[1]
Flotho, C.; Kratz, C.; Niemeyer, C.M. Targeting RAS signaling pathways in juvenile myelomonocytic leukemia. Curr. Drug Targets, 2007, 8(6), 715-725.
[2]
Schubbert, S.; Shannon, K.; Bollag, G. Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer, 2007, 7(4), 295-308.
[3]
Ridanpaa, M.; Karjalainen, A.; Anttila, S.; Vainio, H.; Husgafvelpursiainen, K. Genetic alterations in p53 and k-ras in lung-cancer in relation to histopathology of the tumor and smoking history of the patient. Int. J. Oncol., 1994, 5(5), 1109-1117.
[4]
Mills, N.E.; Fishman, C.L.; Scholes, J.; Anderson, S.E.; Rom, W.N.; Jacobson, D.R. Detection of K-ras oncogene mutations in bronchoalveolar lavage fluid for lung cancer diagnosis. J. Natl. Cancer Inst., 87(14), 1056-1060.
[5]
Ding, L.; Getz, G.; Wheeler, D.A.; Mardis, E.R.; McLellan, M.D.; Cibulskis, K.; Sougnez, C.; Greulich, H.; Muzny, D.M.; Morgan, M.B.; and Fulton, L. Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 2008, 455(7216), 1069-1075.
[6]
Westcott, P.M.; To, M.D. The genetics and biology of KRAS in lung cancer. Chin. J. Cancer, 2013, 32(2), 63-70.
[7]
Mascaux, C.; Iannino, N.; Martin, B.; Paesmans, M.; Berghmans, T.; Dusart, M.; Haller, A.; Lothaire, P.; Meert, A.P.; Noël, S.; Lafitte, J.J. The role of RAS oncogene in survival of patients with lung cancer: A systematic review of the literature with meta-analysis. Br. J. Cancer, 2005, 92(1), 131-139.
[8]
Kasahara, K.; Arao, T.; Sakai, K.; Matsumoto, K.; Sakai, A.; Kimura, H.; Sone, T.; Horiike, A.; Nishio, M.; Ohira, T.; Ikeda, N. Impact of serum hepatocyte growth factor on treatment response to epidermal growth factor receptor tyrosine kinase inhibitors in patients with non-small cell lung adenocarcinoma. Clin. Cancer Res., 16(18), 4616-4624.
[9]
Ballas, M.S.; Chachoua, A. Rationale for targeting VEGF, FGF, and PDGF for the treatment of NSCLC. OncoTargets Ther., 2011, 4, 43-58.
[10]
Huang, L.; Fu, L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm. Sin. B, 2015, 5(5), 390-401.
[11]
Molina, J.R.; Adjei, A.A. The Ras/Raf/MAPK pathway. J. Thorac. Oncol., 2006, 1(1), 7-9.
[12]
John, T.; Liu, G.; Tsao, M.S. Overview of molecular testing in non-small-cell lung cancer: mutational analysis, gene copy number, protein expression and other biomarkers of EGFR for the prediction of response to tyrosine kinase inhibitors. Oncogene, 2009, 28(Suppl. 1), S14-S23.
[13]
Sebti, S.M. Protein farnesylation: Implications for normal
physiology, malignant transformation, and cancer therapy. Cancer Cell, 2005, 7(4), 297-300.
[14]
Ghobrial, I.M.; Adjei, A.A. Inhibitors of the ras oncogene as therapeutic targets. Hematol. Oncol. Clin. North Am., 2002, 16(5), 1065-1088.
[15]
Ohkanda, J.; Knowles, D.B.; Blaskovich, M.A.; Sebti, S.M.; Hamilton, A.D. Inhibitors of protein farnesyltransferase as novel anticancer agents. Curr. Top. Med. Chem., 2002, 2(3), 303-323.
[16]
Winter-Vann, A.M.; Casey, P.J. Post-prenylation-processing enzymes as new targets in oncogenesis. Nat. Rev. Cancer, 2005, 5(5), 405-412.
[17]
Gibbs, J.B.; Oliff, A.; Kohl, N.E. Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell, 1994, 77, 175-178.
[18]
Agrawal, A.G.; Somani, R.R. Farnesyltransferase inhibitor as anticancer agent. Mini Rev. Med. Chem., 2009, 9(6), 638-652.
[19]
Ohkanda, J.; Knowles, D.B.; Blaskovich, M.A.; Sebti, S.M.; Hamilton, A.D. Targeting RAS membrane association: back to the future for anti-RAS drug discovery? Clin. Cancer Res., 2015, 21(8), 1819-1827.
[20]
Ma, Y.T.; Gilbert, B.A.; Rando, R.R. Inhibitors of the isoprenylated protein endoprotease. Biochemistry, 1993, 32(9), 2386-2393.
[21]
Ma, Y.T.; Gilbert, B.A.; Rando, R.R. Isoprenylcysteine carboxylmethyltransferase deficiency exacerbates KRAS-driven pancreatic neoplasia via Notch suppression. J. Clin. Invest., 2013, 123(11), 4681-4694.
[22]
Aguilar, B.J.; Nkembo, A.T.; Duverna, R.; Poku, R.A.; Amissah, F.; Ablordeppey, S.Y.; Lamango, N.S. Polyisoprenylated methylated protein methyl esterase: A putative biomarker and therapeutic target for pancreatic cancer. Eur. J. Med. Chem., 2014, 81, 323-333.
[23]
Amissah, F.; Duverna, R.; Aguilar, B.J.; Poku, R.A.; Kiros, G.E.; Lamango, N.S. Polyisoprenylated methylated protein methyl esterase overexpression and hyperactivity promotes lung cancer progression. Am. J. Cancer Res., 2014, 4(2), 116-134.
[24]
Nkembo, A.T.; Ntantie, E.; Salako, O.O.; Amissah, F.; Poku, R.A.; Latinwo, L.M.; Lamango, N.S. The antiangiogenic effects of polyisoprenylated cysteinyl amide inhibitors in HUVEC, chick embryo and zebrafish is dependent on the polyisoprenyl moiety. Oncotarget, 2016, 7(42), 68194-68205.
[25]
Nkembo, A.T.; Salako, O.; Poku, R.A.; Amissah, F.; Ntantie, E.; Flores-Rozas, H.; Lamango, N.S. Disruption of actin filaments and suppression of pancreatic cancer cell viability and migration following treatment with polyisoprenylated cysteinyl amides. Am. J. Cancer Res., 6(11), 2532-2546.
[26]
Poku, R.A.; Salako, O.O.; Amissah, F.; Nkembo, A.T.; Ntantie, E.; Lamango, N.S. Polyisoprenylated cysteinyl amide inhibitors induce caspase 3/7- and 8-mediated apoptosis and inhibit migration and invasion of metastatic prostate cancer cells. Am. J. Cancer Res., 2017, 7(7), 1515-1527.
[27]
Friedrich, J.; Ebner, R.; Kunz-Schughart, L.A. Experimental antitumor
therapy in 3-D: spheroids-old hat or new challenge? 2007, Int. J. Radiat. Biol., 83(11-12), 849-871.
[28]
Friedrich, J.; Seidel, C.; Ebner, R.; Kunz-Schughart, L.A. Spheroid-based drug screen: Considerations and practical approach. Nat. Protoc., 2009, 4(3), 309-324.
[29]
Ntantie, E.; Fletcher, J.; Amissah, F.; Salako, O.O.; Nkembo, A.T.; Poku, R.A.; Ikpatt, F.O.; Lamango, N.S. Polyisoprenylated cysteinyl amide inhibitors disrupt actin cytoskeleton organization, induce cell rounding and block migration of non-small cell lung cancer. Oncotarget, 2017, 8(19), 31726-31744.
[30]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[31]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[32]
Bergers, G.; Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer, 2008, 8(8), 592-603.
[33]
Ebos, J.M.; Lee, C.R.; Kerbel, R.S. Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin. Cancer Res., 2009, 15(16), 5020-5025.
[34]
Azam, F.; Mehta, S.; Harris, A.L. Mechanisms of resistance to antiangiogenesis therapy. Eur. J. Cancer, 2010, 46(8), 1323-1332.
[35]
Wang, C.; Wang, Y.; Tortorella, M.; Ojima, I. Design, synthesis
and preclinical study of novel taxoid-based Small Molecule Drug
Conjugates (SMDCs) using folate/Dimethyltetrahydrofolate
(DMTHF) as tumor targeting module. Abstracts of Papers of the
American Chemical Society,. 2017, 253.
[36]
Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging-Us, 2016, 8(4), 603-619.
[37]
Shapiro, P. Ras-MAP kinase signaling pathways and control of cell proliferation: Relevance to cancer therapy. Crit. Rev. Clin. Lab. Sci., 2002, 39(4-5), 285-330.
[38]
Kranenburg, O.; Gebbink, M.F.; Voest, E.E. Stimulation of angiogenesis by Ras proteins. Biochim. Et Biophys. Acta-Rev.
Cance, 2004, 1654(1), 23-37.
[39]
Kris, M.G.; Johnson, B.E.; Kwiatkowski, D.J.; Iafrate, A.J.; Wistuba, I.I.; Aronson, S.L.; Engelman, J.A.; Shyr, Y.; Khuri, F.R.; Rudin, C.M.; Garon, E.B. Identification of driver mutations in tumor specimens from 1,000 patients with lung adenocarcinoma: The NCI’s Lung Cancer Mutation Consortium (LCMC). J. Clin. Oncol., 2011, 29(18), CRA7506-CRA7506.
[40]
Barlesi, F.; Blons, H.; Beau-Faller, M.; Rouquette, I.; Ouafik, L.H.; Mosser, J.; Merlio, J.P.; Bringuier, P.P.; Jonveaux, P.; Le Marechal, C.; Denis, M.G. Biomarkers (BM) France: Results of routine EGFR, HER2, KRAS, BRAF, PI3KCA mutations detection and EML4-ALK gene fusion assessment on the first 10,000 non-small cell lung cancer (NSCLC) patients (pts). J. Clin. Oncol., 2013, 31(15), 8000-8000.
[41]
Berndt, N.; Hamilton, A.D.; Sebti, S.M. Targeting protein prenylation for cancer therapy. Nat. Rev. Cancer, 2011, 11(11), 775-791.
[42]
Rao, S.; Cunningham, D.; De Gramont, A.; Scheithauer, W.; Smakal, M.; Humblet, Y.; Kourteva, G.; Iveson, T.; Andre, T.; Dostalova, J.; Illes, A. Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J. Clin. Oncol., 2004, 22(19), 3950-3957.
[43]
Van Cutsem, E.; Van De Velde, H.; Karasek, P.; Oettle, H.; Vervenne, W.L.; Szawlowski, A.; Schoffski, P.; Post, S.; Verslype, C.; Neumann, H.; Safran, H. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J. Clin. Oncol., 2004, 22(8), 1430-1438.
[44]
Blumenschein, G.; Ludwig, C.; Thomas, G.; Tan, E.; Fanucchi, M.; Santoro, A.; Crawford, J.; Breton, J.; O’Brien, M.; Khuri, F. A randomized phase III trial comparing ionafarnib/carboplatin/paclitaxel versus carboplatin/paclitaxel (CP) in chemotherapy-naive patients with advanced or metastatic non-small cell lung cancer (NSCLC). Lung Cancer, 2005, 49, S30-S30.
[45]
Fisher, G.H.; Wellen, S.L.; Klimstra, D.; Lenczowski, J.M.; Tichelaar, J.W.; Lizak, M.J.; Whitsett, J.A.; Koretsky, A.; Varmus, H.E. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev., 2001, 15(24), 3249-3262.
[46]
Singh, A.; Greninger, P.; Rhodes, D.; Koopman, L.; Violette, S.; Bardeesy, N.; Settleman, J. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell, 2009, 15(6), 489-500.
[47]
Haklai, R.; Weisz, M.G.; Elad, G.; Paz, A.; Marciano, D.; Egozi, Y.; Ben-Baruch, G.; Kloog, Y. Dislodgment and accelerated degradation of Ras. Neurosci. Lett., 1997, S28-S28.
[48]
Haklai, R.; Weisz, M.G.; Elad, G.; Paz, A.; Marciano, D.; Egozi, Y.; Ben-Baruch, G.; Kloog, Y. Dislodgment and accelerated degradation of Ras. Biochemistry, 1998, 37(5), 1306-1314.
[49]
Pouysségur, J.; and Lenormand, P. ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy? Front. Cell Dev. Biol., 2016, 4, 53.
[50]
Lu, Z.M.; Xu, S.C. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life, 2006, 58(11), 621-631.
[51]
Mebratu, Y.; Tesfaigzi, Y. How ERK1/2 activation controls cell proliferation and cell death is subcellular localization the answer? Cell Cycle, 2009, 8(8), 1168-1175.
[52]
Kim, H.S.; Lim, G.Y.; Hwang, J.; Ryoo, Z.Y.; Huh, T.L.; Lee, S. Induction of apoptosis by obovatol as a novel therapeutic strategy for acute myeloid leukemia. Int. J. Mol. Med., 2014, 34(6), 1675-1680.