[1]
Luo, Q.O.; Connel, D.L.; Kahn, C.; Yu, X.Q. Colorectal cancer metastatic disease progression in Australia: A population-based analysis. Cancer Epidemiol., 2017, 49, 92-100.
[2]
Wang, W.Y.; Zhang, Y.; Yang, L.; Li, H. The innate immune signaling in cancer and cardiometabolic diseases: Friends or foes. Cancer Lett., 2017, 387, 46-60.
[3]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Bray, F. Cancer incidence and mortality worlwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136, 359-386.
[4]
Almeida, V.L.; Leitão, L.; Barret, L.C.; Montanari, C.A.; Donnici, C.L.; Lopes, M.T.P. Cãncer agentes antineoplâsicos ciclo-celular especáficos ciclo-celular nío especáficos que interagem com DNA: Uma introduçío. Quim. Nova, 2005, 28, 118-129.
[5]
Akhdar, H.; Legendre, C.; Aninat, C.; Morel, F. Anticancer drug
metabolism: Chemotherapy resistance and new therapeutic approaches.
In: Topics on Drug Metabolism, Paxton, J. Ed.; In Tech.:
Rijeka, 2012, pp. 137-170.
[6]
Luqmani, Y.A. Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract., 2005, 14, 35-48.
[7]
Ismael, G.F.; Rosa, D.D.; Mano, M.S.; Awada, A. Novel cytotoxic drugs: old challenges, new solutions. Cancer Treat. Ver., 2008, 34, 81-91.
[8]
Narang, A.S.; Desai, D.S. Anticancer drug development: Unique aspects of pharmaceutical development.In: Pharmaceutical Perspectives of Cancer Therapeutics; Lu, Y.; Mahato, R.I., Eds.; Springer Science: New York, 2009.
[9]
Ferreira, D.; Adega, F.; Chaves, R. The importance of cancer cell lines as in vitro models in cancer methylome analysis and anticancer drugs testing.In: Cancer Proteomics -Novel Approaches in Biomarkers Discovery, Oncogenomics, Therapeutic Targets in Cancer; Camarillo, C.L.; Ocampo, E.A., Eds.; 1st ed InTech: Rijeka, 2013.
[10]
Mishra, R.; Jha, K.K.; Kumar, S.; Tomer, I.S. Synthesis, properties and biological activity of thiophene: A review. Der Pharm Chem., 2011, 3, 38-54.
[11]
Meotti, F.C.; Silva, D.O.; Santos, A.R.S.; Zeni, G.; Rocha, J.B.T.; Nogueira, C.W. Thiophenes and furans derivatives: A new class of potencial pharmacological agents. Environ. Toxicol. Pharmacol., 2003, 15, 37-44.
[12]
Chaudhary, A.; Jha, K.K.; Kumar, S. Biological diversity of thiophene: A review. J. Adv. Sci. Res., 2012, 3, 3-10.
[13]
Mohammad, A.I.C.; Satyendra, D.; Apurba, T.; Patel, M.; Monika, K.; Girish, K.; Mohan, S.; Saravanan, J. Synthesis and antimicrobial screening of some novel substituted thiophenes. Hyg. J. Drugs Med., 2012, 4, 112-118.
[14]
Wermuth, C.G. The Practice of Medicinal Chemistry, 3th; ed.; London, Academic Press, 2011.
[15]
Garton, A.J.; Crew, A.P.; Franklin, M.; Cooke, A.R.; Wynne, G.M.; Castaldo, L.; Kahler, J.; Winski, S.L.; Franks, A.; Brown, E.N.; Bittner, M.A.; Keily, J.F.; Briner, P.; Hidden, C.; Srebernak, M.C.; Pirrit, C.; O’Connor, M.; Chan, A.; Vulevic, B.; Henninger, D.; Hart, K.; Sennello, R.; Li, A.H.; Zhang, T.; Richardson, F.; Emerson, D.L.; Castelhano, A.L.; Arnold, D.; Gibson, N.W. OSI-930: A novel selective inhibitor of Kit and kinase insert domain receptor tyrosine kinases with antitumor activity in mouse xenograft models. Cancer Res., 2006, 66, 1015-1024.
[16]
Yap, T.A.; Arkenau, H.T.; Camidge, D.R.; George, S.; Serkova, N.J.; Gwyther, S.J.; Spratlin, J.L.; Lal, R.; Spicer, J.; Desouza, N.M.; Leach, M.O.; Chick, J.; Poondru, S.; Boinpally, R.; Gedrich, R.; Brock, K.; Stephens, A.; Eckhardt, S.G.; Kaye, S.B.; Demetri, G.; Scurr, M. First-in-human phase i trial of two schedules of osi-930, a novel multikinase inhibitor, incorporating translational proof-of-mechanism studies. Clin. Cancer Res., 2013, 19, 909-919.
[17]
Buchdunger, E.; Cioffi, C.L.; Law, N.; Stover, D.; Ohno-Jones, S.; Druker, B.J.; Lydon, N.B. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J. Pharmacol. Exp. Ther., 2000, 295, 139-145.
[18]
Arora, M.; Saravanan, J.; Mohan, S.; Bhattacharjee, S. Synthesis, characterization and antimicrobial activity of some schiff bases of 2-amino-n-(p-acetamidophenyl carboxamido)-4, 5, 6, 7-tetramethylene thiophenes. Int. J. Pharma Sci., 2013, 5, 315-319.
[19]
Rao, S.D.; Rasheed, S.; Basha, T.S.K.; Raju, N.C.; Naresh, K. SiO2/ZnCl2 catalyzed a -aminophosphonates and phosphonated N-(substitued phenyl) sulfonamides of 2-aminothiophene synthesis and biological evaluation. Der Pharm Chem., 2013, 5, 61-74.
[20]
Khan, K.M.; Nullah, Z.; Lodhi, M.A.; Jalil, S.; Choudhary, M.I. (2006) Synthesis and anti-inflammatory activity of some selected aminothiophene analogs. J. Enzyme Inhib. Med. Chem. 2006, 21,, , 139-143.
[21]
Fortes, A.C. 1.; Almeida, A.A.; Mendonça-Júnior, F.J.; Freitas, R.M.; Soares-Sobrinho, J.L.; Soares, M.F. Anxiolytic properties of new chemical entity, 5TIO1. Neurochem. Res., 2013, 38, 726-731.
[22]
Rodrigues, K.A.F.; Dias, C.N.S.; Néris, P.L.N.; Rocha, J.C.; Scotti, M.T.; Scotti, L.; Mascarenhas, S.R.; Veras, R.C.; Medeiros, I.A.; Keesen, T.D.L.; Oliveira, T.B.; Lima, M.C.A.; Balliano, T.L.; Aquino, T.M.; Moura, R.O.; Junior, F.J.; Oliveira, M.R. 2-amino thiophene derivatives present antileishmanial activity mediated by apoptosis and immunomodulation in vitro. Eur. J. Med. Chem., 2015, 106, 1-14.
[23]
Duffy, J.L.; Kirk, B.A.; Konteatis, Z.; Campbell, E.L.; Liang, R.; Brady, E.J.; Candelore, M.R.; Ding, V.D.H.; Jiang, G.; Liu, F.; Qureshi, S.A.; Saperstein, R.; Szalkowski, D.; Tong, S.; Tota, L.M.; Xie, D.; Yang, X.; Zafian, P.; Zheng, S.; Chapman, K.T.; Zhang, B.B.; Tata, J.R. Discovery and investigation of a novel class of thiophene-derived antagonists of the human glucagon receptor. Bioorg. Med. Chem. Lett., 2005, 15, 1401-1405.
[24]
Abo-Salem, H.M.; El-Sawy, E.R.; Fathy, A.; Mandour, A.H. Synthesis, antifungal activity, and molecular docking study of some novel highly substituted 3- indolylthiophene derivatives. Egypt. Pharmaceut. J., 2014, 13, 71-86.
[25]
Tavadyan, L.A.; Manukyan, Z.H.; Harutyunyan, L.H.; Musayelyan, M.V.; Sahakyan, A.D.; Tonikyan, H.G. Antioxidant Properties of Selenophene, Thiophene and Their Aminocarbonitrile Derivatives. Antioxidants, 2017, 6, 10-10.
[26]
Jagadish, E.R.; Mohan, S.; Saravanan, J.; Satyendra, D.; Sree, S.P.; Apurba, T.; Manoj, K.; Rama, K.S. Synthesis and in-vitro anti-platelet aggregation activity of some new substituted thiophenes. Hyg. J. Drugs Med., 2013, 5, 87-96.
[27]
Romagnoli, R.; Baraldi, P.G.; Carrion, M.D.; Cara, C.L.; Preti, D.; Fruttarolo, F.; Pavani, M.G.; Tabrizi, M.A.; Tolomeo, M.; Grimaudo, S.; Cristina, A.D.; Balzarini, J.; Hadfield, J.A.; Brancale, A.; Hamel, E. Synthesis and biological evaluation of 2- and 3-aminobenzo[b] thiophene derivatives as antimitotic agents and inhibitors of tubulin polymerization. J. Med. Chem., 2007, 50, 2273-2277.
[28]
Liu, L.; Siegmund, A.; Xi, N.; Kaplan-Lefko, P.; Rex, K.; Chen, A.; Lin, J.; Moriguchi, J.; Berry, L.; Huang, L.Y.; Teffera, Y.; Yang, Y.J.; Zhang, Y.H.; Bellon, S.F.; Lee, M.; Shimanovich, R.; Bak, A.; Dominguez, C.; Norman, M.H.; Harmange, J.C.; Dussault, I.; Kim, T.S. Discovery of a potent, selective, and orally bioavailable c-Met Inhibitor: 1-(2-Hydroxy-2-methylpropyl)-N-(5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl)-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (AMG 458). J. Med. Chem., 2008, 51, 3688-3691.
[29]
Peach, M.L.; Tan, N.; Tan, N.; Choyke, S.J.; Giubellino, A.; Athauda, G.; Burke, T.R.; Nicklaus, M.C.; Bottaro, D.P. Directed discovery of agents targeting the met tyrosine kinase domain by virtual screening. J. Med. Chem., 2009, 52, 943-951.
[30]
Knudsen, B.S.; Gmyrek, G.A.; Inra, J.; Scherr, D.S.; Vaughan, E.D.; Nanus, D.M.; Kattan, M.W.; Gerald, W.L.; Woude, G.F. High expression of the Met receptor in prostate cancer metastasis to bone. Urology, 2002, 60, 1113-1117.
[31]
Verras, M.; Lee, J.; Xue, H.; Li, T.H.; Wang, Y.; Sun, Z. The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression. Cancer Res., 2007, 67, 967-975.
[32]
Bacco, F.D.; Luraghi, P.; Medico, E.; Reato, G.; Girolami, F.; Perera, T.; Gabriele, P.; Comoglio, P.M.; Boccaccio, C. Induction of MET by ionizing radiat.on and its role in radioresistance and invasive growth of cancer. J. Natl. Cancer Inst., 2011, 103, 645-661.
[33]
Zhu, W.; Wang, W.; Xu, S.; Wang, J.; Tang, Q.; Wu, C.; Zhao, Y.; Zheng, P. Synthesis, and docking studies of phenylpyrimidine-carboxamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety as c-Met inhibitors. Bioorg. Med. Chem., 2016, 24, 1749-1756.
[34]
Zhang, Z.; Lee, J.C.; Li, L.; Olivas, V.; Au, V.; LaFramboise, T.; Abdel-Rahman, M.; Wang, X.; Levine, A.D.; Rho, J.K.; Choi, Y.J.; Choi, C.M.; Kim, S.W.; Jang, S.J.; Park, Y.S.; Kim, W.S.; Lee, D.H.; Lee, J.S.; Miller, V.A.; Arcila, M.; Ladanyi, M.; Moonsamy, P.; Sawyers, C.; Boggon, T.J.; Ma, P.C.; Costa, C.; Taron, M.; Rosell, R.; Halmos, B.; Bivona, T.G. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat. Genet., 2012, 44, 852-860.
[35]
Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. Nature, 2001, 411, 355-365.
[36]
DiSalvo, J.; Bayne, M.L.; Conn, G.; Kwok, P.W.; Trivedi, P.G.; Soderman, D.D.; Palisi, T.M.; Sullivan, K.A.; Thomas, K.A. Purification and characterization of a naturally occurring vascular endothelial growth factor. Placenta growth factor heterodimer. J. Biol. Chem., 1995, 270, 7717-7723.
[37]
Senger, D.R.; Galli, S.J.; Dvorak, A.M.; Perruzzi, C.A.; Harvey, V.S.; Dvorak, H.F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 1983, 219, 983-985.
[38]
Ferrara, N. Vegf and the quest for tumour angiogenesis factors. Nat. Rev. Cancer, 2002, 2, 795-803.
[39]
Jonathan, B.B.; Georgina, A.H. New substructure filters for removal of Pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53, 2719-2740.
[40]
McGovern, S.L.; Caselli, E.; Grigorieff, N.; Shoichet, B.K. A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J. Med. Chem., 2002, 45, 1712-1722.
[41]
McGovern, S.L.; Shoichet, B.K. Kinase inhibitors: Not just for kinases anymore. J. Med. Chem., 2003, 46, 1478-1483.
[42]
Feng, B.Y.; Shelat, A.; Doman, T.N.; Guy, R.K.; Shoichet, B.K. High-throughput assays for promiscuous inhibitors. Nat. Chem. Biol., 2005, 1, 146-148.
[43]
Feng, B.Y.; Shoichet, B.K. Synergy and antagonism of promiscuous inhibition in multiple-compound libraries. J. Med. Chem., 2006, 49, 2151-2154.
[44]
Metz, J.T.; Huth, J.R.; Hajduk, P.J. Enhancement of chemical rules for predicting compound reactivity towards protein thiol groups. J. Computer. Aided Mol. Des., 2007, 21, 139-144.
[45]
Huth, J.R.; Song, D.; Mendoza, R.R.; Black-Schaefer, C.L.; Mack, J.C.; Dorwin, S.A.; Ladror, U.S.; Severin, J.M.; Walter, K.A.; Bartley, D.M.; Hajduk, P. Toxicological evaluation of thiol-reactive compounds identified using a La assay to detect reactive molecules by nuclear magnetic resonance. Chem. Res. Toxicol., 2007, 20, 1752-1759.
[46]
Jonathan, B.B.; Michael, A.W. Chemistry: Chemical con artists foil drug discovery. Nature, 2014, 513, 481-483.
[47]
Jayme, L.D.; Michael, A.W. The essential roles of chemistry in high-throughput screening triage. Future Med. Chem., 2014, 6, 1265-1290.
[48]
Martin, P.; Stephane, J. Pan assay interference compounds (PAINS) and other promiscuous compounds in antifungal research. J. Med. Chem., 2016, 59, 497-503.
[49]
Cheng, F.; Li, A.W. SAR: a comprehensive source and free tool for assessmentof chemical ADMET properties. J. Chem. Inf. Mod., 2012, 52, 3099-3105.
[50]
Drew, M.G.B. Phenylhydrazone derivatives of dimedone: Hydrogen bonding, spectral (I3C and H Nuclear Magnetic Resonance) and conformational considerations. Crystal and molecular structures of 5,5-Dimethylcyclohexane-1, 2,3-trione 2-(4-Methylphenylhydrazone) (1) and 5,5-Dimethylcyclohexane-1,2,3-trione 2-(4-Nitrophenyl-hydrazone) (2). J. Chem. Soc. Perkin Trans., 1982, II, 1297-1303.
[51]
Mohareb, R.M.; Zohdi, H.F.; Sherif, S.M.; Wardakhan, W.W. Heterocyclic synthesis with isothiocyanate: An expeditious synthetic route for polyfunctionally substituted 3-(thiazol-2′-ylidene)pyridines and their fused derivatives. Tetrahedron, 1994, 50, 5807-5820.
[52]
El-Kousy, M.; Mohareb, R.M.; Sherif, S.M. Heterocyclic Synthesis With Isothiocyanate: An expecditious synthetic route to polyfunctionally substituted thiophene, pyrazole, oxazole, 2,3-dihydrothiazole, 2-(pyrazol-4-ylideno)thiazole and 5-(thiazol-2-ylideno)-pyrimidine derivatives. J. Chem. Res., 1993, 312, 1981.
[53]
Mohareb, R.M.; Fleita, D.H.; Sakka, O.K. Novel synthesis of hydrazide-hydrazone derivatives and their utilization in the synthesis of coumarin, pyridine, thiazole and thiophene derivatives with antitumor activity. Molecules, 2010, 23, 16-27.
[54]
Wardakhan, W.W.; El-Sayed, N.N.; Mohareb, R.M. Synthesis and anti-tumor evaluation of novel hydrazide and hydrazide-hydrazone derivatives. Acta Pharm., 2013, 63, 45-57.
[55]
Angelova, V.T.; Valcheva, V.; Vassilev, N.G.; Buyukliev, R.; Momekov, G.; Dimitrov, I.; Saso, L.; Djukic, M.; Shivachev, B. (2016) Antimycobacterial activity of novel hydrazide-hydrazone derivatives with 2H-chromene and coumarin scaffold. Bioorg. Med. Chem. Lett., 2016, 27, 223-227.
[56]
Xu, X.; Shi, W.; Zhou, Y.; Wang, Y.; Zhang, M.; Song, L.; Deng, H. Convenient one-pot synthesis of monofluorinated functionalized 4-H-pyran derivatives via multi-component reactions. J. Fluorine. Chem., 2015, 176, 127-133.
[57]
Penta, S.; Gadidasu, K.K.; Basavoju, S.; Rao, V.R. (2013) An efficient one-pot synthesis of pyrazolyl-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazin-6-yl)-2H-pyran-2-one derivatives via multicomponent approach and their potential antimicrobial and nematicidal activities. Tetrahed. Lett., 2013, (54), 5663-5666.
[58]
Vereshchagin, A.N.; Michail, N.E.; Ryzhkov, F.V.; Nasybullin, R.F.; Bobrovsky, S.I.; Goloveshkin, M.P. A.S.; Egorov, M.P. Multicomponent assembling of salicylaldehydes, malononitrile, and 4-hydroxy-6-methyl-2H-pyran-2-one: A fast and efficient approach to medicinally relevant 2-amino-4H-chromene scaffold. C. R. Chimie., 2015, 18, 1344-1349.
[59]
Hazeri, N.; Maghsoodlou, M.T.; Mir, F.; Kangani, M.; Saravani, H.; Molashahi, E. An efficient one-pot three-component synthesis of tetrahydrobenzo[b]pyran and 3,4-dihydropyrano[c]chromene derivatives using starch solution as catalyst. Chin. J. Catal., 2014, 35, 391-395.
[60]
Wagh, Y.B.; Tayade, Y.A.; Padvi, S.A.; Patil, B.S.; Patil, N.B.; Dalal, D.S. A cesium fluoride promoted efficient and rapid multicomponent synthesis of functionalized 2-amino-3-cyano-4H-pyran and spirooxindole derivatives. Chin. Chem. Lett., 2015, 26, 1273-1277.
[61]
Jolodar, O.G.; Shirini, F.; Seddighi, M. Introduction of a novel basic ionic liquid containing dual basic functional groups for the efficient synthesis of spiro-4H-pyrans. J. Mol. Liquid., 2016, 224, 1092-1111.
[62]
Azzam, R.A.; Mohareb, R.M. Multicomponent reactions of acetoacetanilide derivatives with aromatic aldehydes and cyanomethylene reagents to produce 4H-pyran and 1,4-dihydropyridine derivatives with antitumor activities. Chem. Pharm. Bull., 2015, 63, 1055-1064.
[63]
Tabassum, S.; Govindaraju, S.; Khan, R.R.; Pasha, M.A. Ultrasound mediated, iodine catalyzed green synthesis of novel 2-amino-3-cyano-4H-pyran derivatives. Ultrasonic. Sonochem., 2015, 24, 1-7.
[64]
El-Sayed, N.N.E.; Abdelaziz, M.A.; Wardakhan, W.; Mohareb, R.M. The Knoevenagel reaction of cyanoacetylhydrazine with pregnenolone: Synthesis of thiophene, thieno[2,3-d]pyrimidine, 1,2,4-triazole, pyran and pyridine derivatives with anti-inflammatory and anti-ulcer activities. Steroids, 2016, 107, 98-111.