Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Nitrogen Mustards as Anticancer Chemotherapies: Historic Perspective, Current Developments and Future Trends

Author(s): Benjamin Diethelm-Varela, Yong Ai, Dongdong Liang and Fengtian Xue*

Volume 19, Issue 9, 2019

Page: [691 - 712] Pages: 22

DOI: 10.2174/1568026619666190401100519

Price: $65

Abstract

Nitrogen mustards, a family of DNA alkylating agents, marked the start of cancer pharmacotherapy. While traditionally characterized by their dose-limiting toxic effects, nitrogen mustards have been the subject of intense research efforts, which have led to safer and more effective agents. Even though the alkylating prodrug mustards were first developed decades ago, active research on ways to improve their selectivity and cytotoxic efficacy is a currently active topic of research. This review addresses the historical development of the nitrogen mustards, outlining their mechanism of action, and discussing the improvements on their therapeutic profile made through rational structure modifications. A special emphasis is made on discussing the nitrogen mustard prodrug category, with Cyclophosphamide (CPA) serving as the main highlight. Selected insights on the latest developments on nitrogen mustards are then provided, limiting such information to agents that preserve the original nitrogen mustard mechanism as their primary mode of action. Additionally, future trends that might follow in the quest to optimize these invaluable chemotherapeutic medications are succinctly suggested.

Keywords: CPA, DNA, Nitrogen mustards, Chemotherapeutic medications, Cytotoxic efficacy, Pharmacotherapy.

Graphical Abstract

[1]
Kohn, K.W.; Spears, C.L.; Doty, P. Inter-strand crosslinking of DNA by nitrogen mustard. J. Mol. Biol., 1966, 19(2), 266-288. [http://dx.doi.org/10.1016/S0022-2836(66)80004-9]. [PMID: 4961329].
[2]
Rink, S.M.; Solomon, M.S.; Taylor, M.J.; Rajur, S.B.; McLaughlin, L.W.; Hopkins, P.B. Covalent structure of a nitrogen mustard-induced DNA interstrand cross-link: an N7-to-N7 linkage of deoxyguanosine residues at the duplex sequence 5′-d(GNC). J. Am. Chem. Soc., 1993, 115, 2551-2557. [http://dx.doi.org/10.1021/ja00060a001].
[3]
Rink, S.M.; Hopkins, P.B. Direct evidence for DNA intrastrand cross-linking by the nitrogen mustard mechlorethamine in synthetic oligonucleotides. Bioorg. Med. Chem. Lett., 1995, 5, 2845-2850. [http://dx.doi.org/10.1016/0960-894X(95)00498-I].
[4]
Povirk, L.F.; Shuker, D.E. DNA damage and mutagenesis induced by nitrogen mustards. Mutat. Res., 1994, 318(3), 205-226. [http://dx.doi.org/10.1016/0165-1110(94)90015-9]. [PMID: 7527485].
[5]
Singh, R.K.; Kumar, S.; Prasad, D.N.; Bhardwaj, T.R. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives. Eur. J. Med. Chem., 2018, 151, 401-433. [http://dx.doi.org/10.1016/j.ejmech.2018.04.001]. [PMID: 29649739].
[6]
Ralhan, R.; Kaur, J. Alkylating agents and cancer therapy. Expert Opin. Ther. Pat., 2007, 17, 1061-1075. [http://dx.doi.org/10.1517/13543776.17.9.1061].
[7]
Huitema, A.D.; Smits, K.D.; Mathôt, R.A.; Schellens, J.H.; Rodenhuis, S.; Beijnen, J.H. The clinical pharmacology of alkylating agents in high-dose chemotherapy. Anticancer Drugs, 2000, 11(7), 515-533. [http://dx.doi.org/10.1097/00001813-200008000-00002]. [PMID: 11036954].
[8]
Krumbhaar, E.B.; Krumbhaar, H.D. The blood and bone marrow in yellow cross gas (mustard gas) poisoning: changes produced in the bone marrow of fatal cases. J. Med. Res., 1919, 40, 497-508. [PMID: 19972497].
[9]
Pappenheimer, A.M. The effects of intravenous injections of dichlorethylsulphide in rabbits. Proc. Soc. Exp. Biol. Med., 1919, 16, 92-93. [http://dx.doi.org/10.3181/00379727-16-53].
[10]
Gilman, A.; Philips, F.S. The biological actions and therapeutic applications of the B-chloroethyl amines and sulfides. Science, 1946, 103, 409-415. [http://dx.doi.org/10.1126/science.103.2675.409].
[11]
Colvin, M. Alkylating AgentsHolland-Frei Cancer Medicine; 6th ed; Kufe, D.P.R.; Weichselbaum, R.; Bast, R.; Gansler, T.; Holland, J.; Frei, E., Eds.; B.C. Decker Inc, 2003.
[12]
Hait, W.N. Anticancer drug development: the grand challenges. Nat. Rev. Drug Discov., 2010, 9(4), 253-254. [http://dx.doi.org/10.1038/nrd3144]. [PMID: 20369394].
[13]
Anslow, W.P., Jr; Karnovsky, D.A. The toxicity and pharmacological action of the nitrogen mustards and certain related compounds. J. Pharmacol. Exp. Ther., 1947, 91(3), 224-235. [PMID: 20270127].
[14]
Brookes, P.; Lawley, P.D. The reaction of mono- and di-functional alkylating agents with nucleic acids. Biochem. J., 1961, 80(3), 496-503. [http://dx.doi.org/10.1042/bj0800496]. [PMID: 16748923].
[15]
Osborne, M.R.; Wilman, D.E.; Lawley, P.D. Alkylation of DNA by the nitrogen mustard bis(2-chloroethyl)methylamine. Chem. Res. Toxicol., 1995, 8(2), 316-320. [http://dx.doi.org/10.1021/tx00044a018]. [PMID: 7766817].
[16]
Polavarapu, A.; Stillabower, J.A.; Stubblefield, S.G.; Taylor, W.M.; Baik, M.H. The mechanism of guanine alkylation by nitrogen mustards: a computational study. J. Org. Chem., 2012, 77(14), 5914-5921. [http://dx.doi.org/10.1021/jo300351g]. [PMID: 22681226].
[17]
Lawley, P.D.; Phillips, D.H. DNA adducts from chemotherapeutic agents. Mutat. Res., 1996, 355(1-2), 13-40. [http://dx.doi.org/10.1016/0027-5107(96)00020-6]. [PMID: 8781575].
[18]
Minko, I.; Rizzo, J. Mutagenic potential of nitrogen mustard-induced formamidopyrimidine DNA adduct: Contribution of the non-canonical α-anomer. J. Biol. Chem., 2017, 292(46), 18790-18799. [DOI: 10.1074/jbc.M117.802520].
[19]
Kallama, S.; Hemminki, K. Alkylation of guanosine by phosphoramide mustard, chloromethine hydrochloride and chlorambucil. Acta Pharmacol. Toxicol. (Copenh.), 1984, 54(3), 214-220. [http://dx.doi.org/10.1111/j.1600-0773.1984.tb01920.x]. [PMID: 6720319].
[20]
Klamerth, O.L. Abnormal base pairing under the influence of nitrogen mustard. FEBS Lett., 1973, 29(1), 35-37. [http://dx.doi.org/10.1016/0014-5793(73)80009-2]. [PMID: 11946902].
[21]
Loeber, R.L.; Michaelson-Richie, E.D.; Codreanu, S.G.; Liebler, D.C.; Campbell, C.R.; Tretyakova, N.Y. Proteomic analysis of DNA-protein cross-linking by antitumor nitrogen mustards. Chem. Res. Toxicol., 2009, 22(6), 1151-1162. [http://dx.doi.org/10.1021/tx900078y]. [PMID: 19480393].
[22]
Michaelson-Richie, E.D.; Ming, X.; Codreanu, S.G.; Loeber, R.L.; Liebler, D.C.; Campbell, C.; Tretyakova, N.Y. Mechlorethamine-induced DNA-protein cross-linking in human fibrosarcoma (HT1080) cells. J. Proteome Res., 2011, 10(6), 2785-2796. [http://dx.doi.org/10.1021/pr200042u]. [PMID: 21486066].
[23]
Groehler, A.I.V.; Degner, A.; Tretyakova, N.Y. Mass spectrometry-based tools to characterize dna-protein cross-linking by bis-electrophiles. Basic Clin. Pharmacol. Toxicol., 2017, 121(Suppl. 3), 63-77. [http://dx.doi.org/10.1111/bcpt.12751]. [PMID: 28032943].
[24]
Stornetta, A.; Zimmermann, M.; Cimino, G.D.; Henderson, P.T.; Sturla, S.J. DNA adducts from anticancer drugs as candidate predictive markers for precision medicine. Chem. Res. Toxicol., 2017, 30(1), 388-409. [http://dx.doi.org/10.1021/acs.chemrestox.6b00380]. [PMID: 27936622].
[25]
Masta, A.; Gray, P.J.; Phillips, D.R. Nitrogen mustard inhibits transcription and translation in a cell free system. Nucleic Acids Res., 1995, 23(17), 3508-3515. [http://dx.doi.org/10.1093/nar/23.17.3508]. [PMID: 7567463].
[26]
Masta, A.; Gray, P.J.; Phillips, D.R. Molecular basis of nitrogen mustard effects on transcription processes: role of depurination. Nucleic Acids Res., 1994, 22(19), 3880-3886. [http://dx.doi.org/10.1093/nar/22.19.3880]. [PMID: 7937107].
[27]
Gray, P.J.; Cullinane, C.; Phillips, D.R. In vitro transcription analysis of DNA alkylation by nitrogen mustard. Biochemistry, 1991, 30(32), 8036-8040. [http://dx.doi.org/10.1021/bi00246a022]. [PMID: 1868077].
[28]
Wang, F.; Li, F.; Ganguly, M.; Marky, L.A.; Gold, B.; Egli, M.; Stone, M.P. A bridging water anchors the tethered 5-(3-aminopropyl)-2′-deoxyuridine amine in the DNA major groove proximate to the N+2 C.G base pair: Implications for formation of interstrand 5′-GNC-3′ cross-links by nitrogen mustards. Biochemistry, 2008, 47(27), 7147-7157. [http://dx.doi.org/10.1021/bi800375m]. [PMID: 18549246].
[29]
Thomas, C.B.; Kohn, K.W.; Bonner, W.M. Characterization of DNA-protein cross-links formed by treatment of L1210 cells and nuclei with bis(2-chloroethyl)methylamine (nitrogen mustard). Biochemistry, 1978, 17(19), 3954-3958. [http://dx.doi.org/10.1021/bi00612a012]. [PMID: 568484].
[30]
Mangerich, A.; Debiak, M.; Birtel, M.; Ponath, V.; Balszuweit, F.; Lex, K.; Martello, R.; Burckhardt-Boer, W.; Strobelt, R.; Siegert, M.; Thiermann, H.; Steinritz, D.; Schmidt, A.; Bürkle, A. Sulfur and nitrogen mustards induce characteristic poly(ADP-ribosyl)ation responses in HaCaT keratinocytes with distinctive cellular consequences. Toxicol. Lett., 2016, 244, 56-71. [http://dx.doi.org/10.1016/j.toxlet.2015.09.010]. [PMID: 26383629].
[31]
Osawa, T.; Davies, D.; Hartley, J.A. Mechanism of cell death resulting from DNA interstrand cross-linking in mammalian cells. Cell Death Dis., 2011, 2e187 [http://dx.doi.org/10.1038/cddis.2011.70]. [PMID: 21814285].
[32]
Jacobson, L.O.; Spurr, C.L. Nitrogen mustard therapy; studies on the effect of methyl-bis (beta-chloroethyl) amine hydrochloride on neoplastic diseases and allied disorders of the hemopoietic system. J. Am. Med. Assoc., 1946, 132, 263-271. [http://dx.doi.org/10.1001/jama.1946.02870400011003]. [PMID: 20997209].
[33]
Goodman, L.S.; Wintrobe, M.M. Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J. Am. Med. Assoc., 1946, 132, 126-132. [http://dx.doi.org/10.1001/jama.1946.02870380008004]. [PMID: 20997191].
[34]
Brown, A.; Davis, L.J. the haematological effects of nitrogen mustard therapy with special reference to the cytology of the sternal bone marrow. Glasg. Med. J., 1950, 31(3), 93-113. [PMID: 30438461].
[35]
Kemp, K.; Morse, R.; Sanders, K.; Hows, J.; Donaldson, C. Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells. Ann. Hematol., 2011, 90(7), 777-789. [http://dx.doi.org/10.1007/s00277-010-1141-8]. [PMID: 21234567].
[36]
Malaviya, R.; Sunil, V.R.; Venosa, A.; Vayas, K.N.; Businaro, R.; Heck, D.E.; Laskin, J.D.; Laskin, D.L. Macrophages and inflammatory mediators in pulmonary injury induced by mustard vesicants. Ann. N. Y. Acad. Sci., 2016, 1374(1), 168-175. [http://dx.doi.org/10.1111/nyas.13123]. [PMID: 27351588].
[37]
Goswami, D.G.; Tewari-Singh, N.; Dhar, D.; Kumar, D.; Agarwal, C.; Ammar, D.A.; Kant, R.; Enzenauer, R.W.; Petrash, J.M.; Agarwal, R. Nitrogen mustard-induced corneal injury involves DNA damage and pathways related to inflammation, epithelial-stromal separation, and neovascularization. Cornea, 2016, 35(2), 257-266. [http://dx.doi.org/10.1097/ICO.0000000000000685]. [PMID: 26555588].
[38]
Malaviya, R.; Sunil, V.R.; Venosa, A.; Vayas, K.N.; Heck, D.E.; Laskin, J.D.; Laskin, D.L. Inflammatory mechanisms of pulmonary injury induced by mustards. Toxicol. Lett., 2016, 244, 2-7. [http://dx.doi.org/10.1016/j.toxlet.2015.10.011]. [PMID: 26478570].
[39]
Malaviya, R.; Sunil, V.R.; Venosa, A.; Verissimo, V.L.; Cervelli, J.A.; Vayas, K.N.; Hall, L.; Laskin, J.D.; Laskin, D.L. Attenuation of nitrogen mustard-induced pulmonary injury and fibrosis by anti-tumor necrosis factor-α antibody. Toxicol. Sci., 2015, 148(1), 71-88. [http://dx.doi.org/10.1093/toxsci/kfv161]. [PMID: 26243812].
[40]
Venosa, A.; Malaviya, R.; Choi, H.; Gow, A.J.; Laskin, J.D.; Laskin, D.L. Characterization of distinct macrophage subpopulations during nitrogen mustard-induced lung injury and fibrosis. Am. J. Respir. Cell Mol. Biol., 2016, 54(3), 436-446. [http://dx.doi.org/10.1165/rcmb.2015-0120OC]. [PMID: 26273949].
[41]
Ben-Asher, S. Nitrogen mustard therapy; the use of methyl bis (B chloroethyl) amine hydrochloride in Hodgkin’s disease, leukemia, lymphosarcoma and cancer of the lung. Am. J. Med. Sci., 1949, 217(2), 162-168. [http://dx.doi.org/10.1097/00000441-194902000-00007]. [PMID: 18109277].
[42]
Taffel, M. Experiences in the treatment of neoplastic disease with nitrogen mustard. Yale J. Biol. Med., 1947, 19(6), 971-977. [PMID: 20261644].
[43]
Larrañaga, O.; de Cózar, A.; Cossío, F. P. Mono- and di-alkylation processes of dna bases by nitrogen mustard mechlorethamine. 2017, 18, 3390-3401.
[44]
Gruppi, F.; Hejazi, L.; Christov, P. P.; Krishnamachari, S.; Turesky, R. J.; Rizzo, C. J. Characterization of nitrogen mustard formamidopyrimidine adduct formation of bis (2-chloroethyl) ethylamine with calf thymus DNA and a human mammary cancer cell line. 2015, 28, 1850-1860.
[45]
Nejad, M.I.; Johnson, K.M.; Price, N.E.; Gates, K.S. A new cross-link for an old cross-linking drug: the nitrogen mustard anticancer agent mechlorethamine generates cross-links derived from abasic sites in addition to the expected drug-bridged cross-links. Biochemistry, 2016, 55(50), 7033-7041. [http://dx.doi.org/10.1021/acs.biochem.6b01080]. [PMID: 27992994].
[46]
Rojsitthisak, P.; Jongaroonngamsang, N.; Romero, R.M.; Haworth, I.S. HPLC-UV, MALDI-TOF-MS and ESI-MS/MS analysis of the mechlorethamine DNA crosslink at a cytosine-cytosine mismatch pair. PLoS One, 2011, 6(6)e20745 [http://dx.doi.org/10.1371/journal.pone.0020745]. [PMID: 21673963].
[47]
Bunn, P.A., Jr; Hoffman, S.J.; Norris, D.; Golitz, L.E.; Aeling, J.L. Systemic therapy of cutaneous T-cell lymphomas (mycosis fungoides and the Sézary syndrome). Ann. Intern. Med., 1994, 121(8), 592-602. [http://dx.doi.org/10.7326/0003-4819-121-8-199410150-00007]. [PMID: 8085692].
[48]
Ramsay, D.L.; Meller, J.A.; Zackheim, H.S. Topical treatment of early cutaneous T-cell lymphoma. Hematol. Oncol. Clin. North Am., 1995, 9(5), 1031-1056. [http://dx.doi.org/10.1016/S0889-8588(18)30057-1]. [PMID: 8522483].
[49]
Ceptaris Therapeutics, I. VALCHLOR (mechlorethamine) gel, for topical use. Administration. US: (FDA), 2013.
[50]
Rodney, I.J.; Kindred, C.; Angra, K.; Qutub, O.N.; Villanueva, A. R.; Halder, R. M. Hypopigmented mycosis fungoides: A retrospective clinicohistopathologic study. 2017, 31, 808-814. [http://dx.doi.org/10.1111/jdv.13843]
[51]
Talpur, R.; Venkatarajan, S.; Duvic, M. Mechlorethamine gel for the topical treatment of stage IA and IB mycosis fungoides-type cutaneous T-cell lymphoma. Expert Rev. Clin. Pharmacol., 2014, 7(5), 591-597. [http://dx.doi.org/10.1586/17512433.2014.944500]. [PMID: 25068889].
[52]
Knobler, R. Nitrogen mustard revisited. Br. J. Dermatol., 2014, 170, 495. [http://dx.doi.org/10.1111/bjd.12890].
[53]
Lessin, S.R.; Duvic, M.; Guitart, J.; Pandya, A.G.; Strober, B.E.; Olsen, E.A.; Hull, C.M.; Knobler, E.H.; Rook, A.H.; Kim, E.J.; Naylor, M.F.; Adelson, D.M.; Kimball, A.B.; Wood, G.S.; Sundram, U.; Wu, H.; Kim, Y.H. Topical chemotherapy in cutaneous T-cell lymphoma: Positive results of a randomized, controlled, multicenter trial testing the efficacy and safety of a novel mechlorethamine, 0.02%, gel in mycosis fungoides. JAMA Dermatol., 2013, 149(1), 25-32. [http://dx.doi.org/10.1001/2013.jamadermatol.541]. [PMID: 23069814].
[54]
Lindahl, L.M.; Fenger-Gron, M.; Iversen, L. Topical nitrogen mustard therapy in patients with mycosis fungoides or parapsoriasis. J. Eur. Acad. Dermatol. Venereol., 2013, 27(2), 163-168. [http://dx.doi.org/10.1111/j.1468-3083.2011.04433.x]. [PMID: 22229501].
[55]
Lindahl, L. M.; Fenger-Grøn, M.; Iversen, L. Topical nitrogen mustard therapy in patients with Langerhans cell histiocytosis. 2012, 166, 642-645. [http://dx.doi.org/10.1111/j.1365-2133.2011.10673.x]
[56]
Liner, K.; Brown, C.; McGirt, Y. Clinical potential of mechlorethamine gel for the topical treatment of mycosis fungoides-type cutaneous T-cell lymphoma: a review on current efficacy and safety data. Drug Des. Devel. Ther., 2018, 12, 241-254.
[57]
Jennings, T.; Duffy, R.; Gochoco, A.; Knoblauch, K.; Shi, W.; Alpdogan, S.O.; Porcu, P.; Werner-Wasik, M.; Sahu, J. Valchlor maintenance therapy for patients with mycosis fungoides who received low dose total skin electron beam treatment. Chin. Clin. Oncol., 2018, 8(1), 13. [PMID: 30525753].
[58]
Goswami, D.G.; Kumar, D.; Tewari-Singh, N.; Orlicky, D.J.; Jain, A.K.; Kant, R.; Rancourt, R.C.; Dhar, D.; Inturi, S.; Agarwal, C.; White, C.W.; Agarwal, R. Topical nitrogen mustard exposure causes systemic toxic effects in mice. Exp. Toxicol. Pathol., 2015, 67(2), 161-170. [http://dx.doi.org/10.1016/j.etp.2014.11.006]. [PMID: 25481215].
[59]
Brayboy, L.M.; Clark, H.; Knapik, L.O.; Schnirman, R.E.; Wessel, G.M. Nitrogen mustard exposure perturbs oocyte mitochondrial physiology and alters reproductive outcomes. Reprod. Toxicol., 2018, 82, 80-87. [http://dx.doi.org/10.1016/j.reprotox.2018.10.002]. [PMID: 30308227].
[60]
Budavari, S. Chlorambucil. Merck Index, 11th ed; Merck & Co., Inc., 1989.
[61]
Galton, D.A.; Israels, L.G.; Nabarro, J.D.; Till, M. Clinical trials of p-(di-2-chloroethylamino)-phenylbutyric acid (CB 1348) in malignant lymphoma. BMJ, 1955, 2(4949), 1172-1176. [http://dx.doi.org/10.1136/bmj.2.4949.1172]. [PMID: 13269823].
[62]
Ross, E.D.; Settle, J.A.; Telfer, A.B. Drugs in the Treatment of Leukaemia. BMJ, 1963, 2(5365), 1111-1112. [PMID: 14057717].
[63]
Galton, D.A.G.; Wiltshaw, E.; Szur, L.; Dacie, J.V. Use of chlorambucil and steroids in the treatment of chronic lymphocytic leukaemia. Br. J. Haematol., 1961, 7, 73-98.
[64]
Ezdinli, E.Z.; Stutzman, L. Chlorambucil therapy for lymphomas and chronic lymphocytic leukemia. JAMA, 1965, 191, 444-450. [http://dx.doi.org/10.1001/jama.1965.03080060018003]. [PMID: 14238023].
[65]
Doan, C.A.; Wiseman, B.K.; Bouroncle, B.A. Clinical evaluation of CB 1348 in leukemias and lymphomas. Ann. N. Y. Acad. Sci., 1958, 68(3), 979-995. [http://dx.doi.org/10.1111/j.1749-6632.1958.tb42654.x]. [PMID: 13627745].
[66]
Altman, S.J.; Haut, A.; Cartwright, G.E.; Wintrobe, M.M. Early experience with p-(N, N-di-2-chloroethyl)-aminophenylbutyric acid (CB 1348), a new chemotherapeutic agent effective in the treatment of chronic lymphocytic leukemia. Cancer, 1956, 9(3), 512-517. [http://dx.doi.org/10.1002/1097-0142(195605/06)9:3<512:AID-CNCR2820090312>3.0.CO;2-O]. [PMID: 13330000].
[67]
Gellhorn, A.; Hyman, G.A.; Ultmann, J.E. Chlorambucil in treatment of chronic lymphocytic leukemia and certain lymphomas. J. Am. Med. Assoc., 1956, 162(3), 178-183. [http://dx.doi.org/10.1001/jama.1956.02970200026006]. [PMID: 13357311].
[68]
GlaxoSmithKline. Leukeran® (chlorambucil) TabletsAdministration, U. S. F. a. D. 2006.
[69]
Goede, V.; Eichhorst, B.; Fischer, K.; Wendtner, C.M.; Hallek, M. Past, present and future role of chlorambucil in the treatment of chronic lymphocytic leukemia. Leuk. Lymphoma, 2015, 56(6), 1585-1592. [http://dx.doi.org/10.3109/10428194.2014.963077]. [PMID: 25219593].
[70]
Fourth Annual Report on Carcinogens. Summary 1985 1985, U(NTP 85-002), 85-002.
[71]
Mohamed, D.; Mowaka, S.; Thomale, J.; Linscheid, M.W. Chlorambucil-adducts in DNA analyzed at the oligonucleotide level using HPLC-ESI MS. Chem. Res. Toxicol., 2009, 22(8), 1435-1446. [http://dx.doi.org/10.1021/tx900123r]. [PMID: 19621941].
[72]
Florea-Wang, D.; Haapala, E.; Mattinen, J.; Hakala, K.; Vilpo, J.; Hovinen, J. Reactions of N,N-bis(2-chloroethyl)-p-aminophenylbutyric acid (chlorambucil) with 2′-deoxyadenosine. Chem. Res. Toxicol., 2003, 16(3), 403-408. [http://dx.doi.org/10.1021/tx0256735]. [PMID: 12641441].
[73]
Florea-Wang, D.; Haapala, E.; Mattinen, J.; Hakala, K.; Vilpo, J.; Hovinen, J. Reactions of N,N-bis(2-chloroethyl)-p-aminophenyl-butyric acid (chlorambucil) with 2′-deoxycytidine, 2′-deoxy-5-methylcytidine, and thymidine. Chem. Res. Toxicol., 2004, 17(3), 383-391. [http://dx.doi.org/10.1021/tx034233q]. [PMID: 15025509].
[74]
Haapala, E.; Hakala, K.; Jokipelto, E.; Vilpo, J.; Hovinen, J. Reactions of N,N-bis(2-chloroethyl)-p-aminophenylbutyric acid (chlorambucil) with 2′-deoxyguanosine. Chem. Res. Toxicol., 2001, 14(8), 988-995. [http://dx.doi.org/10.1021/tx000249u]. [PMID: 11511172].
[75]
Steinritz, D.; Schmidt, A.; Simons, T.; Ibrahim, M.; Morguet, C.; Balszuweit, F.; Thiermann, H.; Kehe, K.; Bloch, W.; Bölck, B. Chlorambucil (nitrogen mustard) induced impairment of early vascular endothelial cell migration - effects of α-linolenic acid and N-acetylcysteine. Chem. Biol. Interact., 2014, 219, 143-150. [http://dx.doi.org/10.1016/j.cbi.2014.05.015]. [PMID: 24892517].
[76]
Hillmen, P.; Gribben, J.G.; Follows, G.A.; Milligan, D.; Sayala, H.A.; Moreton, P.; Oscier, D.G.; Dearden, C.E.; Kennedy, D.B.; Pettitt, A.R.; Nathwani, A.; Varghese, A.; Cohen, D.; Rawstron, A.; Oertel, S.; Pocock, C.F. Rituximab plus chlorambucil as first-line treatment for chronic lymphocytic leukemia: Final analysis of an open-label phase II study. J. Clin. Oncol., 2014, 32(12), 1236-1241. [http://dx.doi.org/10.1200/JCO.2013.49.6547]. [PMID: 24638012].
[77]
Foà, R.; Del Giudice, I.; Cuneo, A.; Del Poeta, G.; Ciolli, S.; Di Raimondo, F.; Lauria, F.; Cencini, E.; Rigolin, G.M.; Cortelezzi, A.; Nobile, F.; Callea, V.; Brugiatelli, M.; Massaia, M.; Molica, S.; Trentin, L.; Rizzi, R.; Specchia, G.; Di Serio, F.; Orsucci, L.; Ambrosetti, A.; Montillo, M.; Zinzani, P.L.; Ferrara, F.; Morabito, F.; Mura, M.A.; Soriani, S.; Peragine, N.; Tavolaro, S.; Bonina, S.; Marinelli, M.; De Propris, M.S.; Starza, I.D.; Piciocchi, A.; Alietti, A.; Runggaldier, E.J.; Gamba, E.; Mauro, F.R.; Chiaretti, S.; Guarini, A. Chlorambucil plus rituximab with or without maintenance rituximab as first-line treatment for elderly chronic lymphocytic leukemia patients. Am. J. Hematol., 2014, 89(5), 480-486. [http://dx.doi.org/10.1002/ajh.23668]. [PMID: 24415640].
[78]
Goede, V.; Fischer, K.; Busch, R.; Engelke, A.; Eichhorst, B.; Wendtner, C.M.; Chagorova, T.; de la Serna, J.; Dilhuydy, M.S.; Illmer, T.; Opat, S.; Owen, C.J.; Samoylova, O.; Kreuzer, K.A.; Stilgenbauer, S.; Döhner, H.; Langerak, A.W.; Ritgen, M.; Kneba, M.; Asikanius, E.; Humphrey, K.; Wenger, M.; Hallek, M. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N. Engl. J. Med., 2014, 370(12), 1101-1110. [http://dx.doi.org/10.1056/NEJMoa1313984]. [PMID: 24401022].
[79]
Hillmen, P.; Robak, T.; Janssens, A.; Babu, K.G.; Kloczko, J.; Grosicki, S.; Doubek, M.; Panagiotidis, P.; Kimby, E.; Schuh, A.; Pettitt, A.R.; Boyd, T.; Montillo, M.; Gupta, I.V.; Wright, O.; Dixon, I.; Carey, J.L.; Chang, C.N.; Lisby, S.; McKeown, A.; Offner, F. Chlorambucil plus ofatumumab versus chlorambucil alone in previously untreated patients with chronic lymphocytic leukaemia (COMPLEMENT 1): A randomised, multicentre, open-label phase 3 trial. Lancet, 2015, 385(9980), 1873-1883. [http://dx.doi.org/10.1016/S0140-6736(15)60027-7]. [PMID: 25882396].
[80]
Laurenti, L.; Innocenti, I.; Autore, F.; Ciolli, S.; Mauro, F.R.; Mannina, D.; Del Poeta, G.; D’Arena, G.; Massaia, M.; Coscia, M.; Molica, S.; Pozzato, G.; Efremov, D.G.; Vannata, B.; Marasca, R.; Galieni, P.; Cuneo, A.; Orlando, S.; Piciocchi, A.; Boncompagni, R.; Vincelli, D.; Liberati, A.M.; Russo, F.; Foá, R. Chlorambucil plus rituximab as front-line therapy for elderly and/or unfit chronic lymphocytic leukemia patients: correlation with biologically-based risk stratification. Haematologica, 2017, 102(9), e352-e355. [http://dx.doi.org/10.3324/haematol.2016.156901]. [PMID: 28596282].
[81]
Parker, L.J.; Ciccone, S.; Italiano, L.C.; Primavera, A.; Oakley, A.J.; Morton, C.J.; Hancock, N.C.; Bello, M.L.; Parker, M.W. The anti-cancer drug chlorambucil as a substrate for the human polymorphic enzyme glutathione transferase P1-1: kinetic properties and crystallographic characterisation of allelic variants. J. Mol. Biol., 2008, 380(1), 131-144. [http://dx.doi.org/10.1016/j.jmb.2008.04.066]. [PMID: 18511072].
[82]
Preiss, R.; Sohr, R.; Matthias, M.; Brockmann, B.; Hüller, H. [The pharmacokinetics of bendamustine (Cytostasane) in humans]. Pharmazie, 1985, 40(11), 782-784. [PMID: 4095129].
[83]
Horn, U.; Hartl, A.; Guttner, J.; Hoffmann, H. Toxicity of the alkylating agent bendamustin. Archives of toxicology. Supplement. = Archiv fur Toxikologie. Supplement, 1985, 8, 504-506.
[84]
Leoni, L.M. Bendamustine: Rescue of an effective antineoplastic agent from the mid-twentieth century. Semin. Hematol., 2011, 48(Suppl. 1), S4-S11. [http://dx.doi.org/10.1053/j.seminhematol.2011.03.002]. [PMID: 21530771].
[85]
Cephalon, I. TREANDA® (bendamustine hydrochloride) for Injection, for intravenous infusionAdministration, U. S. F. a. D 2008.
[86]
Al-Sawaf, O.; Cramer, P.; Goede, V.; Hallek, M.; Pflug, N. Bendamustine and its role in the treatment of unfit patients with chronic lymphocytic leukaemia: a perspective review. Ther. Adv. Hematol., 2017, 8(6), 197-205. [http://dx.doi.org/10.1177/2040620717699365]. [PMID: 28567239].
[87]
Brown, J.R.; O’Brien, S.; Kingsley, C.D.; Eradat, H.; Pagel, J.M.; Lymp, J.; Hirata, J.; Kipps, T.J. Obinutuzumab plus fludarabine/cyclophosphamide or bendamustine in the initial therapy of CLL patients: the phase 1b GALTON trial. Blood, 2015, 125(18), 2779-2785. [http://dx.doi.org/10.1182/blood-2014-12-613570]. [PMID: 25769620].
[88]
Chanan-Khan, A.; Cramer, P.; Demirkan, F.; Fraser, G.; Silva, R.S.; Grosicki, S.; Pristupa, A.; Janssens, A.; Mayer, J.; Bartlett, N.L.; Dilhuydy, M-S.; Pylypenko, H.; Loscertales, J.; Avigdor, A.; Rule, S.; Villa, D.; Samoilova, O.; Panagiotidis, P.; Goy, A.; Mato, A.; Pavlovsky, M.A.; Karlsson, C.; Mahler, M.; Salman, M.; Sun, S.; Phelps, C.; Balasubramanian, S.; Howes, A.; Hallek, M. Ibrutinib combined with bendamustine and rituximab compared with placebo, bendamustine, and rituximab for previously treated chronic lymphocytic leukaemia or small lymphocytic lymphoma (HELIOS): a randomised, double-blind, phase 3 study. Lancet Oncol., 2016, 17(2), 200-211. [http://dx.doi.org/10.1016/S1470-2045(15)00465-9]. [PMID: 26655421].
[89]
Cheson, B.D. Bendamustine in CLL: How quickly will today’s consensus become tomorrow’s memory? Leuk. Res., 2014, 38(11), 1267-1268. [http://dx.doi.org/10.1016/j.leukres.2014.08.003]. [PMID: 25260826].
[90]
Cuneo, A.; Marchetti, M.; Barosi, G.; Billio, A.; Brugiatelli, M.; Ciolli, S.; Laurenti, L.; Mauro, F.R.; Molica, S.; Montillo, M.; Zinzani, P.; Tura, S. Appropriate use of bendamustine in first-line therapy of chronic lymphocytic leukemia. Recommendations from SIE, SIES, GITMO Group. Leuk. Res., 2014, 38(11), 1269-1277. [http://dx.doi.org/10.1016/j.leukres.2014.06.017]. [PMID: 25063524].
[91]
Cortelezzi, A.; Sciumè, M.; Liberati, A.M.; Vincenti, D.; Cuneo, A.; Reda, G.; Laurenti, L.; Zaja, F.; Marasca, R.; Chiarenza, A.; Gritti, G.; Orsucci, L.; Storti, S.; Angelucci, E.; Cascavilla, N.; Gobbi, M.; Mauro, F.R.; Morabito, F.; Fabris, S.; Piciocchi, A.; Vignetti, M.; Neri, A.; Rossi, D.; Giannarelli, D.; Guarini, A.; Foà, R. Bendamustine in combination with ofatumumab in relapsed or refractory chronic lymphocytic leukemia: a GIMEMA Multicenter Phase II Trial. Leukemia, 2014, 28(3), 642-648. [http://dx.doi.org/10.1038/leu.2013.334]. [PMID: 24220274].
[92]
Fischer, K.; Cramer, P.; Busch, R.; Böttcher, S.; Bahlo, J.; Schubert, J.; Pflüger, K.H.; Schott, S.; Goede, V.; Isfort, S.; Tresckow, J.v.; Fink, A-M.; Bühler, A.; Winkler, D.; Kreuzer, K-A.; Staib, P.; Ritgen, M.; Kneba, M.; Döhner, H.; Eichhorst, B.F.; Hallek, M.; Stilgenbauer, S.; Wendtner, C-M. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: A multicenter phase ii trial of the german chronic lymphocytic leukemia study group. J. Clin. Oncol., 2012, 30, 3209-3216. [http://dx.doi.org/10.1200/JCO.2011.39.2688].
[93]
Fischer, K.; Cramer, P.; Busch, R.; Stilgenbauer, S.; Bahlo, J.; Schweighofer, C.D.; Böttcher, S.; Staib, P.; Kiehl, M.; Eckart, M.J.; Kranz, G.; Goede, V.; Elter, T.; Bühler, A.; Winkler, D.; Kneba, M.; Döhner, H.; Eichhorst, B.F.; Hallek, M.; Wendtner, C-M. Bendamustine combined with rituximab in patients with relapsed and/or refractory chronic lymphocytic leukemia: A multicenter phase ii trial of the german chronic lymphocytic leukemia study group. J. Clin. Oncol., 2011, 29, 3559-3566. [DOI: 10.1200/JCO.2010.33.8061].
[94]
Maurer, C.; Pflug, N.; Bahlo, J.; Kluth, S.; Rhein, C.; Cramer, P.; Gross-Ophoff, C.; Langerbeins, P.; Fink, A-M.; Eichhorst, B.; Kreuzer, K-A.; Fischer, N.; Tausch, E.; Stilgenbauer, S.; Böttcher, S.; Döhner, H.; Kneba, M.; Dreyling, M.; Binder, M.; Hallek, M.; Wendtner, C-M.; Bergmann, M.; Fischer, K. Bendamustine and rituximab in combination with lenalidomide in patients with chronic lymphocytic leukemia. Eur. J. Haematol., 2016, 97, 253-260. [http://dx.doi.org/10.1111/ejh.12714].
[95]
McCloskey, J.K.; Broome, C.M.; Cheson, B.D. Safe and effective treatment of aggressive non-Hodgkin lymphoma with rituximab and bendamustine in patients with severe liver impairment. Clin. Adv. Hematol. Oncol., 2013, 11, 184-188. [PMID: 23598988].
[96]
Ninkovic, M.; Fiegl, M.; Mian, M.; Mondello, P.; Kocher, F.; Waldthaler, C.; Verdorfer, I.; Steurer, M.; Gastl, G.; Pircher, A. Routine use of bendamustine in patients with chronic lymphocytic leukemia: An observational study. Anticancer Res., 2015, 35(9), 5129-5139. [PMID: 26254418].
[97]
Shoji, J.; Lew, S.Q. The use of rituximab and bendamustine in treating chronic lymphocytic leukaemia (CLL) in end-stage renal disease (ESRD). BMJ Case Rep., 2013, 2013bcr2013009637
[98]
Tageja, N. Bendamustine: Safety and efficacy in the management of indolent non-hodgkins lymphoma. Clin. Med. Insights Oncol., 2011, 5, 145-156. [http://dx.doi.org/10.4137/CMO.S6085]. [PMID: 21695099].
[99]
Visco, C.; Finotto, S.; Pomponi, F.; Sartori, R.; Laveder, F.; Trentin, L.; Paolini, R.; Di Bona, E.; Ruggeri, M.; Rodeghiero, F. The combination of rituximab, bendamustine, and cytarabine for heavily pretreated relapsed/refractory cytogenetically high-risk patients with chronic lymphocytic leukemia. Am. J. Hematol., 2013, 88(4), 289-293. [http://dx.doi.org/10.1002/ajh.23391]. [PMID: 23450436].
[100]
Becker, M.; Tschechne, B.; Reeb, M.; Schwinger, U.; Bruch, H.R.; Frank, M.; Straßl, L. Bendamustine as first-line treatment in patients with advanced indolent non-Hodgkin lymphoma and mantle cell lymphoma in German routine clinical practice. Ann. Hematol., 2015, 94(9), 1553-1558. [http://dx.doi.org/10.1007/s00277-015-2404-1]. [PMID: 26122866].
[101]
Burke, J.M.; van der Jagt, R.H.C.; Flinn, I.W.; Craig, M.D.; Chen, L.; Morganroth, J.; Munteanu, M.C.; MacDonald, D.A.J.C.C. Pharmacology: Effect of bendamustine in combination with rituximab on QT interval duration in patients with advanced de novo indolent non-Hodgkin or mantle cell lymphoma. Cancer Chemother. Pharmacol., 2015, 76, 211-216.
[102]
Cheson, B.D.; Crawford, J. A phase I study of bendamustine, lenalidomide and rituximab in relapsed and refractory lymphomas. Br. J. Haematol., 2015, 169, 528-533. [http://dx.doi.org/10.1111/bjh.13321].
[103]
Czuczman, M.S.; Kahanic, S.; Forero, A.; Davis, G.; Munteanu, M.; Van Den Neste, E.; Offner, F.; Bron, D.; Quick, D.; Fowler, N. Results of a phase II study of bendamustine and ofatumumab in untreated indolent B cell non-Hodgkin’s lymphoma. Ann. Hematol., 2015, 94(4), 633-641. [http://dx.doi.org/10.1007/s00277-014-2269-8]. [PMID: 25630297].
[104]
Lentzsch, S. Bendamustine: the remedy that came in from the cold. Blood, 2014, 123(7), 948-950. [http://dx.doi.org/10.1182/blood-2013-12-539817]. [PMID: 24526773].
[105]
Surget, S.; Lemieux-Blanchard, E.; Maïga, S.; Descamps, G.; Le Gouill, S.; Moreau, P.; Amiot, M.; Pellat-Deceunynck, C. Bendamustine and melphalan kill myeloma cells similarly through reactive oxygen species production and activation of the p53 pathway and do not overcome resistance to each other. Leuk. Lymphoma, 2014, 55(9), 2165-2173. [http://dx.doi.org/10.3109/10428194.2013.871277]. [PMID: 24308434].
[106]
El-Mabhouh, A.A.; Ayres, M.L.; Shpall, E.J.; Baladandayuthapani, V.; Keating, M.J.; Wierda, W.G.; Gandhi, V. Evaluation of bendamustine in combination with fludarabine in primary chronic lymphocytic leukemia cells. Blood, 2014, 123(24), 3780-3789. [http://dx.doi.org/10.1182/blood-2013-12-541433]. [PMID: 24747434].
[107]
Flinn, I.W.; van der Jagt, R.; Kahl, B.S.; Wood, P.; Hawkins, T.E.; Macdonald, D.; Hertzberg, M.; Kwan, Y-L.; Simpson, D.; Craig, M.; Kolibaba, K.; Issa, S.; Clementi, R.; Hallman, D.M.; Munteanu, M.; Chen, L.; Burke, J.M. Randomized trial of bendamustine-rituximab or R-CHOP/R-CVP in first-line treatment of indolent NHL or MCL: the BRIGHT study. Blood, 2014, 123(19), 2944-2952. [http://dx.doi.org/10.1182/blood-2013-11-531327]. [PMID: 24591201].
[108]
Gentile, M.; Recchia, A.G.; Mazzone, C.; Vigna, E.; Martino, M.; Morabito, L.; Lucia, E.; Bossio, S.; De Stefano, L.; Granata, T.; Palummo, A.; Morabito, F. An old drug with a new future: bendamustine in multiple myeloma. Expert Opin. Pharmacother., 2013, 14(16), 2263-2280. [http://dx.doi.org/10.1517/14656566.2013.837885]. [PMID: 24053161].
[109]
Lamanna, N.; O’Brien, S. Novel agents in chronic lymphocytic leukemia. Hematology (Am. Soc. Hematol. Educ. Program), 2016, 2016(1), 137-145. [http://dx.doi.org/10.1182/asheducation-2016.1.137]. [PMID: 27913472].
[110]
Cheson, B.D.; Leoni, L. Bendamustine: Mechanism of action and clinical data. Clin. Adv. Hematol. Oncol., 2011, 9(8)(Suppl. 19), 1-11. [PMID: 22362008].
[111]
Gandhi, V. Metabolism and mechanisms of action of bendamustine: Rationales for combination therapies. Semin. Oncol., 2002, 29(4)(Suppl. 13), 4-11. [http://dx.doi.org/10.1016/S0093-7754(02)90007-2]. [PMID: 12170425].
[112]
Knauf, W.U.; Lissitchkov, T.; Aldaoud, A.; Liberati, A.M.; Loscertales, J.; Herbrecht, R.; Juliusson, G.; Postner, G.; Gercheva, L.; Goranov, S.; Becker, M.; Fricke, H.J.; Huguet, F.; Del Giudice, I.; Klein, P.; Merkle, K.; Montillo, M. Bendamustine compared with chlorambucil in previously untreated patients with chronic lymphocytic leukaemia: updated results of a randomized phase III trial. Br. J. Haematol., 2012, 159(1), 67-77. [http://dx.doi.org/10.1111/bjh.12000]. [PMID: 22861163].
[113]
Werner, W.; Letsch, G.; Ihn, W. Hydrolysis products of the carcinostatic, Cytostasan (bendamustin). Pharmazie, 1987, 42(4), 272-273. [PMID: 3615563].
[114]
Teichert, J.; Baumann, F.; Chao, Q.; Franklin, C.; Bailey, B.; Hennig, L.; Caca, K.; Schoppmeyer, K.; Patzak, U.; Preiss, R. Characterization of two phase I metabolites of bendamustine in human liver microsomes and in cancer patients treated with bendamustine hydrochloride. Cancer Chemother. Pharmacol., 2007, 59(6), 759-770. [http://dx.doi.org/10.1007/s00280-006-0331-5]. [PMID: 16957931].
[115]
Darwish, M.; Bond, M.; Hellriegel, E.; Robertson, P.; Chovan, J.P. Pharmacology: Pharmacokinetic and pharmacodynamic profile of bendamustine and its metabolites. 2015, 75, 1143-1154. [DOI: 10.1007/s00280-015-2727-6]
[116]
Pereira, T.S.; Sant’anna, J.R.; Morais, J.F.; Yajima, J.P.R.S.; Mathias, P.C.F.; Franco, C.C.D.S.; Castro-Prado, M.A.A. Assessment of bendamustine-induced genotoxicity in eukaryotic cells. Drug Chem. Toxicol., 2018, 42(4), 1-9. [http://dx.doi.org/10.1080/01480545.2018.1458236]. [PMID: 29681187].
[117]
Cheson, B.D.; Kroll, M.L. Bendamustine induced neurotoxicity. Clin. Adv. Hematol. Oncol., 2009, 7(11), 743-746. [PMID: 20075832].
[118]
Cheson, B.D.; Vena, D.A.; Foss, F.M.; Sorensen, J.M. Neurotoxicity of purine analogs: A review. J. Clin. Oncol., 1994, 12(10), 2216-2228. [http://dx.doi.org/10.1200/JCO.1994.12.10.2216]. [PMID: 7931492].
[119]
Alhafez, A.; Aljitawi, O.S.; Lin, T.L.; Ganguly, S.; Abhyankar, S.; McGuirk, J.P. Bendamustine associated with irreversible ascending paralysis. Case Rep. Hematol., 2013, 2013931519 [http://dx.doi.org/10.1155/2013/931519]. [PMID: 23533850].
[120]
Bergel, F.; Stock, J.A. Cyto-active amino-acid and peptide derivatives. Part I. Substituted phenylalanines. J. Chem. Soc. Resumed, 1954, 0, 2409-2417. [DOI:10.1039/JR9540002409].
[121]
Hansson, J.; Edgren, M.; Ehrsson, H.; Lewensohn, R.; Ringborg, U. Melphalan-induced DNA cross-linking in human melanoma cells and phytohaemagglutinin-stimulated lymphocytes in relation to intracellular drug content and cellular levels of glutathione. Anticancer Res., 1987, 7(1), 97-104. [PMID: 3566189].
[122]
Hansson, J.; Lewensohn, R.; Ringborg, U. Different melphalan toxicity and DNA cross-linking in human melanoma cells as compared to phytohaemagglutinin-stimulated lymphocytes. Anticancer Res., 1985, 5(5), 471-477. [PMID: 4062251].
[123]
Osborne, M.R.; Lawley, P.D. Alkylation of DNA by melphalan with special reference to adenine derivatives and adenine-guanine cross-linking. Chem. Biol. Interact., 1993, 89(1), 49-60. [http://dx.doi.org/10.1016/0009-2797(93)03197-3]. [PMID: 8221966].
[124]
Vistica, D.T. Cytotoxicity as an indicator for transport mechanism: Evidence that melphalan is transported by two leucine-preferring carrier systems in the L1210 murine leukemia cell. Biochim. Biophys. Acta, 1979, 550(2), 309-317. [http://dx.doi.org/10.1016/0005-2736(79)90217-7]. [PMID: 569503].
[125]
Larionov, L.F.; Khokhlov, A.S.; Skhodinskaia, E.N.; Vasina, O.S.; Trusheikina, V.L.; Novikova, M.A. Anti-tumor action of p-bis (chloroethyl) aminophenylalanine (sarcolysin). Biull. Eksp. Biol. Med., 1955, 39(1), 48-52. [PMID: 14378228].
[126]
Papac, R.; Galton, D.A.; Till, M.; Wiltshaw, E. Preliminary clinical trial of p-di-2-chloroethyl-amino-L-phenylalanine (CB 3025, melphalan) and of di-2-chloroethyl methanesulfonate (CB 1506). Ann. N. Y. Acad. Sci., 1958, 68(3), 1126-1127. [http://dx.doi.org/10.1111/j.1749-6632.1958.tb42674.x]. [PMID: 13627765].
[127]
Hayes, D.M.; Spurr, C.L.; Schroeder, L.R.; Freireich, E.J. A clinical trial of sarcolysin in acute leukemia. Cancer Chemother. Rep., 1961, 12, 153-155. [PMID: 13712477].
[128]
GlaxoSmithKline. ALKERAN® (melphalan) tablets. (Available at:. https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/014691s030lbl.pdf)
[129]
Esma, F.; Salvini, M.; Troia, R.; Boccadoro, M.; Larocca, A.; Pautasso, C. Melphalan hydrochloride for the treatment of multiple myeloma. Expert Opin. Pharmacother., 2017, 18(11), 1127-1136. [http://dx.doi.org/10.1080/14656566.2017.1349102]. [PMID: 28658983].
[130]
Sarosy, G.; Leyland-Jones, B.; Soochan, P.; Cheson, B.D. The systemic administration of intravenous melphalan. J. Clin. Oncol., 1988, 6(11), 1768-1782. [http://dx.doi.org/10.1200/JCO.1988.6.11.1768]. [PMID: 3054005].
[131]
Samuels, B.L.; Bitran, J.D. High-dose intravenous melphalan: a review. J. Clin. Oncol., 1995, 13(7), 1786-1799. [http://dx.doi.org/10.1200/JCO.1995.13.7.1786]. [PMID: 7602368].
[132]
Belasco, J.B.; Mitchell, C.D.; Rohrbaugh, T.; Rosenstock, J. IV melphalan in children. Cancer Treat. Rep., 1987, 71(12), 1277-1278. [PMID: 3690538].
[133]
Pinguet, F.; Culine, S.; Bressolle, F.; Astre, C.; Serre, M.P.; Chevillard, C.; Fabbro, M. A phase I and pharmacokinetic study of melphalan using a 24-hour continuous infusion in patients with advanced malignancies. Clin. Cancer Res., 2000, 6, 57-63.
[134]
Ninane, J.; Baurain, R.; de Selys, A.; Trouet, A.; Cornu, G. High dose melphalan in children with advanced malignant disease. A pharmacokinetic study. Cancer Chemother. Pharmacol., 1985, 15(3), 263-267. [http://dx.doi.org/10.1007/BF00263898]. [PMID: 4053270].
[135]
Fisher, B.; Sherman, B.; Rockette, H.; Redmond, C.; Margolese, R.; Fisher, E.R. 1-phenylalanine mustard (L-PAM) in the management of premenopausal patients with primary breast cancer: lack of association of disease-free survival with depression of ovarian function. Cancer, 1979, 44(3), 847-857. [http://dx.doi.org/10.1002/1097-0142(197909)44:3<847:AID-CNCR2820440309>3.0.CO;2-3]. [PMID: 383274].
[136]
Frick, H.C., II; Tretter, P.; Tretter, W.; Hyman, G.A. Disseminated carcinoma of the ovary treated by L-phenylalanine mustard. Cancer, 1968, 21(3), 508-513. [http://dx.doi.org/10.1002/1097-0142(196803)21:3<508:AID-CNCR2820210322>3.0.CO;2-R]. [PMID: 5637955].
[137]
Arnold, H.; Bourseaux, F.; Brock, N. Chemotherapeutic action of a cyclic nitrogen mustard phosphamide ester (B 518-ASTA) in experimental tumours of the rat. Nature, 1958, 181(4613), 931. [http://dx.doi.org/10.1038/181931a0]. [PMID: 13526741].
[138]
Coggins, P.R.; Ravdin, R.G.; Eisman, S.H. Clinical evaluation of a new alkylating agent: cytoxan (cyclophosphamide). Cancer, 1960, 13, 1254-1260. [http://dx.doi.org/10.1002/1097-0142(196011/12)13:6<1254:AID-CNCR2820130614>3.0.CO;2-U]. [PMID: 13694297].
[139]
Friedman, O.M.; Seligman, A.M. Preparation of N-Phosphorylated Derivatives of Bis-β-chloroethylamine1a. J. Am. Chem. Soc., 1954, 76, 655-658. [http://dx.doi.org/10.1021/ja01632a006].
[140]
Pass, G. J.; Carrie, D.; Boylan, M.; Lorimore, S.; Wright, E.; Houston, B.; Henderson, C. J.; Wolf, C. R. J. C. R. Role of hepatic cytochrome p450s in the pharmacokinetics and toxicity of cyclophosphamide: studies with the hepatic cytochrome p450 reductase null mouse. 2005, 65, 4211-4217. [http://dx.doi.org/10.1158/0008-5472.CAN-04-4103]
[141]
Hemminki, K. DNA-binding products of nornitrogen mustard, a metabolite of cyclophosphamide. Chem. Biol. Interact., 1987, 61(1), 75-88. [http://dx.doi.org/10.1016/0009-2797(87)90020-2]. [PMID: 3815587].
[142]
Groehler, A., IV; Villalta, P.W.; Campbell, C.; Tretyakova, N. Covalent DNA-protein cross-linking by phosphoramide mustard and nornitrogen mustard in human Cells. Chem. Res. Toxicol., 2016, 29(2), 190-202. [http://dx.doi.org/10.1021/acs.chemrestox.5b00430]. [PMID: 26692166].
[143]
Chang, T.K.; Weber, G.F.; Crespi, C.L.; Waxman, D.J. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res., 1993, 53(23), 5629-5637. [PMID: 8242617].
[144]
Code, E.L.; Crespi, C.L.; Penman, B.W.; Gonzalez, F.J.; Chang, T.K.; Waxman, D.J. Human cytochrome P4502B6: interindividual hepatic expression, substrate specificity, and role in procarcinogen activation. Drug Metab. Dispos., 1997, 25(8), 985-993. [PMID: 9280407].
[145]
Roy, P.; Yu, L.J.; Crespi, C.L.; Waxman, D.J. Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab. Dispos., 1999, 27(6), 655-666. [PMID: 10348794].
[146]
Xie, H.J.; Yasar, U.; Lundgren, S.; Griskevicius, L.; Terelius, Y.; Hassan, M.; Rane, A. Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation. Pharmacogenom J., 2003, 3(1), 53-61. [http://dx.doi.org/10.1038/sj.tpj.6500157]. [PMID: 12629583].
[147]
Lindley, C.; Hamilton, G.; McCune, J.S.; Faucette, S.; Shord, S.S.; Hawke, R.L.; Wang, H.; Gilbert, D.; Jolley, S.; Yan, B.; LeCluyse, E.L. The effect of cyclophosphamide with and without dexamethasone on cytochrome P450 3A4 and 2B6 in human hepatocytes. Drug Metab. Dispos., 2002, 30(7), 814-822. [http://dx.doi.org/10.1124/dmd.30.7.814]. [PMID: 12065440].
[148]
Nakajima, M.; Komagata, S.; Fujiki, Y.; Kanada, Y.; Ebi, H.; Itoh, K.; Mukai, H.; Yokoi, T.; Minami, H. Genetic polymorphisms of CYP2B6 affect the pharmacokinetics/pharmacodynamics of cyclophosphamide in Japanese cancer patients. Pharmacogenet. Genomics, 2007, 17(6), 431-445. [http://dx.doi.org/10.1097/FPC.0b013e328045c4fb]. [PMID: 17502835].
[149]
Huang, Z.; Roy, P.; Waxman, D.J. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem. Pharmacol., 2000, 59(8), 961-972. [http://dx.doi.org/10.1016/S0006-2952(99)00410-4]. [PMID: 10692561].
[150]
Cox, P.J. Cyclophosphamide cystitis--identification of acrolein as the causative agent. Biochem. Pharmacol., 1979, 28(13), 2045-2049. [http://dx.doi.org/10.1016/0006-2952(79)90222-3]. [PMID: 475846].
[151]
Corporation, B.H. Cyclophosphamide for Injection, USP. Cyclophosphamide Tablets, USPAdministration, U. S. F. a. D. 2012.
[152]
Minko, I.G.; Kozekov, I.D.; Kozekova, A.; Harris, T.M.; Rizzo, C.J.; Lloyd, R.S. Mutagenic potential of DNA-peptide crosslinks mediated by acrolein-derived DNA adducts. Mutat. Res., 2008, 637(1-2), 161-172. [http://dx.doi.org/10.1016/j.mrfmmm.2007.08.001]. [PMID: 17868748].
[153]
Kanuri, M.; Minko, I.G.; Nechev, L.V.; Harris, T.M.; Harris, C.M.; Lloyd, R.S. Error prone translesion synthesis past gamma-hydroxypropano deoxyguanosine, the primary acrolein-derived adduct in mammalian cells. J. Biol. Chem., 2002, 277(21), 18257-18265. [http://dx.doi.org/10.1074/jbc.M112419200]. [PMID: 11889127].
[154]
Luznik, L.; Fuchs, E.J.J. High-dose, post-transplantation cyclophosphamide to promote graft-host tolerance after allogeneic hematopoietic stem cell transplantation. Immunol. Res., 2010, 47, 65-77. [http://dx.doi.org/10.1007/s12026-009-8139-0].
[155]
Swamy, A.V.; Patel, U.; Koti, B.; Gadad, P.; Patel, N.; Thippeswamy, A.J.I.j.o.p. Cardioprotective effect of Saraca indica against cyclophosphamide induced cardiotoxicity in rats: A biochemical, electrocardiographic and histopathological study. Indian J. Pharmacol., 2013, 45, 44.
[156]
Asiri, Y.A. Probucol attenuates cyclophosphamide-induced oxidative apoptosis, p53 and Bax signal expression in rat cardiac tissues. Oxid. Med. Cell. Longev., 2010, 3(5), 308-316. [http://dx.doi.org/10.4161/oxim.3.5.13107]. [PMID: 21150336].
[157]
Mansour, H.H.; El Kiki, S.M.; Hasan, H.F. Protective effect of N-acetylcysteine on cyclophosphamide-induced cardiotoxicity in rats. Environ. Toxicol. Pharmacol., 2015, 40(2), 417-422. [http://dx.doi.org/10.1016/j.etap.2015.07.013]. [PMID: 26262887].
[158]
Fisher, R.I.; Gaynor, E.R.; Dahlberg, S.; Oken, M.M.; Grogan, T.M.; Mize, E.M.; Glick, J.H.; Coltman, C.A., Jr; Miller, T.P. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin’s lymphoma. N. Engl. J. Med., 1993, 328(14), 1002-1006. [http://dx.doi.org/10.1056/NEJM199304083281404]. [PMID: 7680764].
[159]
Luminari, S.; Ferrari, A.; Manni, M.; Dondi, A.; Chiarenza, A.; Merli, F.; Rusconi, C.; Tarantino, V.; Tucci, A.; Vitolo, U.; Kovalchuk, S.; Angelucci, E.; Pulsoni, A.; Arcaini, L.; Angrilli, F.; Gaidano, G.; Stelitano, C.; Bertoldero, G.; Cascavilla, N.; Salvi, F.; Ferreri, A.J.M.; Vallisa, D.; Marcheselli, L.; Federico, M. Long-term results of the FOLL05 trial comparing R-CVP versus R-CHOP versus R-FM for the initial treatment of patients with advanced-stage symptomatic follicular lymphoma. J. Clin. Oncol., 2018, 36(7), 689-696. [http://dx.doi.org/10.1200/JCO.2017.74.1652]. [PMID: 29095677].
[160]
Giulino-Roth, L.; O’Donohue, T.; Chen, Z.; Bartlett, N.L.; LaCasce, A.; Martin-Doyle, W.; Barth, M.J.; Davies, K.; Blum, K.A.; Christian, B.; Casulo, C.; Smith, S.M.; Godfrey, J.; Termuhlen, A.; Oberley, M.J.; Alexander, S.; Weitzman, S.; Appel, B.; Mizukawa, B.; Svoboda, J.; Afify, Z.; Pauly, M.; Dave, H.; Gardner, R.; Stephens, D.M.; Zeitler, W.A.; Forlenza, C.; Levine, J.; Williams, M.E.; Sima, J.L.; Bollard, C.M.; Leonard, J.P. Outcomes of adults and children with primary mediastinal B-cell lymphoma treated with dose-adjusted EPOCH-R. Br. J. Haematol., 2017, 179(5), 739-747. [http://dx.doi.org/10.1111/bjh.14951]. [PMID: 29082519].
[161]
Khaled, H.M.; Zekri, Z.K.; Mokhtar, N.; Ali, N.M.; Darwish, T.; Elattar, I.; Gaafar, R.; Moawad, M.S. A randomized EPOCH vs. CHOP front-line therapy for aggressive non-Hodgkin’s lymphoma patients: long-term results. Ann. Oncol., 1999, 10(12), 1489-1492. [http://dx.doi.org/10.1023/A:1008395014398]. [PMID: 10643541].
[162]
Federico, M.; Luminari, S.; Dondi, A.; Tucci, A.; Vitolo, U.; Rigacci, L.; Di Raimondo, F.; Carella, A.M.; Pulsoni, A.; Merli, F.; Arcaini, L.; Angrilli, F.; Stelitano, C.; Gaidano, G.; Dell’olio, M.; Marcheselli, L.; Franco, V.; Galimberti, S.; Sacchi, S.; Brugiatelli, M. R-CVP versus R-CHOP versus R-FM for the initial treatment of patients with advanced-stage follicular lymphoma: results of the FOLL05 trial conducted by the Fondazione Italiana Linfomi. J. Clin. Oncol., 2013, 31(12), 1506-1513. [http://dx.doi.org/10.1200/JCO.2012.45.0866]. [PMID: 23530110].
[163]
Mackey, J.R.; Martin, M.; Pienkowski, T.; Rolski, J.; Guastalla, J.P.; Sami, A.; Glaspy, J.; Juhos, E.; Wardley, A.; Fornander, T.; Hainsworth, J.; Coleman, R.; Modiano, M.R.; Vinholes, J.; Pinter, T.; Rodríguez-Lescure, A.; Colwell, B.; Whitlock, P.; Provencher, L.; Laing, K.; Walde, D.; Price, C.; Hugh, J.C.; Childs, B.H.; Bassi, K.; Lindsay, M.A.; Wilson, V.; Rupin, M.; Houé, V.; Vogel, C. Adjuvant docetaxel, doxorubicin, and cyclophosphamide in node-positive breast cancer: 10-year follow-up of the phase 3 randomised BCIRG 001 trial. Lancet Oncol., 2013, 14(1), 72-80. [http://dx.doi.org/10.1016/S1470-2045(12)70525-9]. [PMID: 23246022].
[164]
Marina, N.; Fontanesi, J.; Kun, L.; Rao, B.; Jenkins, J.J.; Thompson, E.I.; Etcubanas, E. Treatment of childhood germ cell tumors. Review of the St. Jude experience from 1979 to 1988. Cancer, 1992, 70(10), 2568-2575. [http://dx.doi.org/10.1002/1097-0142(19921115)70:10<2568:AID-CNCR2820701028>3.0.CO;2-1]. [PMID: 1384951].
[165]
Jones, S.E.; Savin, M.A.; Holmes, F.A.; O’Shaughnessy, J.A.; Blum, J.L.; Vukelja, S.; McIntyre, K.J.; Pippen, J.E.; Bordelon, J.H.; Kirby, R.; Sandbach, J.; Hyman, W.J.; Khandelwal, P.; Negron, A.G.; Richards, D.A.; Anthony, S.P.; Mennel, R.G.; Boehm, K.A.; Meyer, W.G.; Asmar, L. Phase III trial comparing doxorubicin plus cyclophosphamide with docetaxel plus cyclophosphamide as adjuvant therapy for operable breast cancer. J. Clin. Oncol., 2006, 24(34), 5381-5387. [http://dx.doi.org/10.1200/JCO.2006.06.5391]. [PMID: 17135639].
[166]
Mackey, J.R.; Pieńkowski, T.; Crown, J.; Sadeghi, S.; Martin, M.; Chan, A.; Saleh, M.; Sehdev, S.; Provencher, L.; Semiglazov, V.; Press, M.F.; Sauter, G.; Lindsay, M.; Houé, V.; Buyse, M.; Drevot, P.; Hitier, S.; Bensfia, S.; Eiermann, W. Long-term outcomes after adjuvant treatment of sequential versus combination docetaxel with doxorubicin and cyclophosphamide in node-positive breast cancer: BCIRG-005 randomized trial. Ann. Oncol., 2016, 27(6), 1041-1047. [http://dx.doi.org/10.1093/annonc/mdw098]. [PMID: 26940688].
[167]
Eiermann, W.; Pienkowski, T.; Crown, J.; Sadeghi, S.; Martin, M.; Chan, A.; Saleh, M.; Sehdev, S.; Provencher, L.; Semiglazov, V.; Press, M.; Sauter, G.; Lindsay, M.A.; Riva, A.; Buyse, M.; Drevot, P.; Taupin, H.; Mackey, J.R. Phase III study of doxorubicin/cyclophosphamide with concomitant versus sequential docetaxel as adjuvant treatment in patients with human epidermal growth factor receptor 2-normal, node-positive breast cancer: BCIRG-005 trial. J. Clin. Oncol., 2011, 29(29), 3877-3884. [http://dx.doi.org/10.1200/JCO.2010.28.5437]. [PMID: 21911726].
[168]
Schwartz, C.L.; Constine, L.S.; Villaluna, D.; London, W.B.; Hutchison, R.E.; Sposto, R.; Lipshultz, S.E.; Turner, C.S.; deAlarcon, P.A.; Chauvenet, A. A risk-adapted, response-based approach using ABVE-PC for children and adolescents with intermediate- and high-risk Hodgkin lymphoma: the results of P9425. Blood, 2009, 114(10), 2051-2059. [http://dx.doi.org/10.1182/blood-2008-10-184143]. [PMID: 19584400].
[169]
Merli, F.; Luminari, S.; Gobbi, P.G.; Cascavilla, N.; Mammi, C.; Ilariucci, F.; Stelitano, C.; Musso, M.; Baldini, L.; Galimberti, S.; Angrilli, F.; Polimeno, G.; Scalzulli, P.R.; Ferrari, A.; Marcheselli, L.; Federico, M. Long-Term Results of the HD2000 Trial Comparing ABVD Versus BEACOPP Versus COPP-EBV-CAD in Untreated Patients With Advanced Hodgkin Lymphoma: A Study by Fondazione Italiana Linfomi. J. Clin. Oncol., 2016, 34(11), 1175-1181. [http://dx.doi.org/10.1200/JCO.2015.62.4817]. [PMID: 26712220].
[170]
Borchmann, P.; Haverkamp, H.; Diehl, V.; Cerny, T.; Markova, J.; Ho, A.D.; Eich, H.T.; Mueller-Hermelink, H.K.; Kanz, L.; Greil, R.; Rank, A.; Paulus, U.; Smardova, L.; Huber, C.; Dörken, B.; Nerl, C.; Krause, S.W.; Mueller, R.P.; Fuchs, M.; Engert, A. Eight cycles of escalated-dose BEACOPP compared with four cycles of escalated-dose BEACOPP followed by four cycles of baseline-dose BEACOPP with or without radiotherapy in patients with advanced-stage hodgkin’s lymphoma: final analysis of the HD12 trial of the German Hodgkin Study Group. J. Clin. Oncol., 2011, 29(32), 4234-4242. [http://dx.doi.org/10.1200/JCO.2010.33.9549]. [PMID: 21990399].
[171]
Hutchins, L.F.; Green, S.J.; Ravdin, P.M.; Lew, D.; Martino, S.; Abeloff, M.; Lyss, A.P.; Allred, C.; Rivkin, S.E.; Osborne, C.K. Randomized, controlled trial of cyclophosphamide, methotrexate, and fluorouracil versus cyclophosphamide, doxorubicin, and fluorouracil with and without tamoxifen for high-risk, node-negative breast cancer: treatment results of Intergroup Protocol INT-0102. J. Clin. Oncol., 2005, 23(33), 8313-8321. [http://dx.doi.org/10.1200/JCO.2005.08.071]. [PMID: 16293862].
[172]
Fisher, B.; Brown, A.M.; Dimitrov, N.V.; Poisson, R.; Redmond, C.; Margolese, R.G.; Bowman, D.; Wolmark, N.; Wickerham, D.L.; Kardinal, C.G. Two months of doxorubicin-cyclophosphamide with and without interval reinduction therapy compared with 6 months of cyclophosphamide, methotrexate, and fluorouracil in positive-node breast cancer patients with tamoxifen-nonresponsive tumors: results from the National Surgical Adjuvant Breast and Bowel Project B-15. J. Clin. Oncol., 1990, 8(9), 1483-1496. [http://dx.doi.org/10.1200/JCO.1990.8.9.1483]. [PMID: 2202791].
[173]
Mauz-Körholz, C.; Hasenclever, D.; Dörffel, W.; Ruschke, K.; Pelz, T.; Voigt, A.; Stiefel, M.; Winkler, M.; Vilser, C.; Dieckmann, K.; Karlén, J.; Bergsträsser, E.; Fosså, A.; Mann, G.; Hummel, M.; Klapper, W.; Stein, H.; Vordermark, D.; Kluge, R.; Körholz, D. Procarbazine-free OEPA-COPDAC chemotherapy in boys and standard OPPA-COPP in girls have comparable effectiveness in pediatric Hodgkin’s lymphoma: the GPOH-HD-2002 study. J. Clin. Oncol., 2010, 28(23), 3680-3686. [http://dx.doi.org/10.1200/JCO.2009.26.9381]. [PMID: 20625128].
[174]
von Tresckow, B.; Kreissl, S.; Goergen, H.; Bröckelmann, P.J.; Pabst, T.; Fridrik, M.; Rummel, M.; Jung, W.; Thiemer, J.; Sasse, S.; Bürkle, C.; Baues, C.; Diehl, V.; Engert, A.; Borchmann, P. Intensive treatment strategies in advanced-stage Hodgkin’s lymphoma (HD9 and HD12): analysis of long-term survival in two randomised trials. Lancet Haematol., 2018, 5(10), e462-e473. [http://dx.doi.org/10.1016/S2352-3026(18)30140-6]. [PMID: 30290903].
[175]
Sripada, P.V.; Tenali, S.G.; Vasudevan, M.; Viswanadhan, S.; Sriraman, D.; Kandasamy, R. Hybrid (COPP/ABV) therapy in childhood Hodgkin’s disease: a study of 53 cases during 1989-1993 at the Cancer Institute, Madras. Pediatr. Hematol. Oncol., 1995, 12(4), 333-341. [http://dx.doi.org/10.3109/08880019509029583]. [PMID: 7577385].
[176]
Raphael, B.; Andersen, J.W.; Silber, R.; Oken, M.; Moore, D.; Bennett, J.; Bonner, H.; Hahn, R.; Knospe, W.H.; Mazza, J. Comparison of chlorambucil and prednisone versus cyclophosphamide, vincristine, and prednisone as initial treatment for chronic lymphocytic leukemia: long-term follow-up of an Eastern Cooperative Oncology Group randomized clinical trial. J. Clin. Oncol., 1991, 9(5), 770-776. [http://dx.doi.org/10.1200/JCO.1991.9.5.770]. [PMID: 2016618].
[177]
Health, N. C. I. a. t. N. I. o. Adult Non-Hodgkin Lymphoma Treatment (PDQ®)–Health Professional Version.
[178]
Meyer, R.M.; Gospodarowicz, M.K.; Connors, J.M.; Pearcey, R.G.; Wells, W.A.; Winter, J.N.; Horning, S.J.; Dar, A.R.; Shustik, C.; Stewart, D.A.; Crump, M.; Djurfeldt, M.S.; Chen, B.E.; Shepherd, L.E. ABVD Alone versus Radiation-Based Therapy in Limited-Stage Hodgkin’s Lymphoma., 2012, 366, 399-408.
[179]
Hu, X.; Zeng, M.; Yang, S.E.; Liang, X.; Ding, S.S.; Guo, L.; Li, S.; Wen, S.J. Efficacy of rituximab combined with CHOP for treating patients with diffuse large B-cell lymphoma. Medicine (Baltimore), 2017, 96(45)e8494 [http://dx.doi.org/10.1097/MD.0000000000008494]. [PMID: 29137041].
[180]
Wagner, T.; Heydrich, D.; Jork, T.; Voelcker, G.; Hohorst, H.J. Comparative study on human pharmacokinetics of activated ifosfamide and cyclophosphamide by a modified fluorometric test. J. Cancer Res. Clin. Oncol., 1981, 100(1), 95-104. [http://dx.doi.org/10.1007/BF00405906]. [PMID: 7240346].
[181]
Fleming, R.A. An overview of cyclophosphamide and ifosfamide pharmacology. Pharmacotherapy, 1997, 17(5 Pt 2), 146S-154S. [PMID: 9322882].
[182]
Weiss, R.B. Ifosfamide vs cyclophosphamide in cancer therapy. Oncology (Williston Park), 1991, 5, 67-76.
[183]
Buzdar, A.U.; Legha, S.S.; Tashima, C.K.; Yap, H.Y.; Hortobagyi, G.N.; Hersh, E.M.; Blumenschein, G.R.; Bodey, G.P. Ifosfamide versus cyclophosphamide in combination drug therapy for metastatic breast cancer. Cancer Treat. Rep., 1979, 63(1), 115-120. [PMID: 369682].
[184]
Akilesh, S.; Juaire, N.; Duffield, J.S.; Smith, K.D. Chronic Ifosfamide toxicity: kidney pathology and pathophysiology. Am. J. Kidney Dis., 2014, 63(5), 843-850. [http://dx.doi.org/10.1053/j.ajkd.2013.11.028]. [PMID: 24518127].
[185]
Williams, M.L.; Wainer, I.W. Cyclophosphamide versus ifosfamide: to use ifosfamide or not to use, that is the three-dimensional question. Curr. Pharm. Des., 1999, 5(8), 665-672. [PMID: 10469897].
[186]
Corporation, B.H. IFEX (ifosfamide for injection, USP). (Available at: http://ecatalog.baxter.com/ecatalog/loadproduct.html?cid=20016&lid=10001&hid=20001&pid=822144).
[187]
Liffers, R. Treatment of advanced non-Hodgkin’s lymphoma using adriblastin and endoxan as well as ixoten. Med. Welt, 1980, 31(27), 1029-1032. [PMID: 7421538].
[188]
Pötzi, P.; Aiginger, P.; Kühböck, J. Ixoten therapy in malignant lymphomas. Acta Med. Austriaca, 1979, 6(5), 247-249. [PMID: 400215].
[189]
Wist, E.; Risberg, T. Trofosfamide in non-Hodgkin’s lymphoma. A phase II study. Acta Oncol., 1991, 30(7), 819-821. [http://dx.doi.org/10.3109/02841869109091828]. [PMID: 1764273].
[190]
Latz, D.; Nassar, N.; Frank, R. Trofosfamide in the palliative treatment of cancer: a review of the literature. Onkologie, 2004, 27(6), 572-576. [PMID: 15591719].
[191]
Boos, J.; Küpker, F.; Blaschke, G.; Jürgens, H. Trofosfamide metabolism in different species--ifosfamide is the predominant metabolite. Cancer Chemother. Pharmacol., 1993, 33(1), 71-76. [http://dx.doi.org/10.1007/BF00686026]. [PMID: 8269592].
[192]
Brinker, A.; Kisro, J.; Letsch, C.; Brüggemann, S.K.; Wagner, T. New insights into the clinical pharmacokinetics of trofosfamide. Int. J. Clin. Pharmacol. Ther., 2002, 40(8), 376-381. [http://dx.doi.org/10.5414/CPP40376]. [PMID: 12467306].
[193]
Morgan, D.O. Cyclin-dependent kinases: Engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol., 1997, 13, 261-291. [DOI: 10.1146/annurev.cellbio.13.1.261].
[194]
Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer, 2009, 9(3), 153-166. [http://dx.doi.org/10.1038/nrc2602]. [PMID: 19238148].
[195]
Davies, T.G.; Pratt, D.J.; Endicott, J.A.; Johnson, L.N.; Noble, M.E.M. Structure-based design of cyclin-dependent kinase inhibitors. Pharmacol. Ther., 2002, 93(2-3), 125-133. [http://dx.doi.org/10.1016/S0163-7258(02)00182-1]. [PMID: 12191605].
[196]
Williamson, D.S.; Parratt, M.J.; Bower, J.F.; Moore, J.D.; Richardson, C.M.; Dokurno, P.; Cansfield, A.D.; Francis, G.L.; Hebdon, R.J.; Howes, R.; Jackson, P.S.; Lockie, A.M.; Murray, J.B.; Nunns, C.L.; Powles, J.; Robertson, A.; Surgenor, A.E.; Torrance, C.J. Structure-guided design of pyrazolo[1,5-a]pyrimidines as inhibitors of human cyclin-dependent kinase 2. Bioorg. Med. Chem. Lett., 2005, 15(4), 863-867. [http://dx.doi.org/10.1016/j.bmcl.2004.12.073]. [PMID: 15686876].
[197]
Heathcote, D.A.; Patel, H.; Kroll, S.H.B.; Hazel, P.; Periyasamy, M.; Alikian, M.; Kanneganti, S.K.; Jogalekar, A.S.; Scheiper, B.; Barbazanges, M.; Blum, A.; Brackow, J.; Siwicka, A.; Pace, R.D.M.; Fuchter, M.J.; Snyder, J.P.; Liotta, D.C.; Freemont, P.S.; Aboagye, E.O.; Coombes, R.C.; Barrett, A.G.M.; Ali, S. A novel pyrazolo[1,5-a]pyrimidine is a potent inhibitor of cyclin-dependent protein kinases 1, 2, and 9, which demonstrates antitumor effects in human tumor xenografts following oral administration. J. Med. Chem., 2010, 53(24), 8508-8522. [http://dx.doi.org/10.1021/jm100732t]. [PMID: 21080703].
[198]
Kosugi, T.; Mitchell, D.R.; Fujino, A.; Imai, M.; Kambe, M.; Kobayashi, S.; Makino, H.; Matsueda, Y.; Oue, Y.; Komatsu, K.; Imaizumi, K.; Sakai, Y.; Sugiura, S.; Takenouchi, O.; Unoki, G.; Yamakoshi, Y.; Cunliffe, V.; Frearson, J.; Gordon, R.; Harris, C.J.; Kalloo-Hosein, H.; Le, J.; Patel, G.; Simpson, D.J.; Sherborne, B.; Thomas, P.S.; Suzuki, N.; Takimoto-Kamimura, M.; Kataoka, K. Mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2) as an antiinflammatory target: discovery and in vivo activity of selective pyrazolo[1,5-a]pyrimidine inhibitors using a focused library and structure-based optimization approach. J. Med. Chem., 2012, 55(15), 6700-6715. [http://dx.doi.org/10.1021/jm300411k]. [PMID: 22746295].
[199]
Paruch, K.; Dwyer, M.P.; Alvarez, C.; Brown, C.; Chan, T-Y.; Doll, R.J.; Keertikar, K.; Knutson, C.; McKittrick, B.; Rivera, J.; Rossman, R.; Tucker, G.; Fischmann, T.O.; Hruza, A.; Madison, V.; Nomeir, A.A.; Wang, Y.; Lees, E.; Parry, D.; Sgambellone, N.; Seghezzi, W.; Schultz, L.; Shanahan, F.; Wiswell, D.; Xu, X.; Zhou, Q.; James, R.A.; Paradkar, V.M.; Park, H.; Rokosz, L.R.; Stauffer, T.M.; Guzi, T.J. Pyrazolo[1,5-a]pyrimidines as orally available inhibitors of cyclin-dependent kinase 2. Bioorg. Med. Chem. Lett., 2007, 17(22), 6220-6223. [http://dx.doi.org/10.1016/j.bmcl.2007.09.017]. [PMID: 17904841].
[200]
Zhao, M.; Ren, H.; Chang, J.; Zhang, D.; Yang, Y.; He, Y.; Qi, C.; Zhang, H. Design and synthesis of novel pyrazolo[1,5-a]pyrimidine derivatives bearing nitrogen mustard moiety and evaluation of their antitumor activity in vitro and in vivo. Eur. J. Med. Chem., 2016, 119, 183-196. [http://dx.doi.org/10.1016/j.ejmech.2016.04.068]. [PMID: 27162123].
[201]
Wilson, W.R.; Hay, M.P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer, 2011, 11(6), 393-410. [http://dx.doi.org/10.1038/nrc3064]. [PMID: 21606941].
[202]
Denny, W.A. The role of hypoxia-activated prodrugs in cancer therapy. Lancet Oncol., 2000, 1(1), 25-29. [http://dx.doi.org/10.1016/S1470-2045(00)00006-1]. [PMID: 11905684].
[203]
Guise, C.P.; Mowday, A.M.; Ashoorzadeh, A.; Yuan, R.; Lin, W.H.; Wu, D.H.; Smaill, J.B.; Patterson, A.V.; Ding, K. Bioreductive prodrugs as cancer therapeutics: targeting tumor hypoxia. Chin. J. Cancer, 2014, 33(2), 80-86. [http://dx.doi.org/10.5732/cjc.012.10285]. [PMID: 23845143].
[204]
Phillips, R.M. Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemother. Pharmacol., 2016, 77(3), 441-457. [http://dx.doi.org/10.1007/s00280-015-2920-7]. [PMID: 26811177].
[205]
Duan, J.X.; Jiao, H.; Kaizerman, J.; Stanton, T.; Evans, J.W.; Lan, L.; Lorente, G.; Banica, M.; Jung, D.; Wang, J.; Ma, H.; Li, X.; Yang, Z.; Hoffman, R.M.; Ammons, W.S.; Hart, C.P.; Matteucci, M. Potent and highly selective hypoxia-activated achiral phosphoramidate mustards as anticancer drugs. J. Med. Chem., 2008, 51(8), 2412-2420. [http://dx.doi.org/10.1021/jm701028q]. [PMID: 18257544].
[206]
Meng, F.; Evans, J.W.; Bhupathi, D.; Banica, M.; Lan, L.; Lorente, G.; Duan, J.X.; Cai, X.; Mowday, A.M.; Guise, C.P.; Maroz, A.; Anderson, R.F.; Patterson, A.V.; Stachelek, G.C.; Glazer, P.M.; Matteucci, M.D.; Hart, C.P. Molecular and cellular pharmacology of the hypoxia-activated prodrug TH-302. Mol. Cancer Ther., 2012, 11(3), 740-751. [http://dx.doi.org/10.1158/1535-7163.MCT-11-0634]. [PMID: 22147748].
[207]
Sun, J.D.; Liu, Q.; Wang, J.; Ahluwalia, D.; Ferraro, D.; Wang, Y.; Duan, J.X.; Ammons, W.S.; Curd, J.G.; Matteucci, M.D.; Hart, C.P. Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer. Clin. Cancer Res., 2012, 18(3), 758-770.
[208]
Van Cutsem, E.; Lenz, H-J.; Furuse, J.; Tabernero, J.; Heinemann, V.; Ioka, T.; Bazin, I.; Ueno, M.; Csõszi, T.; Wasan, H.; Melichar, B.; Karasek, P.; Mercade Macarulla, T.; Guillen, C.; Kalinka-Warzocha, E.; Horváth, Z.; Prenen, H.; Schlichting, M.; Ibrahim, A.; Bendell, C.J. MAESTRO: A randomized, double-blind phase III study of evofosfamide (Evo) in combination with gemcitabine (Gem) in previously untreated patients (pts) with metastatic or locally advanced unresectable pancreatic ductal adenocarcinoma. J. Clin. Oncol., 2016, Vol. 34
[209]
Weiss, G.J.; Infante, J.R.; Chiorean, E.G.; Borad, M.J.; Bendell, J.C.; Molina, J.R.; Tibes, R.; Ramanathan, R.K.; Lewandowski, K.; Jones, S.F.; Lacouture, M.E.; Langmuir, V.K.; Lee, H.; Kroll, S.; Burris, H.A. 3rd Phase 1 study of the safety, tolerability, and pharmacokinetics of TH-302, a hypoxia-activated prodrug, in patients with advanced solid malignancies. Clin. Cancer Res., 2011, 17, 2997-3004.
[210]
Borad, M.J.; Reddy, S.G.; Bahary, N.; Uronis, H.E.; Sigal, D.; Cohn, A.L.; Schelman, W.R.; Stephenson, J., Jr; Chiorean, E.G.; Rosen, P.J.; Ulrich, B.; Dragovich, T.; Del Prete, S.A.; Rarick, M.; Eng, C.; Kroll, S.; Ryan, D.P. Randomized phase II trial of gemcitabine plus TH-302 versus gemcitabine in patients with advanced pancreatic cancer. J. Clin. Oncol., 2015, 33(13), 1475-1481. [http://dx.doi.org/10.1200/JCO.2014.55.7504]. [PMID: 25512461].
[211]
Duran, R.; Mirpour, S.; Pekurovsky, V.; Ganapathy-Kanniappan, S.; Brayton, C.F.; Cornish, T.C.; Gorodetski, B.; Reyes, J.; Chapiro, J.; Schernthaner, R.E.; Frangakis, C.; Lin, M.; Sun, J.D.; Hart, C.P.; Geschwind, J.F. Preclinical benefit of hypoxia-activated intra-arterial therapy with evofosfamide in liver cancer. Clin. Cancer Res., 2017, 23, 536-548. [http://dx.doi.org/10.1158/1078-0432.CCR-16-0725].
[212]
Peeters, S.G.; Zegers, C.M.; Biemans, R.; Lieuwes, N.G.; van Stiphout, R.G.; Yaromina, A.; Sun, J.D.; Hart, C.P.; Windhorst, A.D.; van Elmpt, W.; Dubois, L.J.; Lambin, P. TH-302 in combination with radiotherapy enhances the therapeutic outcome and is associated with pretreatment [18F]HX4 hypoxia PET imaging. Clin. Cancer Res., 2015, 21, 2984-2992.
[213]
Hu, J.; Van Valckenborgh, E.; Xu, D.; Menu, E.; De Raeve, H.; De Bruyne, E.; Xu, S.; Van Camp, B.; Handisides, D.; Hart, C.P.; Vanderkerken, K. Synergistic induction of apoptosis in multiple myeloma cells by bortezomib and hypoxia-activated prodrug TH-302, in vivo and in vitro. Mol. Cancer Ther., 2013, 12(9), 1763-1773. [http://dx.doi.org/10.1158/1535-7163.MCT-13-0123]. [PMID: 23832122].
[214]
Portwood, S.; Lal, D.; Hsu, Y.C.; Vargas, R.; Johnson, M.K.; Wetzler, M.; Hart, C.P.; Wang, E.S. Activity of the hypoxia-activated prodrug, TH-302, in preclinical human acute myeloid leukemia models. Clin. Cancer Res., 2013, 19, 6506-6519.
[215]
Hunter, F.W.; Hsu, H.L.; Su, J.; Pullen, S.M.; Wilson, W.R.; Wang, J. Dual targeting of hypoxia and homologous recombination repair dysfunction in triple-negative breast cancer. Mol. Cancer Ther., 2014, 13(11), 2501-2514. [http://dx.doi.org/10.1158/1535-7163.MCT-14-0476]. [PMID: 25193512].
[216]
Lohse, I.; Rasowski, J.; Cao, P.; Pintilie, M.; Do, T.; Tsao, M.S.; Hill, R.P.; Hedley, D.W. Targeting hypoxic microenvironment of pancreatic xenografts with the hypoxia-activated prodrug TH-302. Oncotarget, 2016, 7(23), 33571-33580. [http://dx.doi.org/10.18632/oncotarget.9654]. [PMID: 27248663].
[217]
Benito, J.; Ramirez, M.S.; Millward, N.Z.; Velez, J.; Harutyunyan, K.G.; Lu, H.; Shi, Y.X.; Matre, P.; Jacamo, R.; Ma, H.; Konoplev, S.; McQueen, T.; Volgin, A.; Protopopova, M.; Mu, H.; Lee, J.; Bhattacharya, P.K.; Marszalek, J.R.; Davis, R.E.; Bankson, J.A.; Cortes, J.E.; Hart, C.P.; Andreeff, M.; Konopleva, M. Hypoxia-activated prodrug TH-302 targets hypoxic bone marrow niches in preclinical leukemia models. Clin. Cancer Res., 2016, 22, 1687-1698.
[218]
Zhang, L.; Marrano, P.; Wu, B.; Kumar, S.; Thorner, P.; Baruchel, S. Combined antitumor therapy with metronomic topotecan and hypoxia-activated prodrug, evofosfamide, in neuroblastoma and rhabdomyosarcoma preclinical models. Clin. Cancer Res., 2016, 22, 2697-2708.
[219]
Nytko, K.J.; Grgic, I.; Bender, S.; Ott, J.; Guckenberger, M.; Riesterer, O.; Pruschy, M. The hypoxia-activated prodrug evofosfamide in combination with multiple regimens of radiotherapy. Oncotarget, 2017, 8(14), 23702-23712. [http://dx.doi.org/10.18632/oncotarget.15784]. [PMID: 28423594].
[220]
Jamieson, S.M.; Tsai, P.; Kondratyev, M.K.; Budhani, P.; Liu, A.; Senzer, N.N.; Chiorean, E.G.; Jalal, S.I.; Nemunaitis, J.J.; Kee, D.; Shome, A.; Wong, W.W.; Li, D.; Poonawala-Lohani, N.; Kakadia, P.M.; Knowlton, N.S.; Lynch, C.R.; Hong, C.R.; Lee, T.W.; Grénman, R.A.; Caporiccio, L.; McKee, T.D.; Zaidi, M.; Butt, S.; Macann, A.M.; McIvor, N.P.; Chaplin, J.M.; Hicks, K.O.; Bohlander, S.K.; Wouters, B.G.; Hart, C.P.; Print, C.G.; Wilson, W.R.; Curran, M.A.; Hunter, F.W. Evofosfamide for the treatment of human papillomavirus-negative head and neck squamous cell carcinoma. JCI Insight, 2018, 3(16), 3. [http://dx.doi.org/10.1172/jci.insight.122204]. [PMID: 30135316].
[221]
Pourmorteza, M.; Rahman, Z.U.; Young, M. Evofosfamide, a new horizon in the treatment of pancreatic cancer. Anticancer Drugs, 2016, 27(8), 723-725. [http://dx.doi.org/10.1097/CAD.0000000000000386]. [PMID: 27232101].
[222]
McKeage, M.J.; Gu, Y.; Wilson, W.R.; Hill, A.; Amies, K.; Melink, T.J.; Jameson, M.B.J.B.C. A phase I trial of PR-104, a pre-prodrug of the bioreductive prodrug PR-104A, given weekly to solid tumour patients. PMC Cancer, 2011, 11, 432. [http://dx.doi.org/10.1186/1471-2407-11-432].
[223]
Jameson, M.B.; Rischin, D.; Pegram, M.; Gutheil, J.; Patterson, A.V.; Denny, W.A.; Wilson, W.R. A phase I trial of PR-104, a nitrogen mustard prodrug activated by both hypoxia and aldo-keto reductase 1C3, in patients with solid tumors. Cancer Chemother. Pharmacol., 2010, 65(4), 791-801. [http://dx.doi.org/10.1007/s00280-009-1188-1]. [PMID: 20012293].
[224]
McKeage, M.J.; Jameson, M.B.; Ramanathan, R.K.; Rajendran, J.; Gu, Y.; Wilson, W.R.; Melink, T.J.; Tchekmedyian, N.S.J.B.C. PR-104 a bioreductive pre-prodrug combined with gemcitabine or docetaxel in a phase Ib study of patients with advanced solid tumours. BMC Cancer, 2012, 12, 496.
[225]
Abbattista, M.R.; Jamieson, S.M.; Gu, Y.; Nickel, J.E.; Pullen, S.M.; Patterson, A.V.; Wilson, W.R.; Guise, C.P. Pre-clinical activity of PR-104 as monotherapy and in combination with sorafenib in hepatocellular carcinoma. Cancer Biol. Ther., 2015, 16(4), 610-622. [http://dx.doi.org/10.1080/15384047.2015.1017171]. [PMID: 25869917].
[226]
Konopleva, M.; Thall, P.F.; Yi, C.A.; Borthakur, G.; Coveler, A.; Bueso-Ramos, C.; Benito, J.; Konoplev, S.; Gu, Y.; Ravandi, F.; Jabbour, E.; Faderl, S.; Thomas, D.; Cortes, J.; Kadia, T.; Kornblau, S.; Daver, N.; Pemmaraju, N.; Nguyen, H.Q.; Feliu, J.; Lu, H.; Wei, C.; Wilson, W.R.; Melink, T.J.; Gutheil, J.C.; Andreeff, M.; Estey, E.H.; Kantarjian, H. Phase I/II study of the hypoxia-activated prodrug PR104 in refractory/relapsed acute myeloid leukemia and acute lymphoblastic leukemia. Haematologica, 2015, 100(7), 927-934. [http://dx.doi.org/10.3324/haematol.2014.118455]. [PMID: 25682597].
[227]
Houghton, P.J.; Lock, R.; Carol, H.; Morton, C.L.; Phelps, D.; Gorlick, R.; Kolb, E.A.; Keir, S.T.; Reynolds, C.P.; Kang, M.H.; Maris, J.M.; Wozniak, A.W.; Gu, Y.; Wilson, W.R.; Smith, M.A. Initial testing of the hypoxia-activated prodrug PR-104 by the pediatric preclinical testing program. Pediatr. Blood Cancer, 2011, 57, 443-453. [http://dx.doi.org/10.1002/pbc.22921].
[228]
Abou-Alfa, G.K.; Chan, S.L.; Lin, C.C.; Chiorean, E.G.; Holcombe, R.F.; Mulcahy, M.F.; Carter, W.D.; Patel, K.; Wilson, W.R.; Melink, T.J.; Gutheil, J.C.; Tsao, C-J.J.C.C. Pharmacology: PR-104 plus sorafenib in patients with advanced hepatocellular carcinoma. Cancer Chemother. Pharmacol., 2011, 68, 539. [DOI: doi: 10.1007/s00280-011-1671-3].
[229]
Gu, Y.; Guise, C.P.; Patel, K.; Abbattista, M.R.; Lie, J.; Sun, X.; Atwell, G.J.; Boyd, M.; Patterson, A.V.; Wilson, W.R.J.C.C. Pharmacology: Reductive metabolism of the dinitrobenzamide mustard anticancer prodrug PR-104 in mice. Cancer Chemother. Pharmacol., 2011, 67, 543-555. [DOI: doi: 10.1007/s00280-010-1354-5].
[230]
Gu, Y.; Patterson, A.V.; Atwell, G.J.; Chernikova, S.B.; Brown, J.M.; Thompson, L.H.; Wilson, W.R. Roles of DNA repair and reductase activity in the cytotoxicity of the hypoxia-activated dinitrobenzamide mustard PR-104A. Mol. Cancer Ther., 2009, 8, 1714-1723. [http://dx.doi.org/10.1158/1535-7163.MCT-08-1209].
[231]
Patterson, A.V.; Ferry, D.M.; Edmunds, S.J.; Gu, Y.; Singleton, R.S.; Patel, K.; Pullen, S.M.; Hicks, K.O.; Syddall, S.P.; Atwell, G.J.; Yang, S.; Denny, W.A.; Wilson, W.R. Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin. Cancer Res., 2007, 13(13), 3922-3932. [http://dx.doi.org/10.1158/1078-0432.CCR-07-0478]. [PMID: 17606726].
[232]
Singleton, R.S.; Guise, C.P.; Ferry, D.M.; Pullen, S.M.; Dorie, M.J.; Brown, J.M.; Patterson, A.V.; Wilson, W.R. DNA cross-links in human tumor cells exposed to the prodrug PR-104A: relationships to hypoxia, bioreductive metabolism, and cytotoxicity. Cancer Res., 2009, 69(9), 3884-3891. [http://dx.doi.org/10.1158/0008-5472.CAN-08-4023]. [PMID: 19366798].
[233]
Stornetta, A.; Deng, K.K.; Danielli, S.; Liyanage, H.D.S.; Sturla, S.J.; Wilson, W.R.; Gu, Y. Drug-DNA adducts as biomarkers for metabolic activation of the nitro-aromatic nitrogen mustard prodrug PR-104A. Biochem. Pharmacol., 2018, 154, 64-74. [http://dx.doi.org/10.1016/j.bcp.2018.04.004]. [PMID: 29630868].
[234]
Wilson, A.J.; Kerns, J.K.; Callahan, J.F.; Moody, C.J. Keap calm, and carry on covalently. J. Med. Chem., 2013, 56(19), 7463-7476. [http://dx.doi.org/10.1021/jm400224q]. [PMID: 23837912].
[235]
Erzinger, M.M.; Bovet, C.; Hecht, K.M.; Senger, S.; Winiker, P.; Sobotzki, N.; Cristea, S.; Beerenwinkel, N.; Shay, J.W.; Marra, G.; Wollscheid, B.; Sturla, S.J. Sulforaphane preconditioning sensitizes human colon cancer cells towards the bioreductive anticancer prodrug PR-104A. PLoS One, 2016, 11(3)e0150219 [http://dx.doi.org/10.1371/journal.pone.0150219]. [PMID: 26950072].
[236]
Verwilst, P.; Han, J.; Lee, J.; Mun, S.; Kang, H-G.; Kim, J.S. Reconsidering azobenzene as a component of small-molecule hypoxia-mediated cancer drugs: A theranostic case study. Biomaterials, 2017, 115, 104-114. [http://dx.doi.org/10.1016/j.biomaterials.2016.11.023]. [PMID: 27886551].
[237]
Chen, W.; Fan, H.; Balakrishnan, K.; Wang, Y.; Sun, H.; Fan, Y.; Gandhi, V.; Arnold, L.A.; Peng, X. Discovery and optimization of novel hydrogen peroxide activated aromatic nitrogen mustard derivatives as highly potent anticancer agents. J. Med. Chem., 2018, 61(20), 9132-9145. [http://dx.doi.org/10.1021/acs.jmedchem.8b00559]. [PMID: 30247905].
[238]
Ma, Z.Y.; Wang, D.B.; Song, X.Q.; Wu, Y.G.; Chen, Q.; Zhao, C.L.; Li, J.Y.; Cheng, S.H.; Xu, J.Y. Chlorambucil-conjugated platinum(IV) prodrugs to treat triple-negative breast cancer in vitro and in vivo. Eur. J. Med. Chem., 2018, 157, 1292-1299. [http://dx.doi.org/10.1016/j.ejmech.2018.08.065]. [PMID: 30195239].
[239]
Decker, M. Hybrid molecules incorporating natural products: applications in cancer therapy, neurodegenerative disorders and beyond. Curr. Med. Chem., 2011, 18(10), 1464-1475. [http://dx.doi.org/10.2174/092986711795328355]. [PMID: 21428895].
[240]
Ding, Y.; Ding, C.; Ye, N.; Liu, Z.; Wold, E.A.; Chen, H.; Wild, C.; Shen, Q.; Zhou, J. Discovery and development of natural product oridonin-inspired anticancer agents. Eur. J. Med. Chem., 2016, 122, 102-117. [http://dx.doi.org/10.1016/j.ejmech.2016.06.015]. [PMID: 27344488].
[241]
Ikezoe, T.; Chen, S.S.; Tong, X-J.; Heber, D.; Taguchi, H.; Koeffler, H.P.J.I.o. Oridonin induces growth inhibition and apoptosis of a variety of human cancer cells. Int. J. Oncol., 2003, 23, 1187-1193. [http://dx.doi.org/10.3892/ijo.23.4.1187].
[242]
Li, C.Y.; Wang, E.Q.; Cheng, Y.; Bao, J.K. Oridonin: An active diterpenoid targeting cell cycle arrest, apoptotic and autophagic pathways for cancer therapeutics. Int. J. Biochem. Cell Biol., 2011, 43(5), 701-704. [http://dx.doi.org/10.1016/j.biocel.2011.01.020]. [PMID: 21295154].
[243]
Zhao, Z.; Chen, Y. Oridonin, a promising antitumor natural product in the chemotherapy of hematological malignancies. Curr. Pharm. Biotechnol., 2014, 15(11), 1083-1092. [http://dx.doi.org/10.2174/1389201015666141111115608]. [PMID: 25391243].
[244]
Liu, Z.; Ouyang, L.; Peng, H.; Zhang, W. Z. J. C. p. Oridonin: targeting programmed cell death pathways as an anti-tumour agent. 2012, 45, 499-507. [http://dx.doi.org/10.1111/j.1365-2184.2012.00849.x]
[245]
Xu, S.; Pei, L.; Wang, C.; Zhang, Y-K.; Li, D.; Yao, H.; Wu, X.; Chen, Z-S.; Sun, Y.; Xu, J. Novel hybrids of natural oridonin-bearing nitrogen mustards as potential anticancer drug candidates. ACS Med. Chem. Lett., 2014, 5(7), 797-802. [http://dx.doi.org/10.1021/ml500141f]. [PMID: 25050168].
[246]
Gao, X.; Li, J.; Wang, M.; Xu, S.; Liu, W.; Zang, L.; Li, Z.; Hua, H.; Xu, J.; Li, D. Novel enmein-type diterpenoid hybrids coupled with nitrogen mustards: Synthesis of promising candidates for anticancer therapeutics. Eur. J. Med. Chem., 2018, 146, 588-598. [http://dx.doi.org/10.1016/j.ejmech.2018.01.069]. [PMID: 29407983].
[247]
Shi, C.S.; Li, J.M.; Chin, C.C.; Kuo, Y.H.; Lee, Y.R.; Huang, Y.C. Evodiamine induces cell growth arrest, apoptosis and suppresses tumorigenesis in human urothelial cell carcinoma cells. Anticancer Res., 2017, 37(3), 1149-1159. [http://dx.doi.org/10.21873/anticanres.11428]. [PMID: 28314276].
[248]
Shi, L.; Yang, F.; Luo, F.; Liu, Y.; Zhang, F.; Zou, M.; Liu, Q. Evodiamine exerts anti-tumor effects against hepatocellular carcinoma through inhibiting β-catenin-mediated angiogenesis. Tumour Biol., 2016, 37(9), 12791-12803. [http://dx.doi.org/10.1007/s13277-016-5251-3]. [PMID: 27449032].
[249]
Shyu, K-G.; Lin, S.; Lee, C-C.; Chen, E.; Lin, L-C.; Wang, B-W.; Tsai, S-C. Evodiamine inhibits in vitro angiogenesis: Implication for antitumorgenicity. Life Sci., 2006, 78, 2234-2243. [http://dx.doi.org/10.1016/j.lfs.2005.09.027].
[250]
Dong, G.; Sheng, C.; Wang, S.; Miao, Z.; Yao, J.; Zhang, W. Selection of evodiamine as a novel topoisomerase I inhibitor by structure-based virtual screening and hit optimization of evodiamine derivatives as antitumor agents. J. Med. Chem., 2010, 53(21), 7521-7531. [http://dx.doi.org/10.1021/jm100387d]. [PMID: 20942490].
[251]
Dong, G.; Wang, S.; Miao, Z.; Yao, J.; Zhang, Y.; Guo, Z.; Zhang, W.; Sheng, C. New tricks for an old natural product: discovery of highly potent evodiamine derivatives as novel antitumor agents by systemic structure-activity relationship analysis and biological evaluations. J. Med. Chem., 2012, 55(17), 7593-7613. [http://dx.doi.org/10.1021/jm300605m]. [PMID: 22867019].
[252]
Song, S.; Chen, Z.; Li, S.; Huang, Y.; Wan, Y.; Song, H. Design, synthesis and evaluation of N13-substituted evodiamine derivatives against human cancer cell lines. Molecules, 2013, 18, 15750.
[253]
He, S.; Dong, G.; Wang, Z.; Chen, W.; Huang, Y.; Li, Z.; Jiang, Y.; Liu, N.; Yao, J.; Miao, Z.; Zhang, W.; Sheng, C. Discovery of novel multiacting topoisomerase I/II and histone deacetylase inhibitors. ACS Med. Chem. Lett., 2015, 6(3), 239-243. [http://dx.doi.org/10.1021/ml500327q]. [PMID: 25815139].
[254]
Wang, S.; Fang, K.; Dong, G.; Chen, S.; Liu, N.; Miao, Z.; Yao, J.; Li, J.; Zhang, W.; Sheng, C. Scaffold diversity inspired by the natural product evodiamine: Discovery of highly potent and multitargeting antitumor agents. J. Med. Chem., 2015, 58(16), 6678-6696. [http://dx.doi.org/10.1021/acs.jmedchem.5b00910]. [PMID: 26226379].
[255]
Zhao, N.; Tian, K.T.; Cheng, K.G.; Han, T.; Hu, X.; Li, D.H.; Li, Z.L.; Hua, H.M. Antiproliferative activity and apoptosis inducing effects of nitric oxide donating derivatives of evodiamine. Bioorg. Med. Chem., 2016, 24(13), 2971-2978. [http://dx.doi.org/10.1016/j.bmc.2016.05.001]. [PMID: 27178387].
[256]
Hu, X.; Wang, Y.; Xue, J.; Han, T.; Jiao, R.; Li, Z.; Liu, W.; Xu, F.; Hua, H.; Li, D. Design and synthesis of novel nitrogen mustard-evodiamine hybrids with selective antiproliferative activity. Bioorg. Med. Chem. Lett., 2017, 27(22), 4989-4993. [http://dx.doi.org/10.1016/j.bmcl.2017.10.014]. [PMID: 29037951].
[257]
Kumar, N.; Bhalla, V.; Kumar, M.J.C.C. Development and sensing applications of fluorescent motifs within the mitochondrial environment. Chem. Commun., 2015, 51, 15614-15628.
[258]
Singh, K.K.; Russell, J.; Sigala, B.; Zhang, Y.; Williams, J.; Keshav, K.F. Mitochondrial DNA determines the cellular response to cancer therapeutic agents. Oncogene, 1999, 18(48), 6641-6646. [http://dx.doi.org/10.1038/sj.onc.1203056]. [PMID: 10597269].
[259]
Chen, X.; Chen, H.; Lu, C.; Yang, C.; Yu, X.; Li, K.; Xie, Y. Novel mitochondria-targeted, nitrogen mustard-based DNA alkylation agents with near infrared fluorescence emission. Talanta, 2016, 161, 888-893. [http://dx.doi.org/10.1016/j.talanta.2016.08.051]. [PMID: 27769499].
[260]
Millard, M.; Gallagher, J.D.; Olenyuk, B.Z.; Neamati, N.J. A selective mitochondrial-targeted chlorambucil with remarkable cytotoxicity in breast and pancreatic cancers. J. Med. Chem., 2013, 56, 9170-9179. [http://dx.doi.org/10.1021/jm4012438].
[261]
Millard, M.; Gallagher, J.D.; Olenyuk, B.Z.; Neamati, N. A selective mitochondrial-targeted chlorambucil with remarkable cytotoxicity in breast and pancreatic cancers. J. Med. Chem., 2013, 56(22), 9170-9179. [http://dx.doi.org/10.1021/jm4012438]. [PMID: 24147900].
[262]
Wang, X.; Cao, Y.; Yan, H. Chlorambucil loaded in mesoporous polymeric microspheres as oral sustained release formulations with enhanced hydrolytic stability. Mater. Sci. Eng. C, 2018, 91, 564-569. [http://dx.doi.org/10.1016/j.msec.2018.05.078]. [PMID: 30033288].
[263]
Shao, W.; Liu, X.; Sun, G.; Hu, X.Y.; Zhu, J.J.; Wang, L. Construction of drug-drug conjugate supramolecular nanocarriers based on water-soluble pillar[6]arene for combination chemotherapy. Chem. Commun. (Camb.), 2018, 54(68), 9462-9465. [http://dx.doi.org/10.1039/C8CC05180A]. [PMID: 30083687].
[264]
Rodriguez-Antona, C.; Ingelman-Sundberg, M. Cytochrome P450 pharmacogenetics and cancer. Oncogene, 2006, 25(11), 1679-1691. [http://dx.doi.org/10.1038/sj.onc.1209377]. [PMID: 16550168].
[265]
van Schaik, R.H. Cancer treatment and pharmacogenetics of cytochrome P450 enzymes. Invest. New Drugs, 2005, 23(6), 513-522. [http://dx.doi.org/10.1007/s10637-005-4019-1]. [PMID: 16267627].
[266]
Wang, H.; Tompkins, L.M. CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr. Drug Metab., 2008, 9(7), 598-610. [http://dx.doi.org/10.2174/138920008785821710]. [PMID: 18781911].
[267]
Nguyen, T.A.; Tychopoulos, M.; Bichat, F.; Zimmermann, C.; Flinois, J.P.; Diry, M.; Ahlberg, E.; Delaforge, M.; Corcos, L.; Beaune, P.; Dansette, P.; André, F.; de Waziers, I. Improvement of cyclophosphamide activation by CYP2B6 mutants: from in silico to ex vivo. Mol. Pharmacol., 2008, 73(4), 1122-1133. [http://dx.doi.org/10.1124/mol.107.042861]. [PMID: 18212249].
[268]
Sueyoshi, T.; Kawamoto, T.; Zelko, I.; Honkakoski, P.; Negishi, M. The repressed nuclear receptor CAR responds to phenobarbital in activating the human CYP2B6 gene. J. Biol. Chem., 1999, 274(10), 6043-6046. [http://dx.doi.org/10.1074/jbc.274.10.6043]. [PMID: 10037683].
[269]
Wang, H.; Negishi, M. Transcriptional regulation of cytochrome p450 2B genes by nuclear receptors. Curr. Drug Metab., 2003, 4(6), 515-525. [http://dx.doi.org/10.2174/1389200033489262]. [PMID: 14683479].
[270]
Wang, D.; Li, L.; Yang, H.; Ferguson, S.S.; Baer, M.R.; Gartenhaus, R.B.; Wang, H. The constitutive androstane receptor is a novel therapeutic target facilitating cyclophosphamide-based treatment of hematopoietic malignancies. Blood, 2013, 121(2), 329-338. [http://dx.doi.org/10.1182/blood-2012-06-436691]. [PMID: 23160467].
[271]
Maglich, J.M.; Parks, D.J.; Moore, L.B.; Collins, J.L.; Goodwin, B.; Billin, A.N.; Stoltz, C.A.; Kliewer, S.A.; Lambert, M.H.; Willson, T.M.; Moore, J.T. Identification of a novel human constitutive androstane receptor (CAR) agonist and its use in the identification of CAR target genes. J. Biol. Chem., 2003, 278(19), 17277-17283. [http://dx.doi.org/10.1074/jbc.M300138200]. [PMID: 12611900].
[272]
Hedrich, W.D.; Xiao, J.; Heyward, S.; Zhang, Y.; Zhang, J.; Baer, M.R.; Hassan, H.E.; Wang, H. Activation of the constitutive androstane receptor increases the therapeutic index of CHOP in lymphoma treatment. Mol. Cancer Ther., 2016, 15(3), 392-401. [http://dx.doi.org/10.1158/1535-7163.MCT-15-0667]. [PMID: 26823489].
[273]
Mazur, L.; Opydo-Chanek, M.; Stojak, M.; Wojcieszek, K. Mafosfamide as a new anticancer agent: preclinical investigations and clinical trials. Anticancer Res., 2012, 32(7), 2783-2789. [PMID: 22753738].
[274]
Monneret, C.; Gagnet, R.; Florent, J.C. Synthesis of cyclophosphamide analogs from aminotrideoxy sugars. Carbohydr. Res., 1993, 240, 313-322. [http://dx.doi.org/10.1016/0008-6215(93)84195-C]. [PMID: 8458013].
[275]
Ludeman, S.M.; Boyd, V.L.; Regan, J.B.; Gallo, K.A.; Zon, G.; Ishii, K. Synthesis and antitumor activity of cyclophosphamide analogues. 4. Preparation, kinetic studies, and anticancer screening of “phenylketophosphamide” and similar compounds related to the cyclophosphamide metabolite aldophosphamide. J. Med. Chem., 1986, 29(5), 716-727. [http://dx.doi.org/10.1021/jm00155a022]. [PMID: 3701785].

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy