Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Bioactive Peptides Sensitize Cells to Anticancer Effects of Oxaliplatin in Human Colorectal Cancer Xenografts in Nude Mice

Author(s): Xian Li, Long Xia, Xiaohui Ouyang, Qimuge Suyila, Liya Su and Xiulan Su*

Volume 26, Issue 7, 2019

Page: [512 - 522] Pages: 11

DOI: 10.2174/0929866526666190405124955

Price: $65

Abstract

Background: Despite new agent development and short-term benefits in patients with Colorectal Cancer (CRC), metastatic CRC cure rates have not improved due to high rates of oxaliplatin resistance and toxicity. There is an urgent need for effective tools to prevent and treat CRC and reduce morbidity and mortality of CRC patients. Exploring the effects of bioactive peptides on the antitumor to CRC was of vital importance to the clinical application.

Objective: This study aimed to investigate the therapeutic impact of Anticancer Bioactive Peptides (ACBP) on anticancer effect of oxaliplatin (LOHP) in human colorectal cancer xenografts models in nude mice.

Methods: HCT-116 cells were cultured in vitro via CCK-8 assays and the absorbance was measured at 450 nm. Apoptosis and cell cycle were assessed by Flow Cytometry (FCM) in vitro. HCT-116 human colorectal cancer cells inoculated subcutaneously in nude mice of treatment with PBS (GG), ACBP, LOHP, ACBP+LOHP (A+L) in vivo. The quality of life was assessed by dietary amount of nude mice, the weight of nude mice, inhibition rates, tumor weight and tumor volume. Immunohistochemistry and RT-qPCR method was conducted to determine the levels of apoptosisregulating proteins/genes in transplanted tumors.

Results: ACBP induced substantial reductions in viable cell numbers and apoptosis of HCT116 cells in combined with LOHP in vitro. Compared with the control GG group, ACBP combined low dose oxaliplatin (U) group demonstrated significantly different tumor volume, the rate of apoptosis, the expression levels of Cyt-C, caspase-3,8,9 proteins and corresponding RNAs (P<0.05). The expression of pro-apoptotic proteins in the cytoplasm around the nucleus was significantly enhanced by ACBP. Short term intermittent use of ACBP alone indicted a certain inhibitory effect on tumor growth, and improve the quality of life of tumor bearing nude mice.

Conclusion: ACBP significantly increased the anti-cancer responses of low dose oxaliplatin (L-LOHP), thus, significantly improving the quality of life of tumor-bearing nude mice.

Keywords: Anticancer peptide activity, oxaliplatin, colorectal cancer, nude mouse xenograft, bioactive peptides apoptosis, tumors.

Graphical Abstract

[1]
Bhat, Z.I.; Kumar, B.; Bansal, S.; Naseem, A.; Tiwari, R.R.; Wahabi, K.; Sharma, G.D.; Rizvi, M.M.A. Association of PARK2 promoter polymorphisms and methylation with colorectal cancer in North Indian population. Gene, 2019, 682, 25-32. [http://dx.doi.org/10.1016/j.gene.2018.10.010]. [PMID: 30296568].
[2]
Jian, Y.S.; Chen, C.W.; Lin, C.A.; Yu, H.P.; Lin, H.Y.; Liao, M.Y.; Wu, S.H.; Lin, Y.F.; Lai, P.S. Hyaluronic acid-nimesulide conjugates as anticancer drugs against CD44-overexpressing HT-29 colorectal cancer in vitro and in vivo. Int. J. Nanomedicine, 2017, 12, 2315-2333. [http://dx.doi.org/10.2147/IJN.S120847]. [PMID: 28392690].
[3]
Chen, W.; Zheng, R.; Zhang, S.; Zhao, P.; Zeng, H.; Zou, X.; He, J. Annual report on status of cancer in China, 2010. Chin. J. Cancer Res., 2014, 26(1), 48-58. [http://dx.doi.org/10.1007/BF02997493]. [PMID: 24653626].
[4]
Chang, Y.T.; Tseng, H.C.; Huang, C.C.; Chen, Y.P.; Chiang, H.C.; Chou, F.P. Relative down-regulation of apoptosis and autophagy genes in colorectal cancer. Eur. J. Clin. Invest., 2011, 41(1), 84-92. [http://dx.doi.org/10.1111/j.1365-2362.2010.02383.x]. [PMID: 20880300].
[5]
Nosher, J.L.; Ahmed, I.; Patel, A.N.; Gendel, V.; Murillo, P.G.; Moss, R.; Jabbour, S.K. Non-operative therapies for colorectal liver metastases. J. Gastrointest. Oncol., 2015, 6(2), 224-240. [https://doi.org/10.3978/j.issn.2078-6891.2014.065]. [PMID: 25830041].
[6]
Li, J.; Hou, N.; Faried, A.; Tsutsumi, S.; Kuwano, H. Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. Eur. J. Cancer, 2010, 46(10), 1900-1909. [http://dx.doi.org/10.1016/j.ejca.2010.02.021]. [PMID: 20231086].
[7]
Longley, D.B.; Allen, W.L.; Johnston, P.G. Drug resistance, predictive markers and pharmacogenomics in colorectal cancer. Biochim. Biophys. Acta, 2006, 1766(2), 184-196. [https://doi.org/10.1016/j.bbcan.2006.08.001]. [PMID: 16973289].
[8]
Su, L.; Xu, G.; Shen, J.; Tuo, Y.; Zhang, X.; Jia, S.; Chen, Z.; Su, X. Anticancer bioactive peptide suppresses human gastric cancer growth through modulation of apoptosis and the cell cycle. Oncol. Rep., 2010, 23(1), 3-9. [https://doi.org/10.3892/or_00000599]. [PMID: 19956858].
[9]
Su, X.; Dong, C.; Zhang, J.; Su, L.; Wang, X.; Cui, H.; Chen, Z. Combination therapy of anti-cancer bioactive peptide with Cisplatin decreases chemotherapy dosing and toxicity to improve the quality of life in xenograft nude mice bearing human gastric cancer. Cell Biosci., 2014, 4(1), 7. [http://dx.doi.org/10.1186/2045-3701-4-7]. [PMID: 24507386].
[10]
Nishimura, J.; Satoh, T.; Fukunaga, M.; Takemoto, H.; Nakata, K.; Ide, Y.; Fukuzaki, T.; Kudo, T.; Miyake, Y.; Yasui, M.; Morita, S.; Sakai, D.; Uemura, M.; Hata, T.; Takemasa, I.; Mizushima, T.; Ohno, Y.; Yamamoto, H.; Sekimoto, M.; Nezu, R.; Doki, Y.; Mori, M. Combination antiemetic therapy with aprepitant/fosaprepitant in patients with colorectal cancer receiving oxaliplatin-based chemotherapy (SENRI trial): A multicentre, randomised, controlled phase 3 trial. Eur. J. Cancer, 2015, 51(10), 1274-1282. [http://dx.doi.org/10.1016/j.ejca.2015.03.024]. [PMID: 25922233].
[11]
Zhu, Y.L.; Lou, J.; Guo, J.Y.; Huang, Z.; Lv, S.W. A meta analysis of cetuximab plus oxaliplatin based chemotherapy regimen for metastatic colorectal cancer. Indian J. Cancer, 2014, 51(Suppl. 3), e113-e116. [http://dx.doi.org/10.4103/0019-509X.154101]. [PMID: 25818736].
[12]
Li, X.; Wu, H.; Ouyang, X.; Zhang, B.; Su, X. New bioactive peptide reduces the toxicity of chemotherapy drugs and increases drug sensitivity. Oncol. Rep., 2017, 38(1), 129-140. [http://dx.doi.org/10.3892/or.2017.5674]. [PMID: 28560442].
[13]
Stacul, F.; Bertolotto, M.; De Gobbis, F.; Calderan, L.; Cioffi, V.; Romano, A.; Zanconati, F.; Cova, M.A.U.S.U.S. colour-Doppler US and fine-needle aspiration biopsy in the diagnosis of thyroid nodules. Radiol. Med. (Torino), 2007, 112(5), 751-762. [http://dx.doi.org/10.1007/s11547-007-0178-9]. [PMID: 17657415].
[14]
Jin, Z.; El-Deiry, W.S. Overview of cell death signaling pathways. Cancer Biol. Ther., 2005, 4(2), 139-163. [http://dx.doi.org/10.4161/cbt.4.2.1508]. [PMID: 15725726].
[15]
Mustapha, N.; Pinon, A.; Limami, Y.; Simon, A.; Ghedira, K.; Hennebelle, T.; Chekir-Ghedira, L. Chekir- hedira, L. Crataegus azarolus leaves induce anti-proliferative activity, cell cycle arrest and apoptosis in human HT-29 and HCT-116 colorectal cancer cells. J. Cell. Biochem., 2016, 117(5), 1262-1272. [http://dx.doi.org/10.1002/jcb.25416]. [PMID: 26495895].
[16]
Mariño, G.; Niso-Santano, M.; Baehrecke, E.H.; Kroemer, G. Self-consumption: The interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol., 2014, 15(2), 81-94. [http://dx.doi.org/10.1038/nrm3735]. [PMID: 24401948].
[17]
Shimizu, S.; Yoshida, T.; Tsujioka, M.; Arakawa, S. Autophagic cell death and cancer. Int. J. Mol. Sci., 2014, 15(2), 3145-3153. [http://dx.doi.org/10.3390/ijms15023145]. [PMID: 24566140].
[18]
Kim, E.J.; Park, S.Y.; Lee, J.Y.; Park, J.H.Y. Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterol., 2010, 10, 96. [http://dx.doi.org/10.1186/1471-230X-10-96]. [PMID: 20727207].
[19]
Xing, Z.; Yu, L.; Li, X.; Su, X. Anticancer bioactive peptide-3 inhibits human gastric cancer growth by targeting miR-338-5p. Cell Biosci., 2016, 6, 53. [http://dx.doi.org/10.1186/s13578-016-0112-8]. [PMID: 27688872].
[20]
Kelly, C.; Cassidy, J. Chemotherapy in metastatic colorectal cancer. Surg. Oncol., 2007, 16(1), 65-70. [http://dx.doi.org/10.1016/j.suronc.2007.04.006]. [PMID: 17521906].
[21]
Marx, A.; Ströbel, P.; Badve, S.S.; Chalabreysse, L.; Chan, J.K.; Chen, G.; de Leval, L.; Detterbeck, F.; Girard, N.; Huang, J.; Kurrer, M.O.; Lauriola, L.; Marino, M.; Matsuno, Y.; Molina, T.J.; Mukai, K.; Nicholson, A.G.; Nonaka, D.; Rieker, R.; Rosai, J.; Ruffini, E.; Travis, W.D. ITMIG consensus statement on the use of the WHO histological classification of thymoma and thymic carcinoma: Refined definitions, histological criteria, and reporting. J. Thorac. Oncol., 2014, 9(5), 596-611. [http://dx.doi.org/10.1097/JTO.0000000000000154]. [PMID: 24722150].
[22]
Yu, L.; Yang, L.; An, W.; Su, X. Anticancer bioactive peptide-3 inhibits human gastric cancer growth by suppressing gastric cancer stem cells. J. Cell. Biochem., 2014, 115(4), 697-711. [http://dx.doi.org/10.1002/jcb.24711]. [PMID: 24214799].

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy