[1]
Natale, G.; Bocci, G.; Ribatti, D. Scholars and scientists in the history of the lymphatic system. J. Anat., 2017, 231(3), 417-429. [http://dx.doi.org/10.1111/joa.12644]. [PMID: 28614587].
[2]
Gitlin, A.D.; Nussenzweig, M.C. Immunology: Fifty years of B lymphocytes. Nature, 2015, 517(7533), 139-141. [http://dx.doi.org/10.1038/517139a]. [PMID: 25567266].
[3]
Hardy, R.R.; Hayakawa, K. B cell development pathways. Annu. Rev. Immunol., 2001, 19, 595-621. [http://dx.doi.org/10.1146/annurev.immunol.19.1.595]. [PMID: 11244048].
[4]
Pieper, K.; Grimbacher, B.; Eibel, H. B-cell biology and development. J. Allergy Clin. Immunol., 2013, 131(4), 959-971. [http://dx.doi.org/10.1016/j.jaci.2013.01.046]. [PMID: 23465663].
[5]
Han, D.; Zhang, Y.; Chen, J.; Hua, G.; Li, J.; Deng, X.; Deng, X. Transcriptome analyses of differential gene expression in the bursa of Fabricius between Silky Fowl and White Leghorn. Sci. Rep., 2017, 7, 45959. [http://dx.doi.org/10.1038/srep45959]. [PMID: 28406147].
[6]
Ekino, S.; Sonoda, K.; Inui, S. Origin of IgM(+)IgG(+) lymphocytes in the bursa of Fabricius. Cell Tissue Res., 2015, 362(1), 153-162. [http://dx.doi.org/10.1007/s00441-015-2196-6]. [PMID: 25948483].
[7]
Ekino, S.; Sonoda, K. New insight into the origin of IgG-bearing cells in the bursa of Fabricius. Int. Rev. Cell Mol. Biol., 2014, 312, 101-137. [http://dx.doi.org/10.1016/B978-0-12-800178-3.00004-X]. [PMID: 25262240].
[8]
Audhya, T.; Kroon, D.; Heavner, G.; Viamontes, G.; Goldstein, G. Tripeptide structure of bursin, a selective B-cell-differentiating hormone of the bursa of fabricius. Science, 1986, 231(4741), 997-999. [http://dx.doi.org/10.1126/science.3484838]. [PMID: 3484838].
[9]
Liu, X.D.; Zhou, B.; Feng, X.L.; Cao, R.B.; Chen, P.Y. BP8, a novel peptide from avian immune system, modulates B cell developments. Amino Acids, 2014, 46(12), 2705-2713. [http://dx.doi.org/10.1007/s00726-014-1824-x]. [PMID: 25168247].
[10]
Feng, X.L.; Liu, Q.T.; Cao, R.B.; Zhou, B.; Li, Y.; Zhang, Y.P.; Liu, K.; Liu, X.D.; Wei, J.C.; Qiu, Y.F.; Li, X.F.; Ma, Z.Y.; Chen, P.Y. Gene expression profiling of hybridoma cells after bursal-derived bioactive factor BP5 treatment. Amino Acids, 2012, 43(6), 2443-2456. [http://dx.doi.org/10.1007/s00726-012-1323-x]. [PMID: 22674378].
[11]
Feng, X.L.; Liu, Q.T.; Cao, R.B.; Zhou, B.; Ma, Z.Y.; Deng, W.L.; Wei, J.C.; Qiu, Y.F.; Wang, F.Q.; Gu, J.Y.; Wang, F.J.; Zheng, Q.S.; Ishag, H.; Chen, P.Y. Identification and characterization of novel immunomodulatory bursal-derived pentapeptide-II (BPP-II). J. Biol. Chem., 2012, 287(6), 3798-3807. [http://dx.doi.org/10.1074/jbc.M111.273854]. [PMID: 22184121].
[12]
Feng, X.; Cao, R.; Zhou, B.; Liu, Q.; Liu, K.; Liu, X.; Zhang, Y.; Gu, J.; Miao, D.; Chen, P. The potential mechanism of Bursal-derived BPP-II on the antibody production and avian pre-B cell. Vaccine, 2013, 31(11), 1535-1539. [http://dx.doi.org/10.1016/j.vaccine.2012.09.022]. [PMID: 23000123].
[13]
Liu, X.D.; Zhou, B.; Cao, R.B.; Feng, X.L.; Ma, Z.Y.; Chen, P.Y. BP5 regulated B cell development promoting anti-oxidant defence. Amino Acids, 2014, 46(1), 209-222. [http://dx.doi.org/10.1007/s00726-013-1620-z]. [PMID: 24292101].
[14]
Feng, X.L.; Liu, Q.T.; Cao, R.B.; Zhou, B.; Wang, F.Q.; Deng, W.L.; Qiu, Y.F.; Zhang, Y.; Ishag, H.; Ma, Z.Y.; Zheng, Q.S.; Chen, P.Y. A bursal pentapeptide (BPP-I), a novel bursal-derived peptide, exhibits antiproliferation of tumor cell and immunomodulator activity. Amino Acids, 2012, 42(6), 2215-2222. [http://dx.doi.org/10.1007/s00726-011-0961-8]. [PMID: 21751033].
[15]
Feng, X.; Liu, T.; Wang, F.; Cao, R.; Zhou, B.; Zhang, Y.; Mao, X.; Chen, P.; Zhang, H. Isolation, antiproliferation on tumor cell and immunomodulatory activity of BSP-I, a novel bursal peptide from chicken humoral immune system. Peptides, 2011, 32(6), 1103-1109. [http://dx.doi.org/10.1016/j.peptides.2011.04.020]. [PMID: 21550370].
[16]
Watson, C.T.; Glanville, J.; Marasco, W.A. The individual and population genetics of antibody immunity. Trends Immunol., 2017, 38(7), 459-470. [http://dx.doi.org/10.1016/j.it.2017.04.003]. [PMID: 28539189].
[17]
Tsiantoulas, D.; Diehl, C.J.; Witztum, J.L.; Binder, C.J. B cells and humoral immunity in atherosclerosis. Circ. Res., 2014, 114(11), 1743-1756. [http://dx.doi.org/10.1161/CIRCRESAHA.113.301145]. [PMID: 24855199].
[18]
Feng, X.L.; Liu, Q.T.; Cao, R.B.; Zhou, B.; Zhang, Y.P.; Liu, K.; Liu, X.D.; Wei, J.C.; Li, X.F.; Chen, P.Y. Characterization and immunomodulatory function comparison of various bursal-derived peptides isolated from the humoral central immune organ. Peptides, 2012, 33(2), 258-264. [http://dx.doi.org/10.1016/j.peptides.2012.01.012]. [PMID: 22286032].
[19]
Edwards, S. OIE laboratory standards for avian influenza. Dev. Biol. (Basel), 2006, 124, 159-162. [PMID: 16447507].
[20]
Kiniwa, Y.; Li, J.; Wang, M.; Sun, C.; Lee, J.E.; Wang, R.F.; Wang, H.Y. Identification of DRG-1 as a melanoma-associated antigen recognized by CD4+ Th1 cells. PLoS One, 2015, 10(5)e0124094 [http://dx.doi.org/10.1371/journal.pone.0124094]. [PMID: 25993655].
[21]
Kelkar, P.; Walter, A.; Papadopoulos, S.; Mroß, C.; Munck, M.; Peche, V.S.; Noegel, A.A. Nesprin-2 mediated nuclear trafficking and its clinical implications. Nucleus, 2015, 6(6), 479-489. [http://dx.doi.org/10.1080/19491034.2015.1128608]. [PMID: 26645154].
[22]
Swanson-Mungerson, M.; Incrocci, R.; Subramaniam, V.; Williams, P.; Hall, M.L.; Mayer, A.M.S. Effects of cyanobacteria Oscillatoria sp. lipopolysaccharide on B cell activation and Toll-like receptor 4 signaling. Toxicol. Lett., 2017, 275, 101-107. [http://dx.doi.org/10.1016/j.toxlet.2017.05.013]. [PMID: 28499610].
[23]
Segura, E. Review of mouse and human dendritic cell subsets. Methods Mol. Biol., 2016, 1423, 3-15. [http://dx.doi.org/10.1007/978-1-4939-3606-9_1]. [PMID: 27142005].
[24]
Oh, J.; Shin, J.S. Molecular mechanism and cellular function of MHCII ubiquitination. Immunol. Rev., 2015, 266(1), 134-144. [http://dx.doi.org/10.1111/imr.12303]. [PMID: 26085212].
[25]
Barnett, L.G.; Simkins, H.M.; Barnett, B.E.; Korn, L.L.; Johnson, A.L.; Wherry, E.J.; Wu, G.F.; Laufer, T.M. B cell antigen presentation in the initiation of follicular helper T cell and germinal center differentiation. J. Immunol., 2014, 192(8), 3607-3617. [http://dx.doi.org/10.4049/jimmunol.1301284]. [PMID: 24646739].
[26]
Jones, M.B.; Ryan, S.O.; Johnson, J.L.; Cobb, B.A. Dendritic cell-specific Mgat2 knockout mice show antigen presentation defects but reveal an unexpected CD11c expression pattern. Glycobiology, 2016, 26(9), 1007-1013. [http://dx.doi.org/10.1093/glycob/cww056]. [PMID: 27146521].
[27]
Elizondo, D.M.; Andargie, T.E.; Kubhar, D.S.; Gugssa, A.; Lipscomb, M.W. CD40-CD40L cross-talk drives fascin expression in dendritic cells for efficient antigen presentation to CD4+ T cells. Int. Immunol., 2017, 29(3), 121-131. [http://dx.doi.org/10.1093/intimm/dxx013]. [PMID: 28369442].
[28]
Buchta, C.M.; Bishop, G.A. Toll-like receptors and B cells: functions and mechanisms. Immunol. Res., 2014, 59(1-3), 12-22. [http://dx.doi.org/10.1007/s12026-014-8523-2]. [PMID: 24847763].
[29]
Gardell, J.L.; Parker, D.C. CD40L is transferred to antigen-presenting B cells during delivery of T-cell help. Eur. J. Immunol., 2017, 47(1), 41-50. [http://dx.doi.org/10.1002/eji.201646504]. [PMID: 27753080].