[1]
Press, E.M.; Porter, R.R.; Cebra, J. The isolation and properties of a proteolytic enzyme, cathepsin D, from bovine spleen. Biochem. J., 1960, 74(3), 501-514. [http://dx.doi.org/10.1042/bj0740501]. [PMID: 14434765].
[2]
Fusek, M.; Vetvicka, V. Dual role of cathepsin D: Ligand and protease. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2005, 149(1), 43-50. [http://dx.doi.org/10.5507/bp.2005.003]. [PMID: 16170387].
[3]
Crabtree, D.; Dodson, M.; Ouyang, X.; Boyer-Guittaut, M.; Liang, Q.; Ballestas, M.E.; Fineberg, N.; Zhang, J. Over-expression of an inactive mutant cathepsin D increases endogenous alpha-synuclein and cathepsin B activity in SH-SY5Y cells. J. Neurochem., 2014, 128(6), 950-961. [http://dx.doi.org/10.1111/jnc.12497]. [PMID: 24138030].
[4]
Di Domenico, F.; Tramutola, A.; Perluigi, M. Cathepsin D as a therapeutic target in Alzheimer’s disease. Expert Opin. Ther. Targets, 2016, 20(12), 1393-1395. [http://dx.doi.org/10.1080/14728222.2016.1252334]. [PMID: 27805462].
[5]
Rojo, L.; García-Carreño, F.; de Los Angeles Navarrete del Toro, M. Cold-adapted digestive aspartic protease of the clawed lobsters Homarus americanus and Homarus gammarus: Biochemical characterization. Mar. Biotechnol. (NY), 2013, 15(1), 87-96. [http://dx.doi.org/10.1007/s10126-012-9461-4]. [PMID: 22648335].
[6]
Xiao, R.; Zhang, Z.; Wang, H.; Han, Y.; Gou, M.; Li, B.; Duan, D.; Wang, J.; Liu, X.; Li, Q. Identification and characterization of a cathepsin D homologue from lampreys (Lampetra japonica). Dev. Comp. Immunol., 2015, 49(1), 149-156. [http://dx.doi.org/10.1016/j.dci.2014.10.014]. [PMID: 25450905].
[7]
Carter, C.W.; Sweet, R.M. Macromolecular Crystallography. In: Gulf
Professional Publishing: Houston, Texas; , 1997.
[8]
Nelson, D.; Cox, M. Lehninger Principles of Biochemistry, International Ed.; Macmillan Learning: New York, NY, 2017.
[9]
Zolfagharzadeh, M.; Pirouzi, M.; Asoodeh, A.; Saberi, M.R.; Chamani, J. A comparison investigation of DNP-binding effects to HSA and HTF by spectroscopic and molecular modeling techniques. J. Biomol. Struct. Dyn., 2014, 32(12), 1936-1952. [http://dx.doi.org/10.1080/07391102.2013.843062]. [PMID: 24125112].
[10]
Sreerama, N.; Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem., 2000, 287(2), 252-260. [http://dx.doi.org/10.1006/abio.2000.4880]. [PMID: 11112271].
[11]
Woody, R.W. Circular dichroism. Methods Enzymol., 1995, 246, 34-71. [http://dx.doi.org/10.1016/0076-6879(95)46006-3]. [PMID: 7538625].
[12]
Tousi, S.H.; Saberi, M.R.; Chamani, J. Comparing the interaction of cyclophosphamide monohydrate to human serum albumin as opposed to holo-transferrin by spectroscopic and molecular modeling methods: Evidence for allocating the binding site. Protein Pept. Lett., 2010, 17(12), 1524-1535. [http://dx.doi.org/10.2174/0929866511009011524]. [PMID: 20937032].
[13]
Greenfield, N.J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protoc., 2006, 1(6), 2527-2535. [http://dx.doi.org/10.1038/nprot.2006.204]. [PMID: 17406506].
[14]
Baldwin; Bhat, T.N.; Gulnik, S.; Hosur, M.V.; Sowder, R.C.; Cachau, R.E.; Collins, J.; Silva, A.M.; Erickson, J.W. Crystal structures of native and inhibited forms of human cathepsin D: Implications for lysosomal targeting and drug design. Proc. Natl. Acad. Sci. USA, 1993, 90(14), 6796-6800. [https://dx.doi.org/10.1073%2Fpnas.90.14.6796]. [PMID: 8393577].
