Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synthesis of New Dihydroquinopimaric Acid Analogs with Nitrile Groups as Apoptosis-Inducing Anticancer Agents

Author(s): Elena V. Tretyakova*, Elena V. Salimova, Lyudmila V. Parfenova, Milyausha M. Yunusbaeva, Lilya U. Dzhemileva, Vladimir A. D’yakonov and Usein M. Dzhemilev

Volume 19, Issue 9, 2019

Page: [1172 - 1183] Pages: 12

DOI: 10.2174/1871520619666190404100846

Price: $65

Abstract

Background: Cyan-containing compounds are of great interest as potential anticancer agents. Terpenoids can severe as a natural matrix for the development of promising derivatives with antitumor activity.

Methods: The 2-cyanoethoxy methyl dihydroquinopimarate derivatives (5-9) were synthesized by the reaction of the intermediates (1-4) with acrylonitrile in the presence of alkali (30% KOH solution) using triethylbenzylammonium chloride. The cytotoxicity evaluation was carried out according to the National Cancer Institute (NCI) Protocol, while apoptosis was studied by flow cytometric analysis of Annexin V and 7-aminoactinomycin D staining and cell cycle was analyzed using the method of propidium iodide staining.

Results: Synthesis of new dihydroquinopimaric acid derivatives with nitrile groups was carried out. The obtained cyanoethyl derivatives were converted into tetrazole, amine, oxadiazole and amidoxime analogs. The primary screening for antitumor activity showed the highest cytotoxic potency of the cyanoethyl-substituted compounds. The introduction of cyanoethyl groups at C-1, C-4 and C-1, C-4, C-20 positions of dihydroquinopimaric acid methyl ester provided antiproliferative effect towards the Jurkat, K562, U937, and HeLa tumor cell cultures (CC50=0.045-0.154μM). These nitrile derivatives are effective inducers of tumor cell apoptosis affecting the S and G2 phases of the cell cycle in a dose-dependent manner.

Conclusion: The cyanoethyl analogs of dihydroquinopimaric acid reported herein are apoptosis inducers and cytotoxic agents. These findings will be useful for the further design of more potent cytotoxic agents based on natural terpenes.

Keywords: Abietane diterpenoids, levopimaric acid, diene adduct, dihydroquinopimaric acid, nitriles, tetrazoles, amines, oxadiazoles, amidoximes, anticancer activity, cell cycle, apoptosis.

