[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136, E359-E386.
[2]
Farrell, N.P. Multi-platinum anti-cancer agents. Substitution-inert compounds for tumor selectivity and new targets. Chem. Soc. Rev., 2015, 44, 8773-8785.
[3]
Florea, A.M.; Büsselberg, D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel), 2014, 3, 1351-1371.
[4]
Galanski, M.; Yasemi, A.; Slaby, S.; Jakupec, M.A.; Arion, V.B.; Rausch, M.; Nazarov, A.A.; Keppler, B.K. Synthesis, crystal structure and cytotoxicity of new oxaliplatin analogues indicating that improvement of anticancer activity is still possible. Eur. J. Med. Chem., 2004, 39, 707-714.
[5]
Olszewski, U.; Hamilton, G. A better platinum-based anticancer drug yet to come? Anticancer. Agents Med. Chem., 2010, 10, 293-301.
[6]
Shahsavar, F.; Bozorgmehr, M.; Mirzadegan, E.; Abedi, A.; Lighvan, Z.M.; Mohammadi, F.; Safari, N.; Amani, V.; Zarnani, A.H. A novel platinum-based compound with preferential cytotoxic activity against a panel of cancer cell lines. Anticancer. Agents Med. Chem., 2016, 16, 393-403.
[7]
Ari, F.; Aztopal, N.; Icsel, C.; Yilmaz, V.T.; Guney, E.; Buyukgungor, O.; Ulukaya, E. Synthesis, structural characterization and cell death-inducing effect of novel palladium(II) and platinum(II) saccharinate complexes with 2-(hydroxymethyl)pyridine and 2-(2-hydroxyethyl)pyridine on cancer cells in vitro. Bioorg. Med. Chem., 2013, 21, 6427-6434.
[8]
Icsel, C.; Yilmaz, V.T.; Ari, F.; Ulukaya, E.; Harrison, W.T. Trans-Dichloridopalladium(II) and platinum(II) complexes with 2-(hydroxymethyl)pyridine and 2-(2-hydroxyethyl)pyridine: Synthesis, structural characterization, DNA binding and in vitro cytotoxicity studies. Eur. J. Med. Chem., 2013, 60, 386-394.
[9]
Kovala-Demertzi, D.; Papageorgiou, A.; Papathanasis, L.; Alexandratos, A.; Dalezis, P.; Miller, J.R.; Demertzis, M.A. In vitro and in vivo antitumor activity of platinum(II) complexes with thiosemicarbazones derived from 2-formyl and 2-acetyl pyridine and containing ring incorporated at N(4)-position: Synthesis, spectroscopic study and crystal structure of platinum(II) complexes with thiosemicarbazones, potential anticancer agents. Eur. J. Med. Chem., 2009, 44, 1296-1302.
[10]
Keter, F.K.; Kanyanda, S.; Lyantagaye, S.S.; Darkwa, J.; Rees, D.J.; Meyer, M. In vitro evaluation of dichloro-bis(pyrazole) palladium(II) and dichloro-bis(pyrazole)platinum(II) complexes as anticancer agents. Cancer Chemother. Pharmacol., 2008, 63, 127-138.
[11]
Oral, A.Y.; Cevatemre, B.; Sarimahmut, M.; Icsel, C.; Yilmaz, V.T.; Ulukaya, E. Anti-growth effect of a novel trans-dichloridobis [2-(2-hydroxyethyl)pyridine]platinum (II) complex via induction of apoptosis on breast cancer cell lines. Bioorg. Med. Chem., 2015, 23, 4303-4310.
[12]
Fan, T.F.; Wu, T.F.; Bu, L.L.; Ma, S.R.; Li, Y.C.; Mao, L.; Sun, Z.J.; Zhang, W.F. Dihydromyricetin promotes autophagy and apoptosis through ROS-STAT3 signaling in head and neck squamous cell carcinoma. Oncotarget, 2016, 7, 59691-59703.
[13]
Dokic, I.; Mairani, A.; Niklas, M.; Zimmermann, F.; Chaudhri, N.; Krunic, D.; Tessonnier, T.; Ferrari, A.; Parodi, K.; Jäkel, O.; Debus, J.; Haberer, T.; Abdollahi, A. Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams. Oncotarget, 2016, 7, 56676-56689.
[14]
Franke, J.C.; Plötz, M.; Prokop, A.; Geilen, C.C.; Schmalz, H.G.; Eberle, J. New caspase-independent but ROS-dependent apoptosis pathways are targeted in melanoma cells by an iron-containing cytosine analogue. Biochem. Pharmacol., 2010, 79, 575-586.
[15]
He, P.J.; Ge, R.F.; Mao, W.J.; Chung, P.S.; Ahn, J.C.; Wu, H.T. Oxidative stress induced by carboplatin promotes apoptosis and inhibits migration of HN-3 cells. Oncol. Lett., 2018, 16, 7131-7138.
[16]
Zeng, L.; Li, Y.; Li, T.; Cao, W.; Yi, Y.; Geng, W.; Sun, Z.; Xu, H. Selenium-platinum coordination compounds as novel anticancer drugs: selectively killing cancer cells via a Reactive Oxygen Species (ROS)-mediated apoptosis route. Chem. Asian J., 2014, 9, 2295-2302.
[17]
Woods, D.; Turchi, J. J. Chemotherapy induced DNA damage response: Convergence of drugs and pathways. Cancer Biol. Ther., 2013, 14, 379-389.
[18]
Riss, T.L.; Moravec, R.A.; Niles, A.L.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell Viability Assays. Assay Guidance Manual; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2013.
[19]
Mazzini, G.; Ferrari, C.; Erba, E. Dual excitation multi- fluorescence flow cytometry for detailed analyses of viability and apoptotic cell transition. Eur. J. Histochem., 2003, 47, 289-298.
[20]
Papagiannaros, A.; Hatziantoniou, S.; Konstantinos, D.; Papaioannou, G.T.; Demetzos, C. A liposomal formulation of doxorubicin, composed of hexadecylphosphocholine (HePC): Physicochemical characterization and cytotoxic activity against human cancer cell lines. Biomed. Pharmacother., 2005, 60, 36-42.
[21]
Ulukaya, E.; Sarimahmut, M.; Cevatemre, B.; Ari, F.; Yerlikaya, A.; Dimas, K. Additive enhancement of apoptosis by TRAIL and fenretinide in metastatic breast cancer cells in vitro. Biomed. Pharmacother., 2014, 68, 477-482.
[22]
Galanski, M.; Jakupec, M.A.; Keppler, B.K. Update of the preclinical situation of anticancer platinum complexes: Novel design strategies and innovative analytical approaches. Curr. Med. Chem., 2005, 12, 2075-2094.
[23]
Brabec, V.; Kasparkova, J. Molecular aspects of resistance to antitumor platinum drugs. Drug Resist. Updat., 2002, 5, 147-161.
[24]
McWhinney, S.R.; Goldberg, R.M.; McLeod, H.L. Platinum neurotoxicity pharmacogenetics. Mol. Cancer Ther., 2009, 8, 10-16.
[25]
Ulukaya, E.; Ari, F.; Dimas, K.; Sarimahmut, M.; Guney, E.; Sakellaridis, N.; Yilmaz, V.T. Cell death-inducing effect of novel palladium(II) and platinum(II) complexes on non-small cell lung cancer cells in vitro. J. Cancer Res. Clin. Oncol., 2011, 137, 1425-1434.
[26]
Cincinelli, R.; Musso, L.; Dallavalle, S.; Artali, R.; Tinelli, S.; Colangelo, D.; Zunino, F.; De Cesare, M.; Beretta, G.L.; Zaffaroni, N. Design, modeling, synthesis and biological activity evaluation of camptothecin-linked platinum anticancer agents. Eur. J. Med. Chem., 2013, 63, 387-400.
[27]
Gay, M.; Montaña, Á.M.; Batalla, C.; Mesas, J.M.; Alegre, M.T. Design, synthesis and SAR studies of novel 1,2-bis(aminomethyl)cyclohexane platinum(II) complexes with cytotoxic activity. Studies of interaction with DNA of iodinated seven-membered 1,4-diaminoplatinocycles. J. Inorg. Biochem., 2015, 142, 15-27.
[28]
Vermes, I.; Haanen, C.; Steffens-Nakken, H.; Reutelingsperger, C.P. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods, 1995, 184, 39-51.
[29]
van Engeland, M.; Ramaekers, F.C.; Schutte, B.; Reutelingsperger, C.P. A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry, 1996, 24, 131-139.
[30]
Wen, J.; You, K.R.; Lee, S.Y.; Song, C.H.; Kim, D.G. Oxidative stress-mediated apoptosis. The anticancer effect of the sesquiterpene lactone parthenolide. J. Biol. Chem., 2002, 277, 38954-38964.
[31]
Kim, J.; Yun, M.; Kim, E.O.; Jung, D.B.; Won, G.; Kim, B.; Jung, J.H.; Kim, S.H. Decursin enhances TRAIL-induced apoptosis through oxidative stress mediated- endoplasmic reticulum stress signalling in non-small cell lung cancers. Br. J. Pharmacol., 2016, 173, 1033-1044.
[32]
Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 19, R453-R462.
[33]
Clingen, P.H.; Wu, J.Y.H.; Miller, J.; Mistry, N.; Chin, F.; Wynne, P.; Prise, K.; Hartley, J.A. Histone H2AX phosphorylation as a molecular pharmacological marker for DNA interstrand crosslink cancer chemotherapy. Biochem. Pharmacol., 2008, 76, 19-27.
[34]
Olive, P.L.; Banath, J.P. Kinetics of H2AX phosphorylation after exposure to cisplatin. Cytometry B Clin. Cytom., 2009, 76, 79-90.
[35]
Rogakou, E.P.; Pilch, D.R.; Orr, A.H.; Ivanova, V.S.; Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem., 1998, 273, 5858-5868.
[36]
D’Amours, D.; Sallmann, F.R.; Dixit, V.M.; Poirier, G.G. Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: implications for apoptosis. J. Cell Sci., 2001, 114, 3771-3778.
[37]
Davis, R.J. Signal transduction by the JNK group of MAP kinases. Cell, 2000, 103, 239-252.
[38]
Chang, L.; Karin, M. Mammalian MAP kinase signalling cascades. Nature, 2001, 410, 37-40.
[39]
Mehan, S.; Meena, H.; Sharma, D.; Sankhla, R. JNK: A stress-activated protein kinase therapeutic strategies and involvement in Alzheimer’s and various neurodegenerative abnormalities. J. Mol. Neurosci., 2011, 43, 376-390.
[40]
Yu, R.; Shtil, A.A.; Tan, T.H.; Roninson, I.B.; Kong, A.N. Adriamycin activates c-jun N-terminal kinase in human leukemia cells: a relevance to apoptosis. Cancer Lett., 1996, 107, 73-81.
[41]
Dhanasekaran, D.N.; Reddy, E.P. JNK Signaling in apoptosis. Oncogene, 2008, 27, 6245-6251.
[42]
Fan, M.; Chambers, T.C. Role of mitogen-activated protein kinases in the response of tumor cells to chemotherapy. Drug Resist. Updat., 2001, 4, 253-267.
[43]
Seok, J.H.; Park, K.A.; Byun, H.S.; Won, M.; Shin, S.; Choi, B.; Lee, H.; Kim, Y.R.; Hong, J.H.; Park, J.; Hur, G.M. Long-term activation of c-Jun N-terminal kinase through receptor interacting protein is associated with DNA damage-induced cell death. Korean J. Physiol. Pharmacol., 2008, 12, 185-191.
[44]
Bhandary, B.; Marahatta, A.; Kim, H.; Chael, H. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int. J. Mol. Sci., 2013, 14, 434-456.
[45]
Malhotra, J.D.; Kaufman, R.J. Endoplasmic reticulum stress and oxidative stress: A vicious cycle or a double-edged sword? Antioxid. Redox Signal., 2007, 9, 2277-2293.
[46]
Lee, W.J.; Chien, M.H.; Chow, J.M.; Chang, J.L.; Wen, Y.C.; Lin, Y.W.; Cheng, C.W.; Lai, G.M.; Hsiao, M.; Leea, L.M. Nonautophagic cytoplasmic vacuolation death induction in human PC-3M prostate cancer by curcumin through reactive oxygen species -mediated endoplasmic reticulum stress. Sci. Rep., 2015, 5, 10420.
[47]
Szegezdi, E.; Logue, S.E.; Gorman, A.M.; Samali, A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep., 2006, 7, 880-885.
[48]
Oslowski, C.M.; Urano, F. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol., 2011, 490, 71-92.
[49]
Chaudhari, N.; Talwar, P.; Parimisetty, A.; d’Hellencourt, C.L.; Ravanan, P. A molecular web: Endoplasmic reticulum stress, inflammation, and oxidative stress. Front. Cell. Neurosci., 2014, 8, 213.
[50]
Cheng, Y.; Yang, J.M. Survival and death of endoplasmic-reticulum-stressed cells: Role of autophagy. World J. Biol. Chem., 2011, 2, 226-231.
[51]
Benbrook, D.M.; Long, A. Integration of autophagy, proteasomal degradation, unfolded protein response and apoptosis. Exp. Oncol., 2012, 34, 286-297.
[52]
Iwawaki, T.; Hosoda, A.; Okuda, T.; Kamigori, Y.; Nomura-Furuwatari, C.; Kimata, Y.; Tsuru, A.; Kohno, K. Translational control by the er transmembrane kinase/ribonuclease IRE1 under ER stress. Nat. Cell Biol., 2001, 3, 158-164.
[53]
Chen, Y.; Brandizzi, F. IRE1: ER stress sensor and cell fate executor. Trends Cell Biol., 2013, 23, 547-555.
[54]
Lee, S.K.; Kim, Y.S. Phosphorylation of eIF2α attenuates statin-induced apoptosis by inhibiting the stabilization and translocation of p53 to the mitochondria. Int. J. Oncol., 2013, 42, 810-816.
[55]
Zinszner, H.; Kuroda, M.; Wang, X.; Batchvarova, N.; Lightfoot, R.; Remotti, H.; Stevens, J.L.; Ron, D. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev., 1998, 12, 982-995.
[56]
Oyadomari, S.; Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ., 2004, 11, 381-389.
[57]
McKibbin, C.; Mares, A.; Piacenti, M.; Williams, H.; Roboti, P.; Puumalainen, M.; Callan, A.C.; Lesiak-Mieczkowska, K.; Linder, S.; Harant, H.; High, S.; Flitsch, S.L. Inhibition of protein translocation at the endoplasmic reticulum promotes activation of the unfolded protein response. Biochem. J., 2012, 442, 639-648.