[15]
Grädler, U.; Czodrowski, P.; Tsaklakidis, C.; Klein, M.; Werkmann, D.; Lindemann, S.; Maskos, K.; Leuthner, B. Structure-based optimization of non-peptidic Cathepsin D inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(17), 4141-4150. [http://dx.doi.org/10.1016/j.bmcl.2014.07.054]. [PMID: 25086681].
[16]
Barker, P.L.; Gibson, R. Observations on the feeding mechanism, structure of the gut, and digestive physiology of the European lobster Homarus gammarus (L.) (Decapoda: Nephropidae). J. Exp. Mar. Biol. Ecol., 1977, 26(3), 297-324. [http://dx.doi.org/10.1016/0022-0981(77)90089-2].
[17]
Rojo, L.; Sotelo-Mundo, R.; García-Carreño, F.; Gráf, L. Isolation, biochemical characterization, and molecular modeling of American lobster digestive cathepsin D1. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2010, 157(4), 394-400. [http://dx.doi.org/10.1016/j.cbpb.2010.08.009]. [PMID: 20817002].
[18]
Komai, T.; Kawabata, C.; Amano, M.; Lee, B.R.; Ichishima, E. Todarepsin, a new cathepsin D from hepatopancreas of Japanese common squid (Todarodes pacificus). Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2004, 137(3), 373-382. [http://dx.doi.org/10.1016/j.cbpc.2004.01.006]. [PMID: 15050524].
[19]
Gildberg, A. Purification and characterisation of cathepsin D from the digestive gland of the pelagic squid Todarodes sagittatus. J. Sci. Food Agric., 1987, 39(1), 85-94. [http://dx.doi.org/10.1002/jsfa.2740390110].
[20]
Venugopal, A.; Siva Kumar, N. Biochemical characterization of cathepsin D from the mussel Lamellidens corrianus. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2014, 169, 25-30. [http://dx.doi.org/10.1016/j.cbpb.2013.12.003]. [PMID: 24365170].
[21]
Gudmundsdóttir, Á.; Fox, J.W.; Chlebowski, J.F.; Craik, C.S. Characteristics, protein engineering and applications of psychrophilic marine proteinases from Atlantic cod. Studies in Organic Chemistry., 1993, 47, 205-214. [https://doi.org/10.1016/B978-0-444-89372-7.50027-0].
[22]
Balti, R.; Hmidet, N.; Jellouli, K.; Nedjar-Arroume, N.; Guillochon, D.; Nasri, M. Cathepsin D from the hepatopancreas of the cuttlefish (Sepia officinalis): Purification and characterization. J. Agric. Food Chem., 2010, 58(19), 10623-10630. [http://dx.doi.org/10.1021/jf102233d]. [PMID: 20843039].
[23]
Lee, A.Y.; Gulnik, S.V.; Erickson, J.W. Conformational switching in an aspartic proteinase. Nat. Struct. Biol., 1998, 5(10), 866-871. [http://dx.doi.org/10.1038/2306]. [PMID: 9783744].
[24]
Scarborough, P.E.; Guruprasad, K.; Topham, C.; Richo, G.R.; Conner, G.E.; Blundell, T.L.; Dunn, B.M. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling. Protein Sci., 1993, 2(2), 264-276. [http://dx.doi.org/10.1002/pro.5560020215]. [PMID: 8443603].
[25]
Sun, H.; Lou, X.; Shan, Q.; Zhang, J.; Zhu, X.; Zhang, J.; Wang, Y.; Xie, Y.; Xu, N.; Liu, S. Proteolytic characteristics of cathepsin D related to the recognition and cleavage of its target proteins. PLoS One, 2013, 8(6)e65733 [http://dx.doi.org/10.1371/journal.pone.0065733]. [PMID: 23840360].
[26]
Keil, B. Specificity of proteolysis; Springer Science & Business Media: Berlin, 2012, p. 336.
[27]
Gildberg, A. Aspartic proteinases in fishes and aquatic invertebrates. Comp. Biochem. Physiol. B, 1988, 91(3), 425-435. [http://dx.doi.org/10.1016/0305-0491(88)90002-8]. [PMID: 3148385].
[28]
Vetri, V.; Militello, V. Thermal induced conformational changes involved in the aggregation pathways of beta-lactoglobulin. Biophys. Chem., 2005, 113(1), 83-91. [http://dx.doi.org/10.1016/j.bpc.2004.07.042]. [PMID: 15617813].
[29]
Celis-Guerrero, L.E.; García-Carreño, F.L.; del Toro, M.A.N. Characterization of proteases in the digestive system of spiny lobster (Panulirus interruptus). Mar. Biotechnol. (NY), 2004, 6(3), 262-269. [http://dx.doi.org/10.1007/s10126-003-0032-6]. [PMID: 15136918].
[30]
Wang, T.; Wang, Y-Q.; Su, Y-L.; Jiang, Z-Y. Antifouling ultrafiltration membrane composed of polyethersulfone and sulfobetaine copolymer. J. Membr. Sci., 2006, 280(1-2), 343-350. [http://dx.doi.org/10.1016/j.memsci.2006.01.038].
[31]
Serna-Cock, L.; Velásquez, M.; Ayala, A.A. Efecto de la ultrafiltración sobre las propiedades reológicas de gelatina comestible de origen bovino. Inf. Tecnol., 2010, 21(6), 91-102. [http://dx.doi.org/10.4067/S0718-07642010000600011].
[32]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685. [http://dx.doi.org/10.1038/227680a0]. [PMID: 5432063].
[33]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254. [http://dx.doi.org/10.1016/0003-2697(76)90527-3]. [PMID: 942051].
[34]
Barrett, A.J.; Cathepsin, D.; Cathepsin, D. Purification of isoenzymes from human and chicken liver. Biochem. J., 1970, 117(3), 601-607. [http://dx.doi.org/10.1042/bj1170601]. [PMID: 5419752].
[35]
Yasuda, Y.; Kageyama, T.; Akamine, A.; Shibata, M.; Kominami, E.; Uchiyama, Y.; Yamamoto, K. Characterization of new fluorogenic substrates for the rapid and sensitive assay of cathepsin E and cathepsin D. J. Biochem., 1999, 125(6), 1137-1143. [http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022396]. [PMID: 10348917].
[36]
Kelly, S.M.; Jess, T.J.; Price, N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta (BBA)-. Proteins and Proteomics, 2005, 1751(2), 119-139. [http://dx.doi.org/10.1016/j.bbapap.2005.06.005].
[37]
Whitmore, L.; Wallace, B.A. Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers, 2008, 89(5), 392-400. [http://dx.doi.org/10.1002/bip.20853]. [PMID: 17896349].
[38]
Louis-Jeune, C.; Andrade-Navarro, M.A.; Perez-Iratxeta, C. Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins, 2012, 80(2), 374-381. [http://dx.doi.org/10.1002/prot.23188]. [PMID: 22095872].
[39]
Raison, J.K. The influence of temperature-induced phase changes on the kinetics of respiratory and other membrane-associated enzyme systems. In: Membrane structure and mechanisms of biological energy transduction; Springer: Berlin, 1972; pp. 559-583. [http://dx.doi.org/10.1007/978-1-4684-2016-6_30]
[40]
Holzwarth, G.; Doty, P. The ultraviolet circular dichroism of polypeptides. J. Am. Chem. Soc., 1965, 87(2), 218-228. [http://dx.doi.org/10.1021/ja01080a015]. [PMID: 14228459].
[41]
David, N.L.; Cox, M. Lehninger. Principios de bioquímica: España , 2015.
[42]
Sanei, H.; Asoodeh, A.; Hamedakbari-Tusi, S.; Chamani, J. Multispectroscopic investigations of aspirin and colchicine interactions with human hemoglobin: binary and ternary systems. J. Solution Chem., 2011, 40(11), 1905-1931. [http://dx.doi.org/10.1007/s10953-011-9766-3].
[43]
Tilton, R.F., Jr; Dewan, J.C.; Petsko, G.A. Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry, 1992, 31(9), 2469-2481. [http://dx.doi.org/10.1021/bi00124a006]. [PMID: 1547232].
[44]
Kjaergaard, M.; Nørholm, A.B.; Hendus-Altenburger, R.; Pedersen, S.F.; Poulsen, F.M.; Kragelund, B.B. Temperature-dependent structural changes in intrinsically disordered proteins: Formation of α-helices or loss of polyproline II? Protein Sci., 2010, 19(8), 1555-1564. [http://dx.doi.org/10.1002/pro.435]. [PMID: 20556825].
[45]
Lees, J.G.; Miles, A.J.; Wien, F.; Wallace, B.A. A reference database for circular dichroism spectroscopy covering fold and secondary structure space. Bioinformatics, 2006, 22(16), 1955-1962. [http://dx.doi.org/10.1093/bioinformatics/btl327]. [PMID: 16787970].
[46]
Cantor, C.R.; Schimmel, P.R. Biophysical chemistry, part III: The
behaviour of biological macromolecules. San Francisco, CA, , 1980.
[47]
Pace, C.N.; Scholtz, J.M. A helix propensity scale based on experimental studies of peptides and proteins. Biophys. J., 1998, 75(1), 422-427. [http://dx.doi.org/10.1016/S0006-3495(98)77529-0]. [PMID: 9649402].
[48]
Sengupta, D.; Behera, R.N.; Smith, J.C.; Ullmann, G.M. The α helix dipole: Screened out? Structure, 2005, 13(6), 849-855. [http://dx.doi.org/10.1016/j.str.2005.03.010]. [PMID: 15939016].
[49]
Qin, Z.; Buehler, M.J. Molecular dynamics simulation of the α-helix to β-sheet transition in coiled protein filaments: Evidence for a critical filament length scale. Phys. Rev. Lett., 2010, 104(19)198304 [http://dx.doi.org/10.1103/PhysRevLett.104.198304]. [PMID: 20867006].
[50]
Ding, F.; Borreguero, J.M.; Buldyrey, S.V.; Stanley, H.E.; Dokholyan, N.V. Mechanism for the α-helix to β-hairpin transition. Proteins, 2003, 53(2), 220-228. [http://dx.doi.org/10.1002/prot.10468]. [PMID: 14517973].
[51]
Barrow, C.J.; Yasuda, A.; Kenny, P.T.M.; Zagorski, M.G. Solution conformations and aggregational properties of synthetic amyloid β-peptides of Alzheimer’s disease. Analysis of circular dichroism spectra. J. Mol. Biol., 1992, 225(4), 1075-1093. [http://dx.doi.org/10.1016/0022-2836(92)90106-T]. [PMID: 1613791].
[52]
Bierzynski, A.; Kim, P.S.; Baldwin, R.L. A salt bridge stabilizes the helix formed by isolated C-peptide of RNase A. Proc. Natl. Acad. Sci. USA, 1982, 79(8), 2470-2474. [http://dx.doi.org/10.1073/pnas.79.8.2470]. [PMID: 6283528].
[53]
Macdonald, B.; McCarley, S.; Noeen, S.; van Giessen, A.E. Protein-protein interactions affect alpha helix stability in crowded environments. J. Phys. Chem. B, 2015, 119(7), 2956-2967. [http://dx.doi.org/10.1021/jp512630s]. [PMID: 25591002].
[54]
Cabra, V.; Arreguin, R.; Vazquez-Duhalt, R.; Farres, A. Effect of temperature and pH on the secondary structure and processes of oligomerization of 19 kDa alpha-zein. Biochim. Biophys. Acta, 2006, 1764(6), 1110-1118. [http://dx.doi.org/10.1016/j.bbapap.2006.04.002]. [PMID: 16765112].
[55]
Yadav, S.; Gupta, S.; Saxena, J.K. Monitoring thermal and chemical unfolding of Brugia malayi calreticulin using fluorescence and Circular Dichroism spectroscopy. Int. J. Biol. Macromol., 2017, 102, 986-995. [http://dx.doi.org/10.1016/j.ijbiomac.2017.04.053]. [PMID: 28416397].
[56]
Nelson, R.J. An introduction to behavioral endocrinology, 5th ed; Sinauer Associates: Sunderland, MA, 2005, p. 722.
[57]
Varley, P.G.; Pain, R.H. Relation between stability, dynamics and enzyme activity in 3-phosphoglycerate kinases from yeast and Thermus thermophilus. J. Mol. Biol., 1991, 220(2), 531-538. [http://dx.doi.org/10.1016/0022-2836(91)90028-5]. [PMID: 1856872].
[58]
Tello-Solis, S.R.; Hernandez-Arana, A. Effect of irreversibility on the thermodynamic characterization of the thermal denaturation of Aspergillus saitoi acid proteinase. Biochem. J., 1995, 311(Pt 3), 969-974. [http://dx.doi.org/10.1042/bj3110969]. [PMID: 7487958].
[59]
Arroyo-Reyna, A.; Hernández-Arana, A. The thermal denaturation of stem bromelain is consistent with an irreversible two-state model. Biochim. Biophys. Acta, 1995, 1248(2), 123-128. [http://dx.doi.org/10.1016/0167-4838(95)00014-L]. [PMID: 7748893].
[60]
Tello-Solís, S.R.; Romero-García, B. Thermal denaturation of porcine pepsin: A study by circular dichroism. Int. J. Biol. Macromol., 2001, 28(2), 129-133. [http://dx.doi.org/10.1016/S0141-8130(00)00154-9]. [PMID: 11164229].
[61]
Bull, H.B.; Breese, K. Thermal transitions of proteins. Arch. Biochem. Biophys., 1973, 156(2), 604-612. [http://dx.doi.org/10.1016/0003-9861(73)90311-1]. [PMID: 4352419].
[62]
Sinha, N.; Smith-Gill, S.J. Electrostatics in protein binding and function. Curr. Protein Pept. Sci., 2002, 3(6), 601-614. [http://dx.doi.org/10.2174/1389203023380431]. [PMID: 12470214].
[63]
Okazaki, K.; Sato, T.; Takano, M. Temperature-enhanced association of proteins due to electrostatic interaction: a coarse-grained simulation of actin-myosin binding. J. Am. Chem. Soc., 2012, 134(21), 8918-8925. [http://dx.doi.org/10.1021/ja301447j]. [PMID: 22559201].
[64]
Xia, Y-L.; Sun, J-H.; Ai, S-M.; Li, Y.; Du, X.; Sang, P.; Yang, L-Q.; Fu, Y-X.; Liu, S-Q. Insights into the role of electrostatics in temperature adaptation: a comparative study of psychrophilic, mesophilic, and thermophilic subtilisin-like serine proteases. RSC Advances, 2018, 8(52), 29698-29713. [http://dx.doi.org/10.1039/C8RA05845H].
[65]
Muñoz, V.; Sanchez-Ruiz, J.M. Exploring protein-folding ensembles: A variable-barrier model for the analysis of equilibrium unfolding experiments. Proc. Natl. Acad. Sci. USA, 2004, 101(51), 17646-17651. [http://dx.doi.org/10.1073/pnas.0405829101]. [PMID: 15591110].
[66]
Bischof, J.C.; He, X. Thermal stability of proteins. Ann. N. Y. Acad. Sci., 2005, 1066(1), 12-33. [http://dx.doi.org/10.1196/annals.1363.003]. [PMID: 16533916].
[67]
Back, J.F.; Oakenfull, D.; Smith, M.B. Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry, 1979, 18(23), 5191-5196. [http://dx.doi.org/10.1021/bi00590a025]. [PMID: 497177].
[68]
Kornblatt, M.J.; Lange, R.; Balny, C. Can monomers of yeast enolase have enzymatic activity? Eur. J. Biochem., 1998, 251(3), 775-780. [http://dx.doi.org/10.1046/j.1432-1327.1998.2510775.x]. [PMID: 9490051].
[69]
Kornblatt, M.J.; Lange, R.; Balny, C. Use of hydrostatic pressure to produce ‘native’ monomers of yeast enolase. Eur. J. Biochem., 2004, 271(19), 3897-3904. [http://dx.doi.org/10.1111/j.1432-1033.2004.04326.x]. [PMID: 15373835].
[70]
Benjwal, S.; Verma, S.; Röhm, K.H.; Gursky, O. Monitoring protein aggregation during thermal unfolding in circular dichroism experiments. Protein Sci., 2006, 15(3), 635-639. [http://dx.doi.org/10.1110/ps.051917406]. [PMID: 16452626].
[71]
Gao, C.; Taylor, J.; Wellner, N.; Byaruhanga, Y.B.; Parker, M.L.; Mills, E.N.; Belton, P.S. Effect of preparation conditions on protein secondary structure and biofilm formation of kafirin. J. Agric. Food Chem., 2005, 53(2), 306-312. [http://dx.doi.org/10.1021/jf0492666]. [PMID: 15656666].
[72]
Tello-Solís, S.R.; Arroyo-Reyna, A. Estudio por dicroísmo circular de la desnaturalización térmica de la subtilisina BPN’: Modelo irreversible de dos estados. Rev. Soc. Quím. Méx., 2002, 46(2), 105-108.
[73]
Bull, H.B.; Breese, K. Thermal stability of proteins. Arch. Biochem. Biophys., 1973, 158(2), 681-686. [http://dx.doi.org/10.1016/0003-9861(73)90561-4]. [PMID: 4782528].