Graphical Abstract

[1]
Palumbo, M.O.; Kavan, P.; Miller, Jr., W.H.; Panasci, L.; Assouline, S.; Johnson, N.; Cohen, V.; Patenaude, F.; Pollak, M.; Jagoe, R.T.; Batist, G. Systemic cancer therapy: Achievements and challenges that lie ahead. Front. Pharmacol., 2013, 4, 57.
[2]
Roubille, C.; Richer, V.; Starnino, T.; McCourt, C.; McFarlane, A.; Fleming, P.; Siu, S.; Kraft, J.; Lynde, C.; Pope, J.; Gulliver, W.; Keeling, S.; Dutz, J.; Bessette, L.; Bissonnette, R.; Haraoui, B. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: A systematic review and meta-analysis. Ann. Rheum. Dis., 2015, 74, 480-489.
[3]
Deyab, G.; Hokstad, I.; Whist, J.E.; Smastuen, M.C.; Agewall, S.; Lyberg, T.; Ronda, N.; Mikkelsen, K.; Hjeltnes, G.; Hollan, I. Methotrexate and anti-tumor necrosis factor treatment improves endothelial function in patients with inflammatory arthritis. Arthritis Res. Ther., 2017, 19, 232-244.
[4]
Montaudie, H.; Sbidian, E.; Paul, C.; Maza, A.; Gallini, A.; Aractingi, S.; Aubin, F.; Bachelez, H.; Cribier, B.; Joly, P.; Jullien, D.; Le Maitre, M.; Misery, L.; Richard, M-A.; Ortonne, J-P. Methotrexate in psoriasis: A systematic review of treatment modalities, incidence, risk factors and monitoring of liver toxicity. J. Eur. Acad. Dermatol. Venereol., 2011, 25(2), 1-33.
[5]
Youm, I.; West, M.B.; Li, W.; Du, X.; Ewert, D.L.; Kopke, R.D. siRNA-loaded biodegradable nanocarriers for therapeutic MAPK1 silencing against cisplatin-induced ototoxicity. Int. J. Pharm., 2017, 528, 611-623.
[6]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[7]
Aravindan, S.; Natarajan, M.; Herman, T.S.; Awasthi, V.; Aravindan, N. Molecular basis of ‘hypoxic’ breast cancer cell radio-sensitization: phytochemicals converge on radiation induced Rel signaling. Radiat. Oncol., 2013, 8, 46.
[8]
Huq, F.; Yu, J.Q.; Beale, P.; Chan, C.; Arzuman, L.; Nessa, M.U.; Mazumder, M.E. Combinations of platinums and selected phytochemicals as a means of overcoming resistance in ovarian cancer. Anticancer Res., 2014, 34(1), 541-545.
[9]
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.; Amin, A.; Aquilano, K.; Arbiser, J.; Arreola, A.; Arzumanyan, A.; Ashraf, S.S.; Azmi, A.S.; Benencia, F.; Bhakta, D.; Bilsland, A.; Bishayee, A.; Blain, S.W.; Block, P.B.; Boosani, C.S.; Carey, T.E.; Carnero, A.; Carotenuto, M.; Casey, S.C.; Chakrabarti, M.; Chaturvedi, R.; Chen, G.Z.; Chen, H.; Chen, S.; Chen, Y.C.; Choi, B.K.; Ciriolo, M.R.; Coley, H.M.; Collins, A.R.; Connell, M.; Crawford, S.; Curran, C.S.; Dabrosin, C.; Damia, G.; Dasgupta, S.; DeBerardinis, R.J.; Decker, W.K.; Dhawan, P.; Diehl, A.; Dong, J.T.; Dou, Q.P.; Drew, J.E.; Elkord, E.; El-Rayes, B.; Feitelson, M.A.; Felsher, D.W.; Ferguson, L.R.; Fimognari, C.; Firestone, G.L.; Frezza, C.; Fujii, H.; Fuster, M.M.; Generali, D.; Georgakilas, A.G.; Gieseler, F.; Gilbertson, M.; Green, M.F.; Grue, B.; Guha, G.; Halicka, D.; Helferich, W.G.; Heneberg, P.; Hentosh, P.; Hirschey, M.D.; Hofseth, L.J.; Holcombe, R.F.; Honoki, K.; Hsu, H.Y.; Huang, G.S.; Jensen, L.D.; Jiang, W.G.; Jones, L.W.; Karpowicz, P.A.; Keith, W.N.; Kerkar, S.P.; Khan, G.N.; Khatami, M.; Ko, Y.H.; Kucuk, O.; Kulathinal, R.J.; Kumar, N.B.; Kwon, B.S.; Le, A.; Lea, M.A.; Lee, H.Y.; Lichtor, T.; Lin, L.T.; Locasale, J.W.; Lokeshwar, B.L.; Longo, V.D.; Lyssiotis, C.A.; MacKenzie, K.L.; Malhotra, M.; Marino, M.; Martinez-Chantar, M.L.; Matheu, A.; Maxwell, C.; McDonnell, E.; Meeker, A.K.; Mehrmohamadi, M.; Mehta, K.; Michelotti, G.A.; Mohammad, R.M.; Mohammed, S.I.; Morre, D.J.; Muralidhar, V.; Muqbil, I.; Murphy, M.P.; Nagaraju, G.P.; Nahta, R.; Niccolai, E.; Nowsheen, S.; Panis, C.; Pantano, F.; Parslow, V.R.; Pawelec, G.; Pedersen, P.L.; Poore, B.; Poudyal, D.; Prakash, S.; Prince, M.; Raffaghello, L.; Rathmell, J.C.; Rathmell, W.K.; Ray, S.K.; Reichrath, J.; Rezazadeh, S.; Ribatti, D.; Ricciardiello, L.; Robey, R.B.; Rodier, F.; Rupasinghe, H.; Russo, G.L.; Ryan, E.P.; Samadi, A.K.; Sanchez-Garcia, I.; Sanders, A.J.; Santini, D.; Sarkar, M.; Sasada, T.; Saxena, N.K.; Shackelford, R.E.; Shantha Kumara, H.; Sharma, D.; Shin, D.M.; Sidransky, D.; Siegelin, M.D.; Signori, E.; Singh, N.; Sivanand, S.; Sliva, D.; Smythe, C.; Spagnuolo, C.; Stafforini, D.M.; Stagg, J.; Subbarayan, P.R.; Sundin, T.; Talib, W.H.; Thompson, S.K.; Tran, P.T.; Ungefroren, H.; Vander Heiden, M.G.; Venkateswaran, V.; Vinay, D.S.; Vlachostergios, P.J.; Wang, Z.; Wellen, K.E.; Whelan, R.L.; Yang, E.S.; Yang, H.; Yang, X.; Yaswen, P.; Yedjou, C.; Yin, X.; Zhu, J.; Zollo, M. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin. Cancer Biol., 2015, 35, S276-S304.
[10]
Fleming, F.F.; Yao, L.; Ravikumar, P.C.; Funk, L.; Shook, B.C. Nitrile-containing pharmaceuticals: Efficacious roles of the nitrile pharmacophore. J. Med. Chem., 2010, 53, 7902-7917.
[11]
Sun, Z.; Zhang, K.; Chen, C.; Wu, Y.; Tang, Y.; Georgiev, M.I.; Zhang, X.; Lin, M.; Zhou, M. Biosynthesis and regulation of cyanogenic glycoside production in forage plants. Appl. Microbiol. Biotechnol., 2018, 102, 9-16.
[12]
Jinih, M.; Relihan, N.; Corrigan, M.A.; O’Reilly, S.; Redmond, H.P. Extended adjuvant endocrine therapy in breast cancer: Evidence and update. Breast J., 2017, 23(6), 694-705.
[13]
Alemrayat, B.; Elhissi, A.; Younes, H.M. Preparation and characterization of letrozole-loaded poly(d,l-lactide) nanoparticles for drug delivery in breast cancer therapy. Pharm. Dev. Technol., 2019, 24(2), 235-242.
[14]
Liu, C.; Armstrong, C.M.; Lou, W.; Lombard, A.P.; Cucchiara, V.; Gu, X.; Yang, J.C.; Nadiminty, N.; Pan, C.X.; Evans, C.P.; Gao, A.C. Niclosamide and bicalutamide combination treatment overcomes enzalutamide and bicalutamide resistant prostate cancer. Mol. Cancer Ther., 2017, 16, 1521-1530.
[15]
Langdon, S.P.; Gourley, C.; Gabra, H.; Stanley, B. Endocrine therapy in epithelial ovarian cancer. Expert Rev. Anticancer Ther., 2017, 17(2), 109-117.
[16]
Reis, L.O.; Zani, E.L.; Garcia-Perdomo, H.A. Estrogen therapy in patients with prostate cancer: a contemporary systematic review. Int. Urol. Nephrol., 2018, 50, 993-1003.
[17]
Park, S.G.; Kim, S.H.; Kim, K.Y.; Yu, S.N.; Choi, H.D.; Kim, Y.W.; Nam, H.W.; Seo, Y.K.; Ahn, S.C. Toyocamycin induces apoptosis via the crosstalk between reactive oxygen species and p38/ERK MAPKs signaling pathway in human prostate cancer PC-3 cells. Pharmacol. Rep., 2017, 69, 90-96.
[18]
Gee, M.S.; Kang, S.B. ·Kim, N.; Choi, J.; Kim, N.J.; Kim, B.J.; Inn, K.S.; Lee, J.K. Bardoxolone methyl suppresses Hepatitis B virus large surface protein variant W4P-related carcinogenesis and hepatocellular carcinoma cell proliferation via the inhibition of signal transducer and activator of transcription 3 signaling. Pharmacology, 2018, 102, 105-113.
[19]
Shanmugam, M.K.; Dai, X.; Kumar, A.P.; Tan, B.K.; Sethi, G.; Bishayee, A. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: Preclinical and clinical evidence. Cancer Lett., 2014, 346, 206-216.
[20]
Wang, Y.Y.; Yang, Y.X.; Zhe, H.; He, Z.X.; Zhou, S.F. Bardoxolone methyl (CDDO-Me) as a therapeutic agent: An update on its pharmacokinetic and pharmacodynamic properties. Drug Des. Devel. Ther., 2014, 8, 2075-2088.
[21]
Wang, Y.Y.; Zhe, H.; Zhao, R. Preclinical evidences toward the use of triterpenoid CDDO-Me for solid cancer prevention and treatment. Mol. Cancer, 2014, 13, 30-38.
[22]
Liby, K.T.; Sporn, M.B. Synthetic oleanane triterpenoids: Multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease. Pharmacol. Rev., 2012, 64, 972-1003.
[23]
Favaloro, F.G.; Honda, T.; Honda, Y.; Gribble, G.W.; Suh, N.; Risingsong, R.; Sporn, M.B. Design and synthesis of tricyclic compounds with enone functionalities in rings A and C: A novel class of highly active inhibitors of nitric oxide production in mouse macrophages. J. Med. Chem., 2002, 45(22), 4801-4805.
[24]
Honda, T.; Sundararajan, C.; Yoshizawa, H.; Su, X.; Honda, Y.; Liby, K.T.; Sporn, M.B.; Gribble, G.W. Novel tricyclic compounds having acetylene groups at C8a and cyano enones in rings A and C: Highly potent anti-inflammatory and cytoprotective agents. J. Med. Chem., 2007, 50, 1731-1734.
[25]
Honda, T.; Yoshizawa, H.; Sundararajan, C.; David, E.; Lajoie, M.J.; Favaloro, Jr. F.G.; Janosik, T.; Su, X.; Honda, Y.; Roebuck, B.D.; Gribble, G.W. Tricyclic compounds containing non-enolizable cyano enones. A novel class of highly potent anti-inflammatory and cytoprotective agents. J. Med. Chem., 2011, 54, 1762-1778.
[26]
Dinkova-Kostova, A.T.; Talalay, P.; Sharkey, J.; Zhang, Y.; Holtzclaw, W.D.; Wang, X.J.; David, E.; Schiavoni, K.H.; Finlayson, S.; Dale, D.F.; Mierke, F.; Honda, T. An exceptionally potent inducer of cytoprotective enzymes: Elucidation of the structural features that determine inducer potency and reactivity with Keap1. J. Biol. Chem., 2010, 285, 33747-33755.
[27]
Kostov, R.V.; Knatko, E.V.; McLaughlin, L.A.; Henderson, C.J.; Zheng, S.; Huang, J.T.J.; Tadashi, H.; Dinkova-Kostova, A.T. Pharmacokinetics and pharmacodynamics of orally administered acetylenic tricyclic bis(cyanoenone), a highly potent Nrf2 activator with a reversible covalent mode of action. Biochem. Biophys. Res. Commun., 2015, 465, 402-407.
[28]
Flekhter, O.B.; Tret’yakova, E.V.; Makara, N.S.; Gabdrakhmanova, S.F.; Baschenko, N.Z.; Galin, F.Z.; Zarudii, F.S.; Tolstikov, G.A. Synthesis and antiulcer activity of quinopimaric acid derivatives. Russ. Pharm. Chem. J., 2003, 37, 142-144.
[29]
Kazakova, O.B.; Tret’yakova, E.V.; Smirnova, I.E.; Spirikhin, L.V.; Tolstikov, G.A.; Chudov, I.V.; Bazekin, G.V.; Ismagilova, A.F. The synthesis and anti-inflammatory activity of quinopimaric acid derivatives. Russ. J. Bioorganic Chem., 2010, 36, 257-262.
[30]
Tret’yakova, E.V.; Zakirova, G.F.; Salimova, E.V.; Kukovinets, O.S.; Odinokov, V.N.; Parfenova, L.V. Convenient one-pot synthesis of resin acid Mannich bases as novel anticancer and antifungal agents. Med. Chem. Res., 2018, 27, 2199-2213.
[31]
Tretyakova, E.V.; Smirnova, I.E.; Salimova, E.V.; Odinokov, V.N. Synthesis and antiviral activity of maleopimaric and quinopimaric acids’ derivatives. Bioorg. Med. Chem., 2015, 23, 6543-6550.
[32]
Tret’yakova, E.V.; Smirnova, I.E.; Kazakova, O.B.; Yavorskaya, N.P.; Golubeva, I.S.; Zhukova, O.S.; Pugacheva, R.B.; Apryshko, G.N.; Poroikov, V.V. Synthesis and anticancer activity of quinopimaric and maleopimaric acid’s derivatives. Bioorg. Med. Chem., 2014, 22, 6481-6489.
[33]
Herz, W.; Nair, M.G. Resin acids. XIX. Structure and Stereochemistry of Adducts of Levopimaric Acid with Cyclopentenone and 1-Cyclopentene-3,5-dione. Favorskii reaction of an enedione epoxide. J. Org. Chem., 1969, 34, 4016-4023.
[34]
Bruson, H. Cyanoethylation. Org. React., 1949, 5, 79-135.
[35]
Malik, M.A.; Wani, M.Y.; Al-Thabaiti, S.A.; Shiekh, R.A. Tetrazoles as carboxylic acid isosteres: Chemistry and biology. J. Incl. Phenom. Macrocycl. Chem., 2014, 78, 15-37.
[36]
Grever, M.R.; Schepartz, S.A.; Chabner, B.A. The national cancer institute: cancer drug discovery and development program. Semin. Oncol., 1992, 19, 622-638.
[37]
Monks, A.; Scudiero, D.A.; Skehan, P.; Shoemaker, R.; Paull, K.D.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. Feasibility of a high flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst., 1991, 83, 757-766.
[38]
Monks, A.; Scudiero, D.A.; Johnson, G.S.; Paull, K.D.; Sausville, E.A. The NCI anti-cancer drug screen: a smart screen to identify effectors of novel targets. Anti-Cancer Drug Des., 1997, 12, 533-541.
[39]
Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev. Res., 1995, 34, 91-109.
[40]
Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Natl. Rev., 2006, 6, 813-823.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy