol., 2010, 624, 25-37.
[53]
Aggarwal, P.; Hall, J.B.; McLeland, C.B.; Dobrovolskaia, M.A.; McNeil, S.E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev., 2009, 61(6), 428-437.
[54]
Greish, K. Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines. J. Drug Target., 2007, 15(7-8), 457-464.
[55]
Fang, J.; Sawa, T.; Maeda, H. Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Adv. Exp. Med. Biol., 2003, 519, 29-49.
[56]
Jhaveri, A.M.; Torchilin, V.P. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front. Pharmacol., 2014, 5, 1-26.
[57]
Vaage, J.; Donovan, D.; Uster, P.; Working, P. Tumour uptake of doxorubicin in polyethylene glycol-coated liposomes and therapeutic effect against a xenografted human pancreatic carcinoma. Br. J. Cancer, 1997, 75(4), 482-486.
[58]
Maeda, H.; Bharate, G.Y.; Daruwalla, J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm., 2009, 71(3), 409-419.
[59]
Harrington, K.J.; Mohammadtaghi, S.; Uster, P.S.; Glass, D.; Peters, A.M.; Vile, R.G.; Stewart, J.S. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin. Cancer Res., 2001, 7(2), 243-254.
[60]
Dams, E.T.; Laverman, P.; Oyen, W.J.; Storm, G.; Scherphof, G.L.; van Der Meer, J.W.; Corstens, F.H.; Boerman, O.C. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J. Pharmacol. Exp. Ther., 2000, 292(3), 1071-1079.
[61]
Ishida, T.; Maeda, R.; Ichihara, M.; Irimura, K.; Kiwada, H. Accelerated clearance of PEGylated liposomes in rats after repeated injections. J. Control. Release, 2003, 88(1), 35-42.
[62]
Ishida, T.; Harada, M.; Wang, X.Y.; Ichihara, M.; Irimura, K.; Kiwada, H. Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: Effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes. J. Control. Release, 2005, 105(3), 305-317.
[63]
Laverman, P.; Carstens, M.G.; Boerman, O.C.; Dams, E.T.; Oyen, W.J.; van Rooijen, N.; Corstens, F.H.; Storm, G. Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J. Pharmacol. Exp. Ther., 2001, 298(2), 607-612.
[64]
Hossen, M.N.; Kajimoto, K.; Tatsumi, R.; Hyodo, M.; Harashima, H. Comparative assessments of crucial factors for a functional ligand-targeted nanocarrier. J. Drug Target., 2014, 22(7), 600-609.
[65]
Carlsson, J.; Kullberg, E.B.; Capala, J.; Sjöberg, S.; Edwards, K.; Gedda, L. Ligand liposomes and boron neutron capture therapy. J. Neurooncol., 2003, 62(1-2), 47-59.
[66]
Steichen, S.D.; Caldorera-Moore, M.; Peppas, N.A. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci., 2013, 48(3), 416-427.
[67]
Park, J.W. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res., 2002, 4(3), 95-99.
[68]
Park, J.W.; Hong, K.; Carter, P.; Asgari, H.; Guo, L.Y.; Keller, G.A.; Wirth, C.; Shalaby, R.; Kotts, C.; Wood, W.I. Development of anti-p185HER2 immunoliposomes for cancer therapy. Proc. Natl. Acad. Sci. USA, 1995, 92(5), 1327-1331.
[69]
Kirpotin, D.; Park, J.W.; Hong, K.; Zalipsky, S.; Li, W.L.; Carter, P.; Benz, C.C.; Papahadjopoulos, D. Sterically stabilized anti-HER2 immunoliposomes: Design and targeting to human breast cancer cells in vitro. Biochemistry, 1997, 36(1), 66-75.
[70]
Yuan, M.; Qiu, Y.; Zhang, L.; Gao, H.; He, Q. Targeted delivery of transferrin and TAT co-modified liposomes encapsulating both paclitaxel and doxorubicin for melanoma. Drug Deliv., 2016, 23(4), 1171-1183.
[71]
Tang, J.; Zhang, L.; Liu, Y.; Zhang, Q.; Qin, Y.; Yin, Y.; Yuan, W.; Yang, Y.; Xie, Y.; Zhang, Z.; He, Q. Synergistic targeted delivery of payload into tumor cells by dual-ligand liposomes co-modified with cholesterol anchored transferrin and TAT. Int. J. Pharm., 2013, 454(1), 31-40.
[72]
Wang, R.H.; Cao, H.M.; Tian, Z.J.; Jin, B.; Wang, Q.; Ma, H.; Wu, J. Efficacy of dual-functional liposomes containing paclitaxel for treatment of lung cancer. Oncol. Rep., 2015, 33(2), 783-791.
[73]
Sharma, G.; Modgil, A.; Layek, B.; Arora, K.; Sun, C.; Law, B.; Singh, J. Cell penetrating peptide tethered bi-ligand liposomes for delivery to brain in vivo: Biodistribution and transfection. J. Control. Release, 2013, 167(1), 1-10.
[74]
ClinicalTrials.gov registry. Study of MBP-426 in patients with
second line gastric, gastroesophageal, or esophageal adenocarcinoma. US Nat. Lib. Med. , 2014.
[75]
van der Meel, R.; Vehmeijer, L.J.C.; Kok, R.J.; Storm, G.; van Gaal, E.V.B. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: Current Status. In: Intracellular Delivery III: Market Entry Barriers of Nanomedicines; Prokop, A.; Weissig, V., Eds.; Springer: Switzerland, 2016; pp. 163-200.
[76]
Liu, R.; Xiao, K.; Luo, J.; Lam, K.S. Development of cancer-targeting ligands and ligand-drug conjugates. In: Drug Delivery in Oncology: From Basic Research to Cancer Therapy; Kratz, F.; Senter, P., Eds.; Wiley-VCH: Germany, 2012; pp. 121-168.
[77]
Matsumura, Y.; Gotoh, M.; Muro, K.; Yamada, Y.; Shirao, K.; Shimada, Y.; Okuwa, M.; Matsumoto, S.; Miyata, Y.; Ohkura, H.; Chin, K.; Baba, S.; Yamao, T.; Kannami, A.; Takamatsu, Y.; Ito, K.; Takahashi, K. Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann. Oncol., 2004, 15(3), 517-525.
[81]
Shih, Y-H.; Luo, T-Y.; Chiang, P-F.; Yao, C-J.; Lin, W-J.; Peng, C-L.; Shieh, M-J. EGFR-targeted micelles containing near-infrared dye for enhanced photothermal therapy in colorectal cancer. J. Control. Release, 2017, 258, 196-207.
[82]
Ahn, J.; Miura, Y.; Yamada, N.; Chida, T.; Liu, X.; Kim, A.; Sato, R.; Tsumura, R.; Koga, Y.; Yasunaga, M.; Nishiyama, N.; Matsumura, Y.; Cabral, H.; Kataoka, K. Antibody fragment-conjugated polymeric micelles incorporating platinum drugs for targeted therapy of pancreatic cancer. Biomaterials, 2015, 39, 23-30.
[83]
Cui, M.Y.; Dong, Z.; Cai, H.; Huang, K.; Liu, Y.; Fang, Z.; Li, X.; Luo, Y. Folate-targeted polymeric micelles loaded with superparamagnetic iron oxide as a contrast agent for magnetic resonance imaging of a human tongue cancer cell line. Mol. Med. Rep., 2017, 16(5), 7597-7602.
[84]
Wu, G.; Barth, R.F.; Yang, W.; Chatterjee, M.; Tjarks, W.; Ciesielski, M.J.; Fenstermaker, R.A. Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjug. Chem., 2004, 15(1), 185-194.
[85]
Poh, S.; Putt, K.S.; Low, P.S. Folate-targeted dendrimers selectively accumulate at sites of inflammation in mouse models of ulcerative colitis and atherosclerosis. Biomacromolecules, 2017, 18(10), 3082-3088.
[86]
Skyba, D.M.; Price, R.J.; Linka, A.Z.; Skalak, T.C.; Kaul, S. Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue. Circulation, 1998, 98(4), 290-293.
[87]
Ta, T.; Porter, T.M. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J. Control. Release, 2013, 169(1-2), 112-125.
[88]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[89]
Kneidl, B.; Peller, M.; Winter, G.; Lindner, L.H.; Hossann, M. Thermosensitive liposomal drug delivery systems: State of the art review. Int. J. Nanomedicine, 2014, 9, 4387-4398.
[90]
Forbes, N.A.; Zasadzinski, J.A. Localized photothermal heating of temperature sensitive liposomes. Biophys. J., 2010, 98(3), 274a.
[91]
de la Rica, R.; Aili, D.; Stevens, M.M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev., 2012, 64(11), 967-978.
[92]
He, X.; Li, J.; An, S.; Jiang, C. pH-sensitive drug-delivery systems for tumor targeting. Ther. Deliv., 2013, 4(12), 1499-1510.
[93]
Ellens, H. Bentz, J.; Szoka, F.C. H+- and Ca2+-induced fusion and destabilization of liposomes. Biochemistry, 1985, 24(13), 3099-3106.
[94]
Ferreira, D.S.; Lopes, S.C.; Franco, M.S.; Oliveira, M.C. pH-sensitive liposomes for drug delivery in cancer treatment. Ther. Deliv., 2013, 4(9), 1099-1123.
[95]
Yavlovich, A.; Singh, A.; Blumenthal, R.; Puri, A. A novel class of phototriggerable liposomes containing DPPC: DC (8,9) PC as vehicles for delivery of doxorubicin to cells. Biochim. Biophys. Acta, 2011, 1808(1), 117-126.
[96]
Pradhan, P.; Giri, J.; Rieken, F.; Koch, C.; Mykhaylyk, O.; Döblinger, M.; Banerjee, R.; Bahadur, D.; Plank, C. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J. Control. Release, 2010, 142(1), 108-121.
[97]
Jain, A.; Tiwari, A.; Verma, A.; Jain, S.K. Ultrasound-based triggered drug delivery to tumors. Drug Deliv. Transl. Res., 2018, 8(1), 150-164.
[98]
Dromi, S.; Frenkel, V.; Luk, A.; Traughber, B.; Angstadt, M.; Bur, M.; Poff, J.; Xie, J.; Libutti, S.K.; Li, K.C.; Wood, B.J. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin. Cancer Res., 2007, 13(9), 2722-2727.
[99]
Ranjan, A.; Jacobs, G.C.; Woods, D.L.; Negussie, A.H.; Partanen, A.; Yarmolenko, P.S.; Gacchina, C.E.; Sharma, K.V.; Frenkel, V.; Wood, B.J.; Dreher, M.R. Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J. Control. Release, 2012, 158(3), 487-494.
[100]
Lyon, P.C.; Griffiths, L.F.; Lee, J.; Chung, D.; Carlisle, R.; Wu, F.; Middleton, M.R.; Gleeson, F.V.; Coussios, C.C. Clinical trial protocol for TARDOX: A phase I study to investigate the feasibility of targeted release of lyso-thermosensitive liposomal doxorubicin (ThermoDox®) using focused ultrasound in patients with liver tumours. J. Ther. Ultrasound, 2017, 5, 28.
[101]
Lyon, P.C.; Gray, M.D.; Mannaris, C.; Folkes, L.K.; Stratford, M.; Campo, L.; Chung, D.Y.F.; Scott, S.; Anderson, M.; Goldin, R.; Carlisle, R.; Wu, F.; Middleton, M.R.; Gleeson, F.V.; Coussios, C.C. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumors (TARDOX): A single-centre, open-label, phase 1 trial. Lancet Oncol., 2018, 19(8), 1027-1039.
[102]
Pitt, W.G.; Husseini, G.A.; Staples, B.J. Ultrasonic drug delivery – a general review. Expert Opin. Drug Deliv., 2004, 1(1), 37-56.
[103]
Smith, N.B. Perspectives on transdermal ultrasound mediated drug delivery. Int. J. Nanomedicine, 2007, 2(4), 585-594.
[104]
Ahmed, S.E.; Martins, A.M.; Husseini, G.A. The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes. J. Drug Target., 2015, 23(1), 16-42.
[105]
Staples, B.J.; Roeder, B.J.; Husseini, G.A.; Badamjav, O.; Schaalje, G.B.; Pitt, W.G. Role of frequency and mechanical index in ultrasonic-enhanced chemotherapy in rats. Cancer Chemother. Pharmacol., 2009, 64(3), 593-600.
[106]
Ueda, H.; Mutoh, M.; Seki, T.; Kobayashi, D.; Morimoto, Y. Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery. Biol. Pharm. Bull., 2009, 32(5), 916-920.
[107]
Stringham, S.B.; Viskovska, M.A.; Richardson, E.S.; Ohmine, S.; Husseini, G.A.; Murray, B.K.; Pitt, W.G. Over-pressure suppresses ultrasonic-induced drug uptake. Ultrasound Med. Biol., 2009, 35(3), 409-415.
[108]
Yang, F.; Gu, N.; Chen, D.; Xi, X.; Zhang, D.; Li, Y.; Wu, J. Experimental study on cell self-sealing during sonoporation. J. Control. Release, 2008, 131(3), 205-210.
[109]
Karshafian, R.; Bevan, P.D.; Williams, R.; Samac, S.; Burns, P.N. Sonoporation by ultrasound-activated microbubble contrast agents: Effect of acoustic exposure parameters on cell membrane permeability and cell viability. Ultrasound Med. Biol., 2009, 35(5), 847-860.
[110]
Rapoport, N. Drug-loaded perfluorocarbon nanodroplets for ultrasound-mediated drug delivery. Adv. Exp. Med. Biol., 2016, 880, 221-241.
[111]
Nomikou, N.; McHale, A.P. Exploiting ultrasound-mediated effects in delivering targeted, site-specific cancer therapy. Cancer Lett., 2010, 296(2), 133-143.
[112]
Park, D.; Park, H.; Seo, J.; Lee, S. Sonophoresis in transdermal drug delivery. Ultrasonics, 2014, 54(1), 56-65.
[113]
Apfel, R.E.; Holland, C.K. Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med. Biol., 1991, 17(2), 179-185.
[114]
Williams, J.B.; Buchanan, C.M.; Husseini, G.A.; Pitt, W.G. Cytosolic delivery of doxorubicin from liposomes to multidrug resistant cells via the vaporization of perfluoropentane droplets. J. Nanomed. Res., 2017, 5(4), 00122.
[115]
Pitt, W.G.; Singh, R.N.; Perez, K.X.; Husseini, G.A.; Jack, D.R. Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: a mathematical model. Ultrason. Sonochem., 2014, 21(2), 879-891.
[116]
Singh, R.; Husseini, G.A.; Pitt, W.G. Phase Transitions of Nanoemulsions using ultrasound: Experimental observations. Ultrason. Sonochem., 2012, 19(5), 1120-1125.
[117]
Husseini, G.A.; Pitt, W.G.; Javadi, M. Investigating the stability of eLiposomes at elevated temperatures. Technol. Cancer Res. Treat., 2015, 14(4), 379-382.
[118]
Husseini, G.A.; Pitt, W.G.; Williams, J.B.; Javadi, M. Investigating the release mechanism of calcein from eLiposomes at higher temperatures. J. Coll. Sci. Biotechnol., 2014, 3(3), 239-244.
[119]
Salkho, N.M.; Paul, V.; Kawak, P.; Vitor, R.F.; Martins, A.M.; Al Sayah, M.; Husseini, G.A. Ultrasonically controlled estrone-modified liposomes for estrogen-positive breast cancer therapy. Artif. Cells Nanomed. Biotechnol., 2018, 46(Suppl. 2), 462-472.
[120]
Salkho, N.M.; Turki, R.Z.; Guessoum, O.; Martins, A.M.; Vitor, R.F.; Husseini, G.A. Liposomes and ultrasound as a promising drug delivery system in cancer treatment. Curr. Mol. Med., 2017, 17(10), 668-688.
[121]
Ahmed, S.E.; Moussa, H.G.; Martins, A.M.; Al-Sayah, M.; Husseini, G.A. Effect of pH, ultrasound frequency and power density on the release of calcein from stealth liposome. Eur. J. Nanomed., 2016, 8(1), 31-43.
[122]
Moussa, H.G.; Husseini, G.A.; Abdel-Jabbar, N.M.; Ahmad, S.E. The use of model predictive control and artificial neural networks to optimize the ultrasonic release of a model drug from liposomes. IEEE Trans. Nanobioscience, 2017, 16(3), 149-156.