Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Recent Advances in Use of Topoisomerase Inhibitors in Combination Cancer Therapy

Author(s): Wenjie Wang and Yuk-Ching Tse-Dinh*

Volume 19, Issue 9, 2019

Page: [730 - 740] Pages: 11

DOI: 10.2174/1568026619666190401113350

Price: $65

Abstract

Inhibitors targeting human topoisomerase I and topoisomerase II alpha have provided a useful chemotherapy option for the treatment of many patients suffering from a variety of cancers. While the treatment can be effective in many patient cases, use of these human topoisomerase inhibitors is limited by side-effects that can be severe. A strategy of employing the topoisomerase inhibitors in combination with other treatments can potentially sensitize the cancer to increase the therapeutic efficacy and reduce resistance or adverse side effects. The combination strategies reviewed here include inhibitors of DNA repair, epigenetic modifications, signaling modulators and immunotherapy. The ongoing investigations on cellular response to topoisomerase inhibitors and newly initiated clinical trials may lead to adoption of novel cancer therapy regimens that can effectively stop the proliferation of cancer cells while limiting the development of resistance.

Keywords: Topoisomerase, Irinotecan, Topotecan, Etoposide, Anthracyclines, DNA repair, Cancer therapy.

Graphical Abstract

[1]
Vos, S.M.; Tretter, E.M.; Schmidt, B.H.; Berger, J.M. All tangled up: how cells direct, manage and exploit topoisomerase function. Nat. Rev. Mol. Cell Biol., 2011, 12(12), 827-841. [http://dx.doi.org/10.1038/nrm3228]. [PMID: 22108601].
[2]
Pommier, Y.; Sun, Y.; Huang, S.N.; Nitiss, J.L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol., 2016, 17(11), 703-721. [http://dx.doi.org/10.1038/nrm.2016.111]. [PMID: 27649880].
[3]
Calderwood, S.K. A critical role for topoisomerase IIb and DNA double strand breaks in transcription. Transcription, 2016, 7(3), 75-83. [http://dx.doi.org/10.1080/21541264.2016.1181142]. [PMID: 27100743].
[4]
Austin, C.A.; Lee, K.C.; Swan, R.L.; Khazeem, M.M.; Manville, C.M.; Cridland, P.; Treumann, A.; Porter, A.; Morris, N.J.; Cowell, I.G. TOP2B: The first thirty years. Int. J. Mol. Sci., 2018, 19(9)E2765 [http://dx.doi.org/10.3390/ijms19092765]. [PMID: 30223465].
[5]
Madabhushi, R. The roles of DNA topoisomerase IIβ in transcription. Int. J. Mol. Sci., 2018, 19(7)E1917 [http://dx.doi.org/10.3390/ijms19071917]. [PMID: 29966298].
[6]
Puc, J.; Kozbial, P.; Li, W.; Tan, Y.; Liu, Z.; Suter, T.; Ohgi, K.A.; Zhang, J.; Aggarwal, A.K.; Rosenfeld, M.G. Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell, 2015, 160(3), 367-380. [http://dx.doi.org/10.1016/j.cell.2014.12.023]. [PMID: 25619691].
[7]
Marinello, J.; Bertoncini, S.; Aloisi, I.; Cristini, A.; Malagoli Tagliazucchi, G.; Forcato, M.; Sordet, O.; Capranico, G. Dynamic effects of topoisomerase I inhibition on R-loops and short transcripts at active promoters. PLoS One, 2016, 11(1)e0147053 [http://dx.doi.org/10.1371/journal.pone.0147053]. [PMID: 26784695].
[8]
Baranello, L.; Wojtowicz, D.; Cui, K.; Devaiah, B.N.; Chung, H.J.; Chan-Salis, K.Y.; Guha, R.; Wilson, K.; Zhang, X.; Zhang, H.; Piotrowski, J.; Thomas, C.J.; Singer, D.S.; Pugh, B.F.; Pommier, Y.; Przytycka, T.M.; Kouzine, F.; Lewis, B.A.; Zhao, K.; Levens, D. RNA polymerase II regulates topoisomerase 1 activity to favor efficient transcription. Cell, 2016, 165(2), 357-371. [http://dx.doi.org/10.1016/j.cell.2016.02.036]. [PMID: 27058666].
[9]
Feng, W.; Kawauchi, D.; Körkel-Qu, H.; Deng, H.; Serger, E.; Sieber, L.; Lieberman, J.A.; Jimeno-González, S.; Lambo, S.; Hanna, B.S.; Harim, Y.; Jansen, M.; Neuerburg, A.; Friesen, O.; Zuckermann, M.; Rajendran, V.; Gronych, J.; Ayrault, O.; Korshunov, A.; Jones, D.T.; Kool, M.; Northcott, P.A.; Lichter, P.; Cortés-Ledesma, F.; Pfister, S.M.; Liu, H.K. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat. Commun., 2017, 8, 14758. [http://dx.doi.org/10.1038/ncomms14758]. [PMID: 28317875].
[10]
King, I.F.; Yandava, C.N.; Mabb, A.M.; Hsiao, J.S.; Huang, H.S.; Pearson, B.L.; Calabrese, J.M.; Starmer, J.; Parker, J.S.; Magnuson, T.; Chamberlain, S.J.; Philpot, B.D.; Zylka, M.J. Topoisomerases facilitate transcription of long genes linked to autism. Nature, 2013, 501(7465), 58-62. [http://dx.doi.org/10.1038/nature12504]. [PMID: 23995680].
[11]
Lee, H. M.; Clark, E. P.; Kuijer, M. B.; Cushman, M.; Pommier, Y.; Philpot, B. D. Characterization and structure-activity relationships of indenoisoquinoline-derived topoisomerase I inhibitors in unsilencing the dormant Ube3a gene associated with Angelman syndrome. Mol. Autism, 2018, 9 45-018-0228-2. [http://dx.doi.org/10.1186/s13229-018-0228-2]
[12]
Munschauer, M.; Nguyen, C.T.; Sirokman, K.; Hartigan, C.R.; Hogstrom, L.; Engreitz, J.M.; Ulirsch, J.C.; Fulco, C.P.; Subramanian, V.; Chen, J.; Schenone, M.; Guttman, M.; Carr, S.A.; Lander, E.S. The NORAD lncRNA assembles a topoisomerase complex critical for genome stability. Nature, 2018, 561(7721), 132-136. [http://dx.doi.org/10.1038/s41586-018-0453-z]. [PMID: 30150775].
[13]
Kinoshita, K.; Hirano, T. Dynamic organization of mitotic chromosomes. Curr. Opin. Cell Biol., 2017, 46, 46-53. [http://dx.doi.org/10.1016/j.ceb.2017.01.006]. [PMID: 28214612].
[14]
Delgado, J.L.; Hsieh, C.M.; Chan, N.L.; Hiasa, H. Topoisomerases as anticancer targets. Biochem. J., 2018, 475(2), 373-398. [http://dx.doi.org/10.1042/BCJ20160583]. [PMID: 29363591].
[15]
Pommier, Y. Drugging topoisomerases: lessons and challenges. ACS Chem. Biol., 2013, 8(1), 82-95. [http://dx.doi.org/10.1021/cb300648v]. [PMID: 23259582].
[16]
Cuya, S.M.; Bjornsti, M.A.; van Waardenburg, R.C.A.M. DNA topoisomerase-targeting chemjournalapeutics: What’s new? Cancer Chemjournal. Pharmacol., 2017, 80(1), 1-14. [http://dx.doi.org/10.1007/s00280-017-3334-5]. [PMID: 28528358].
[17]
Mordente, A.; Meucci, E.; Martorana, G.E.; Tavian, D.; Silvestrini, A. Topoisomerases and Anthracyclines: Recent advances and perspectives in anticancer therapy and prevention of cardiotoxicity. Curr. Med. Chem., 2017, 24(15), 1607-1626. [http://dx.doi.org/10.2174/0929867323666161214120355]. [PMID: 27978799].
[18]
Marinello, J.; Delcuratolo, M.; Capranico, G. Anthracyclines as topoisomerase II poisons: From early studies to new perspectives. Int. J. Mol. Sci., 2018, 19(11)E3480 [http://dx.doi.org/10.3390/ijms19113480]. [PMID: 30404148].
[19]
Henriksen, P.A. Anthracycline cardiotoxicity: An update on mechanisms, monitoring and prevention. Heart, 2018, 104(12), 971-977. [http://dx.doi.org/10.1136/heartjnl-2017-312103]. [PMID: 29217634].
[20]
Zhang, S.; Liu, X.; Bawa-Khalfe, T.; Lu, L.S.; Lyu, Y.L.; Liu, L.F.; Yeh, E.T. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med., 2012, 18(11), 1639-1642. [http://dx.doi.org/10.1038/nm.2919]. [PMID: 23104132].
[21]
de Almeida, S.M.V.; Ribeiro, A.G.; de Lima Silva, G.C.; Ferreira Alves, J.E.; Beltrão, E.I.C.; de Oliveira, J.F.; de Carvalho, L.B.; Alves de Lima, M.D.C. DNA binding and Topoisomerase inhibition: How can these mechanisms be explored to design more specific anticancer agents? Biomed. Pharmacjournal., 2017, 96, 1538-1556. [http://dx.doi.org/10.1016/j.biopha.2017.11.054]. [PMID: 29174576].
[22]
Botella, P.; Rivero-Buceta, E. Safe approaches for camptothecin delivery: Structural analogues and nanomedicines. J. Control. Release, 2017, 247, 28-54. [http://dx.doi.org/10.1016/j.jconrel.2016.12.023]. [PMID: 28027948].
[23]
Orth, M.; Lauber, K.; Niyazi, M.; Friedl, A.A.; Li, M.; Maihöfer, C.; Schüttrumpf, L.; Ernst, A.; Niemöller, O.M.; Belka, C. Current concepts in clinical radiation oncology. Radiat. Environ. Biophys., 2014, 53(1), 1-29. [http://dx.doi.org/10.1007/s00411-013-0497-2]. [PMID: 24141602].
[24]
Mehta, V.K.; Cho, C.; Ford, J.M.; Jambalos, C.; Poen, J.; Koong, A.; Lin, A.; Bastidas, J.A.; Young, H.; Dunphy, E.P.; Fisher, G. Phase II trial of preoperative 3D conformal radijournalapy, protracted venous infusion 5-fluorouracil, and weekly CPT-11, followed by surgery for ultrasound-staged T3 rectal cancer. Int. J. Radiat. Oncol. Biol. Phys., 2003, 55(1), 132-137. [http://dx.doi.org/10.1016/S0360-3016(02)03863-4]. [PMID: 12504045].
[25]
Klautke, G.; Feyerherd, P.; Ludwig, K.; Prall, F.; Foitzik, T.; Fietkau, R. Intensified concurrent chemoradijournalapy with 5-fluorouracil and irinotecan as neoadjuvant treatment in patients with locally advanced rectal cancer. Br. J. Cancer, 2005, 92(7), 1215-1220. [http://dx.doi.org/10.1038/sj.bjc.6602492]. [PMID: 15785742].
[26]
Iles, S.; Gollins, S.; Susnerwala, S.; Haylock, B.; Myint, S.; Biswas, A.; Swindell, R.; Levine, E. Irinotecan+5-fluorouracil with concomitant pre-operative radijournalapy in locally advanced non-resectable rectal cancer: a phase I/II study. Br. J. Cancer, 2008, 98(7), 1210-1216. [http://dx.doi.org/10.1038/sj.bjc.6604292]. [PMID: 18349840].
[27]
Glynne-Jones, R.; Falk, S.; Maughan, T.S.; Meadows, H.M.; Sebag-Montefiore, D. A phase I/II study of irinotecan when added to 5-fluorouracil and leucovorin and pelvic radiation in locally advanced rectal cancer: A colorectal clinical oncology group study. Br. J. Cancer, 2007, 96(4), 551-558. [http://dx.doi.org/10.1038/sj.bjc.6603570]. [PMID: 17262086].
[28]
Clark, A.J.; Wiley, D.T.; Zuckerman, J.E.; Webster, P.; Chao, J.; Lin, J.; Yen, Y.; Davis, M.E. CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. Proc. Natl. Acad. Sci. USA, 2016, 113(14), 3850-3854. [http://dx.doi.org/10.1073/pnas.1603018113]. [PMID: 27001839].
[29]
Tian, X.; Nguyen, M.; Foote, H.P.; Caster, J.M.; Roche, K.C.; Peters, C.G.; Wu, P.; Jayaraman, L.; Garmey, E.G.; Tepper, J.E.; Eliasof, S.; Wang, A.Z. CRLX101, A nanoparticle-drug conjugate containing camptothecin, improves rectal cancer chemoradijournalapy by inhibiting DNA repair and HIF1α. Cancer Res., 2017, 77(1), 112-122. [http://dx.doi.org/10.1158/0008-5472.CAN-15-2951]. [PMID: 27784746].
[30]
Minchom, A.; Aversa, C.; Lopez, J. Dancing with the DNA damage response: Next-generation anti-cancer therapeutic strategies. Ther. Adv. Med. Oncol., 2018, 101758835918786658 [http://dx.doi.org/10.1177/1758835918786658]. [PMID: 30023007].
[31]
Pilie, P.G.; Tang, C.; Mills, G.B.; Yap, T.A. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol., 2018, 16(2), 81-104. [PMID: 30356138].
[32]
Nickoloff, J.A.; Jones, D.; Lee, S.H.; Williamson, E.A.; Hromas, R. Drugging the Cancers Addicted to DNA Repair. J. Natl. Cancer Inst., 2017, 109(11) [http://dx.doi.org/10.1093/jnci/djx059]. [PMID: 28521333].
[33]
Kawale, A.S.; Povirk, L.F. Tyrosyl-DNA phosphodiesterases: Rescuing the genome from the risks of relaxation. Nucleic Acids Res., 2018, 46(2), 520-537. [http://dx.doi.org/10.1093/nar/gkx1219]. [PMID: 29216365].
[34]
Schellenberg, M.J.; Lieberman, J.A.; Herrero-Ruiz, A.; Butler, L.R.; Williams, J.G.; Muñoz-Cabello, A.M.; Mueller, G.A.; London, R.E.; Cortés-Ledesma, F.; Williams, R.S. ZATT (ZNF451)-mediated resolution of topoisomerase 2 DNA-protein cross-links. Science, 2017, 357(6358), 1412-1416. [http://dx.doi.org/10.1126/science.aam6468]. [PMID: 28912134].
[35]
Laev, S.S.; Salakhutdinov, N.F.; Lavrik, O.I. Tyrosyl-DNA phosphodiesterase inhibitors: Progress and potential. Bioorg. Med. Chem., 2016, 24(21), 5017-5027. [http://dx.doi.org/10.1016/j.bmc.2016.09.045]. [PMID: 27687971].
[36]
Das, S.K.; Rehman, I.; Ghosh, A.; Sengupta, S.; Majumdar, P.; Jana, B.; Das, B.B. Poly(ADP-ribose) polymers regulate DNA topoisomerase I (Top1) nuclear dynamics and camptothecin sensitivity in living cells. Nucleic Acids Res., 2016, 44(17), 8363-8375. [http://dx.doi.org/10.1093/nar/gkw665]. [PMID: 27466387].
[37]
Li, M.; Yu, X. The role of poly(ADP-ribosyl)ation in DNA damage response and cancer chemjournalapy. Oncogene, 2015, 34(26), 3349-3356. [http://dx.doi.org/10.1038/onc.2014.295]. [PMID: 25220415].
[38]
Palazzo, L.; Ahel, I. PARPs in genome stability and signal transduction: Implications for cancer therapy. Biochem. Soc. Trans., 2018, 46(6), 1681-1695. [http://dx.doi.org/10.1042/BST20180418].
[39]
McCann, K.E.; Hurvitz, S.A. Advances in the use of PARP inhibitor therapy for breast cancer. Drugs Context, 2018, 72, 12540. [http://dx.doi.org/10.7573/dic.212540]. [PMID: 30116283].
[40]
Kummar, S.; Chen, A.; Ji, J.; Zhang, Y.; Reid, J.M.; Ames, M.; Jia, L.; Weil, M.; Speranza, G.; Murgo, A.J.; Kinders, R.; Wang, L.; Parchment, R.E.; Carter, J.; Stotler, H.; Rubinstein, L.; Hollingshead, M.; Melillo, G.; Pommier, Y.; Bonner, W.; Tomaszewski, J.E.; Doroshow, J.H. Phase I study of PARP inhibitor ABT-888 in combination with topotecan in adults with refractory solid tumors and lymphomas. Cancer Res., 2011, 71(17), 5626-5634. [http://dx.doi.org/10.1158/0008-5472.CAN-11-1227]. [PMID: 21795476].
[41]
Hjortkjaer, M.; Kanstrup, H.; Jakobsen, A.; Steffensen, K.D. Veliparib and topotecan for patients with platinum-resistant or partially platinum-sensitive relapse of epithelial ovarian cancer with BRCA negative or unknown BRCA status.Cancer. Treat. Res. Commun; , 2018, 14, pp. 7-12.
[42]
Kunos, C.; Deng, W.; Dawson, D.; Lea, J.S.; Zanotti, K.M.; Gray, H.J.; Bender, D.P.; Guaglianone, P.P.; Carter, J.S.; Moore, K.N. A phase I-II evaluation of veliparib (NSC #737664), topotecan, and filgrastim or pegfilgrastim in the treatment of persistent or recurrent carcinoma of the uterine cervix: an NRG oncology/gynecologic oncology group study. Int. J. Gynecol. Cancer, 2015, 25(3), 484-492. [http://dx.doi.org/10.1097/IGC.0000000000000380]. [PMID: 25594147].
[43]
LoRusso, P.M.; Li, J.; Burger, A.; Heilbrun, L.K.; Sausville, E.A.; Boerner, S.A.; Smith, D.; Pilat, M.J.; Zhang, J.; Tolaney, S.M.; Cleary, J.M.; Chen, A.P.; Rubinstein, L.; Boerner, J.L.; Bowditch, A.; Cai, D.; Bell, T.; Wolanski, A.; Marrero, A.M.; Zhang, Y.; Ji, J.; Ferry-Galow, K.; Kinders, R.J.; Parchment, R.E.; Shapiro, G.I.; Phase, I. Safety, pharmacokinetic, and pharmacodynamic study of the Poly(ADP-ribose) Polymerase (PARP) inhibitor veliparib (ABT-888) in combination with irinotecan in patients with advanced solid tumors. Clin. Cancer Res., 2016, 22(13), 3227-3237. [http://dx.doi.org/10.1158/1078-0432.CCR-15-0652]. [PMID: 26842236].
[44]
Samol, J.; Ranson, M.; Scott, E.; Macpherson, E.; Carmichael, J.; Thomas, A.; Cassidy, J. Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment of patients with advanced solid tumors: a phase I study. Invest. New Drugs, 2012, 30(4), 1493-1500. [http://dx.doi.org/10.1007/s10637-011-9682-9]. [PMID: 21590367].
[45]
Mehrotra, S.; Gopalakrishnan, M.; Gobburu, J.; Greer, J.M.; Piekarz, R.; Karp, J.E.; Pratz, K.; Rudek, M.A. Population pharmacokinetics and site of action exposures of veliparib with topotecan plus carboplatin in patients with haematological malignancies. Br. J. Clin. Pharmacol., 2017, 83(8), 1688-1700. [http://dx.doi.org/10.1111/bcp.13253]. [PMID: 28156017].
[46]
Pratz, K.W.; Rudek, M.A.; Gojo, I.; Litzow, M.R.; McDevitt, M.A.; Ji, J.; Karnitz, L.M.; Herman, J.G.; Kinders, R.J.; Smith, B.D.; Gore, S.D.; Carraway, H.E.; Showel, M.M.; Gladstone, D.E.; Levis, M.J.; Tsai, H.L.; Rosner, G.; Chen, A.; Kaufmann, S.H.; Karp, J.E. A Phase I study of topotecan, carboplatin and the PARP inhibitor veliparib in acute leukemias, aggressive myeloproliferative neoplasms, and chronic myelomonocytic leukemia. Clin. Cancer Res., 2017, 23(4), 899-907. [http://dx.doi.org/10.1158/1078-0432.CCR-16-1274]. [PMID: 27551000].
[47]
Del Conte, G.; Sessa, C.; von Moos, R.; Viganò, L.; Digena, T.; Locatelli, A.; Gallerani, E.; Fasolo, A.; Tessari, A.; Cathomas, R.; Gianni, L. Phase I study of olaparib in combination with liposomal doxorubicin in patients with advanced solid tumours. Br. J. Cancer, 2014, 111(4), 651-659. [http://dx.doi.org/10.1038/bjc.2014.345]. [PMID: 25025963].
[48]
Jossé, R.; Martin, S.E.; Guha, R.; Ormanoglu, P.; Pfister, T.D.; Reaper, P.M.; Barnes, C.S.; Jones, J.; Charlton, P.; Pollard, J.R.; Morris, J.; Doroshow, J.H.; Pommier, Y. ATR inhibitors VE-821 and VX-970 sensitize cancer cells to topoisomerase i inhibitors by disabling DNA replication initiation and fork elongation responses. Cancer Res., 2014, 74(23), 6968-6979. [http://dx.doi.org/10.1158/0008-5472.CAN-13-3369]. [PMID: 25269479].
[49]
Thomas, A.; Redon, C.E.; Sciuto, L.; Padiernos, E.; Ji, J.; Lee, M.J.; Yuno, A.; Lee, S.; Zhang, Y.; Tran, L.; Yutzy, W.; Rajan, A.; Guha, U.; Chen, H.; Hassan, R.; Alewine, C.C.; Szabo, E.; Bates, S.E.; Kinders, R.J.; Steinberg, S.M.; Doroshow, J.H.; Aladjem, M.I.; Trepel, J.B.; Pommier, Y.; Phase, I. Phase I study of ATR inhibitor M6620 in combination with topotecan in patients with advanced solid tumors. J. Clin. Oncol., 2018, 36(16), 1594-1602. [http://dx.doi.org/10.1200/JCO.2017.76.6915]. [PMID: 29252124].
[50]
Wang, Z.; Dabrosin, C.; Yin, X.; Fuster, M.M.; Arreola, A.; Rathmell, W.K.; Generali, D.; Nagaraju, G.P.; El-Rayes, B.; Ribatti, D.; Chen, Y.C.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Nowsheen, S.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Helferich, B.; Yang, X.; Guha, G.; Bhakta, D.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Halicka, D.; Mohammed, S.I.; Azmi, A.S.; Bilsland, A.; Keith, W.N.; Jensen, L.D. Broad targeting of angiogenesis for cancer prevention and therapy. Semin. Cancer Biol., 2015, 35(Suppl.), S224-S243. [http://dx.doi.org/10.1016/j.semcancer.2015.01.001]. [PMID: 25600295].
[51]
Kong, D.H.; Kim, M.R.; Jang, J.H.; Na, H.J.; Lee, S. A review of anti-angiogenic targets for monoclonal antibody cancer therapy. Int. J. Mol. Sci., 2017, 18(8)E1786 [http://dx.doi.org/10.3390/ijms18081786]. [PMID: 28817103].
[52]
Rosen, V.M.; Guerra, I.; McCormack, M.; Nogueira-Rodrigues, A.; Sasse, A.; Munk, V.C.; Shang, A. Systematic review and network meta-analysis of bevacizumab plus first-line topotecan-paclitaxel or cisplatin-paclitaxel versus non-bevacizumab-containing therapies in persistent, recurrent, or metastatic cervical cancer. Int. J. Gynecol. Cancer, 2017, 27(6), 1237-1246. [http://dx.doi.org/10.1097/IGC.0000000000001000]. [PMID: 28448304].
[53]
Azizi, A.A.; Schouten-van Meeteren, A.Y.N. Current and emerging treatment strategies for children with progressive chiasmatic-hypothalamic glioma diagnosed as infants: a web-based survey. J. Neurooncol., 2018, 136(1), 127-134. [http://dx.doi.org/10.1007/s11060-017-2630-6]. [PMID: 29071540].
[54]
Loupakis, F.; Cremolini, C.; Masi, G.; Lonardi, S.; Zagonel, V.; Salvatore, L.; Cortesi, E.; Tomasello, G.; Ronzoni, M.; Spadi, R.; Zaniboni, A.; Tonini, G.; Buonadonna, A.; Amoroso, D.; Chiara, S.; Carlomagno, C.; Boni, C.; Allegrini, G.; Boni, L.; Falcone, A. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N. Engl. J. Med., 2014, 371(17), 1609-1618. [http://dx.doi.org/10.1056/NEJMoa1403108]. [PMID: 25337750].
[55]
Cremolini, C.; Loupakis, F.; Antoniotti, C.; Lupi, C.; Sensi, E.; Lonardi, S.; Mezi, S.; Tomasello, G.; Ronzoni, M.; Zaniboni, A.; Tonini, G.; Carlomagno, C.; Allegrini, G.; Chiara, S.; D’Amico, M.; Granetto, C.; Cazzaniga, M.; Boni, L.; Fontanini, G.; Falcone, A. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol., 2015, 16(13), 1306-1315. [http://dx.doi.org/10.1016/S1470-2045(15)00122-9]. [PMID: 26338525].
[56]
Tomasello, G.; Petrelli, F.; Ghidini, M.; Russo, A.; Passalacqua, R.; Barni, S. FOLFOXIRI Plus Bevacizumab as conversion therapy for patients with initially unresectable metastatic colorectal cancer: A systematic review and pooled analysis. JAMA Oncol., 2017, 3(7)e170278 [http://dx.doi.org/10.1001/jamaoncol.2017.0278]. [PMID: 28542671].
[57]
Keefe, S.M.; Hoffman-Censits, J.; Cohen, R.B.; Mamtani, R.; Heitjan, D.; Eliasof, S.; Nixon, A.; Turnbull, B.; Garmey, E.G.; Gunnarsson, O.; Waliki, M.; Ciconte, J.; Jayaraman, L.; Senderowicz, A.; Tellez, A.B.; Hennessy, M.; Piscitelli, A.; Vaughn, D.; Smith, A.; Haas, N.B. Efficacy of the nanoparticle-drug conjugate CRLX101 in combination with bevacizumab in metastatic renal cell carcinoma: results of an investigator-initiated phase I-IIa clinical trial. Ann. Oncol., 2016, 27(8), 1579-1585. [http://dx.doi.org/10.1093/annonc/mdw188]. [PMID: 27457310].
[58]
Voss, M.H.; Hussain, A.; Vogelzang, N.; Lee, J.L.; Keam, B.; Rha, S.Y.; Vaishampayan, U.; Harris, W.B.; Richey, S.; Randall, J.M.; Shaffer, D.; Cohn, A.; Crowell, T.; Li, J.; Senderowicz, A.; Stone, E.; Figlin, R.; Motzer, R.J.; Haas, N.B.; Hutson, T. A randomized phase II trial of CRLX101 in combination with bevacizumab versus standard of care in patients with advanced renal cell carcinoma. Ann. Oncol., 2017, 28(11), 2754-2760. [http://dx.doi.org/10.1093/annonc/mdx493]. [PMID: 28950297].
[59]
Satake, H.; Sagawa, T.; Fujikawa, K.; Hatachi, Y.; Yasui, H.; Kotaka, M.; Kato, T.; Tsuji, A. Phase Ib study of irinotecan and ramucirumab for advanced gastric cancer previously treated with fluoropyrimidine with/without platinum and taxane. Cancer Chemjournal. Pharmacol., 2018, 82(5), 839-845. [http://dx.doi.org/10.1007/s00280-018-3678-5]. [PMID: 30167847].
[60]
Sakai, D.; Boku, N.; Kodera, Y.; Komatsu, Y.; Fujii, M.; Iwasa, S.; Oki, E.; Koizumi, W.; Gamoh, M.; Muro, K.; Shimokawa, T.; Satoh, T. An intergroup phase III trial of ramucirumab plus irinotecan in third or more line beyond progression after ramucirumab for advanced gastric cancer (RINDBeRG trial). J. Clin. Oncol., 2018, 36(15_suppl), TPS4138-TPS4138.
[61]
Shapiro, J.D.; Thavaneswaran, S.; Underhill, C.R.; Robledo, K.P.; Karapetis, C.S.; Day, F.L.; Nott, L.M.; Jefford, M.; Chantrill, L.A.; Pavlakis, N.; Tebbutt, N.C.; Price, T.J.; Khasraw, M.; Van Hazel, G.A.; Waring, P.M.; Tejpar, S.; Simes, J.; Gebski, V.J.; Desai, J.; Segelov, E. Cetuximab Alone or With Irinotecan for Resistant KRAS-, NRAS-, BRAF- and PIK3CA-wild-type metastatic colorectal cancer: The AGITG randomized phase II ICECREAM study. Clin. Colorectal Cancer, 2018, 17(4), 313-319. [http://dx.doi.org/10.1016/j.clcc.2018.06.002]. [PMID: 30463680].
[62]
Cremolini, C.; Rossini, D.; Dell’Aquila, E.; Lonardi, S.; Conca, E.; Del Re, M.; Busico, A.; Pietrantonio, F.; Danesi, R.; Aprile, G.; Tamburini, E.; Barone, C.; Masi, G.; Pantano, F.; Pucci, F.; Corsi, D.C.; Pella, N.; Bergamo, F.; Rofi, E.; Barbara, C.; Falcone, A.; Santini, D. Rechallenge for patients with RAS and BRAF wild-type metastatic colorectal cancer with acquired resistance to first-line cetuximab and irinotecan: A phase 2 single-arm clinical trial. JAMA Oncol., 2018, 5(3), 343-350. [http://dx.doi.org/10.1001/jamaoncol.2018.5080]. [PMID: 30476968].
[63]
Macy, M.E.; Kieran, M.W.; Chi, S.N.; Cohen, K.J.; MacDonald, T.J.; Smith, A.A.; Etzl, M.M.; Kuei, M.C.; Donson, A.M.; Gore, L.; DiRenzo, J.; Trippett, T.M.; Ostrovnaya, I.; Narendran, A.; Foreman, N.K.; Dunkel, I.J. A pediatric trial of radiation/cetuximab followed by irinotecan/cetuximab in newly diagnosed diffuse pontine gliomas and high-grade astrocytomas: A pediatric oncology experimental therapeutics investigators’ consortium study. Pediatr. Blood Cancer, 2017, 64(11)e26621 [http://dx.doi.org/10.1002/pbc.26621]. [PMID: 28544128].
[64]
Satoh, T.; Lee, K.H.; Rha, S.Y.; Sasaki, Y.; Park, S.H.; Komatsu, Y.; Yasui, H.; Kim, T.Y.; Yamaguchi, K.; Fuse, N.; Yamada, Y.; Ura, T.; Kim, S.Y.; Munakata, M.; Saitoh, S.; Nishio, K.; Morita, S.; Yamamoto, E.; Zhang, Q.; Kim, J.M.; Kim, Y.H.; Sakata, Y. Randomized phase II trial of nimotuzumab plus irinotecan versus irinotecan alone as second-line therapy for patients with advanced gastric cancer. Gastric Cancer, 2015, 18(4), 824-832. [http://dx.doi.org/10.1007/s10120-014-0420-9]. [PMID: 25185971].
[65]
Sirachainan, N.; Boongird, A.; Swangsilpa, T.; Klaisuban, W.; Lusawat, A.; Hongeng, S. Reported outcomes of children with newly diagnosed high-grade gliomas treated with nimotuzumab and irinotecan. Childs Nerv. Syst., 2017, 33(6), 893-897. [http://dx.doi.org/10.1007/s00381-017-3409-y]. [PMID: 28439659].
[66]
Yoon, H.; Karapetyan, L.; Choudhary, A.; Kosozi, R.; Bali, G.S.; Zaidi, A.H.; Atasoy, A.; Forastiere, A.A.; Gibson, M.K.; Phase, I.I. Phase II study of irinotecan plus panitumumab as second-line therapy for patients with advanced esophageal adenocarcinoma. Oncologist, 2018, 23(9), 1004-e102. [http://dx.doi.org/10.1634/theoncologist.2017-0657]. [PMID: 29769385].
[67]
Gherardi, E.; Birchmeier, W.; Birchmeier, C.; Vande Woude, G. Targeting MET in cancer: Rationale and progress. Nat. Rev. Cancer, 2012, 12(2), 89-103. [http://dx.doi.org/10.1038/nrc3205]. [PMID: 22270953].
[68]
Miekus, K. The Met tyrosine kinase receptor as a therapeutic target and a potential cancer stem cell factor responsible for therapy resistance.(Review) Oncol. Rep., 2017, 37(2), 647-656. [http://dx.doi.org/10.3892/or.2016.5297]. [PMID: 27959446].
[69]
Rolle, C.E.; Kanteti, R.; Surati, M.; Nandi, S.; Dhanasingh, I.; Yala, S.; Tretiakova, M.; Arif, Q.; Hembrough, T.; Brand, T.M.; Wheeler, D.L.; Husain, A.N.; Vokes, E.E.; Bharti, A.; Salgia, R. Combined MET inhibition and topoisomerase I inhibition block cell growth of small cell lung cancer. Mol. Cancer Ther., 2014, 13(3), 576-584. [http://dx.doi.org/10.1158/1535-7163.MCT-13-0109]. [PMID: 24327519].
[70]
Liu, S.V.; Groshen, S.G.; Kelly, K.; Reckamp, K.L.; Belani, C.; Synold, T.W.; Goldkorn, A.; Gitlitz, B.J.; Cristea, M.C.; Gong, I.Y.; Semrad, T.J.; Xu, Y.; Xu, T.; Koczywas, M.; Gandara, D.R.; Newman, E.M. A phase I trial of topotecan plus tivantinib in patients with advanced solid tumors. Cancer Chemjournal. Pharmacol., 2018, 82(4), 723-732. [http://dx.doi.org/10.1007/s00280-018-3672-y]. [PMID: 30128950].
[71]
Wilhelm, S.M.; Adnane, L.; Newell, P.; Villanueva, A.; Llovet, J.M.; Lynch, M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther., 2008, 7(10), 3129-3140. [http://dx.doi.org/10.1158/1535-7163.MCT-08-0013]. [PMID: 18852116].
[72]
Samalin, E.; Bouché, O.; Thézenas, S.; Francois, E.; Adenis, A.; Bennouna, J.; Taieb, J.; Desseigne, F.; Seitz, J.F.; Conroy, T.; Galais, M.P.; Assenat, E.; Crapez, E.; Poujol, S.; Bibeau, F.; Boissière, F.; Laurent-Puig, P.; Ychou, M.; Mazard, T. Sorafenib and irinotecan (NEXIRI) as second- or later-line treatment for patients with metastatic colorectal cancer and KRAS-mutated tumours: a multicentre Phase I/II trial. Br. J. Cancer, 2014, 110(5), 1148-1154. [http://dx.doi.org/10.1038/bjc.2013.813]. [PMID: 24407191].
[73]
Reed, D.R.; Mascarenhas, L.; Manning, K.; Hale, G.A.; Goldberg, J.; Gill, J.; Sandler, E.; Isakoff, M.S.; Smith, T.; Caracciolo, J.; Lush, R.M.; Juan, T.H.; Lee, J.K.; Neuger, A.M.; Sullivan, D.M. Pediatric phase I trial of oral sorafenib and topotecan in refractory or recurrent pediatric solid malignancies. Cancer Med., 2016, 5(2), 294-303. [http://dx.doi.org/10.1002/cam4.598]. [PMID: 26714427].
[74]
Kichenadasse, G.; Mangoni, A.; Miners, J. Combination of small-molecule kinase inhibitors and irinotecan in cancer clinical trials: efficacy and safety considerations. Transl. Cancer Res., 2017, 6, 10. [http://dx.doi.org/10.21037/tcr.2017.10.07].
[75]
Nebbioso, A.; Tambaro, F.P.; Dell’Aversana, C.; Altucci, L. Cancer epigenetics: Moving forward. PLoS Genet., 2018, 14(6)e1007362 [http://dx.doi.org/10.1371/journal.pgen.1007362]. [PMID: 29879107].
[76]
Chatterjee, A.; Rodger, E.J.; Eccles, M.R. Epigenetic drivers of tumourigenesis and cancer metastasis. Semin. Cancer Biol., 2018, 51, 149-159. [http://dx.doi.org/10.1016/j.semcancer.2017.08.004]. [PMID: 28807546].
[77]
Chistiakov, D.A.; Myasoedova, V.A.; Orekhov, A.N.; Bobryshev, Y.V. Epigenetically active drugs inhibiting dna methylation and histone deacetylation. Curr. Pharm. Des., 2017, 23(8), 1167-1174. [http://dx.doi.org/10.2174/1381612822666161021110827]. [PMID: 27774908].
[78]
Gallipoli, P.; Huntly, B.J.P. Novel epigenetic therapies in hematological malignancies: Current status and beyond. Semin. Cancer Biol., 2018, 51, 198-210. [http://dx.doi.org/10.1016/j.semcancer.2017.07.005]. [PMID: 28782607].
[79]
Almasri, J.; Alkhateeb, H.B.; Firwana, B.; Sonbol, M.B.; Damlaj, M.; Wang, Z.; Murad, M.H.; Al-Kali, A. A systematic review and network meta-analysis comparing azacitidine and decitabine for the treatment of myelodysplastic syndrome. Syst. Rev., 2018, 7(1), 144. [http://dx.doi.org/10.1186/s13643-018-0805-7].
[80]
Yun, S.; Vincelette, N.D.; Abraham, I.; Robertson, K.D.; Fernandez-Zapico, M.E.; Patnaik, M.M. Targeting epigenetic pathways in acute myeloid leukemia and myelodysplastic syndrome: A systematic review of hypomethylating agents trials. Clin. Epigenetics, 2016, 8, 68. [http://dx.doi.org/10.1186/s13148-016-0233-2].
[81]
Onec, B.; Okutan, H.; Albayrak, M.; Can, E.S.; Aslan, V.; Koluman, B.U.; Kosemehmetoglu, O.S.; Albayrak, A. Combination therapy with azacitidine, etoposide, and cytarabine in the treatment of elderly acute myeloid leukemia patients: A single center experience. J. Cancer Res. Ther., 2018, 14(5), 1105-1111. [http://dx.doi.org/10.4103/0973-1482.187369]. [PMID: 30197357].
[82]
Lancet J.E. Is the overall survival for older adults with AML finally improving? Best Pract. Res. Clin. Haematol., 2018, 31(4), 387-390. [http://dx.doi.org/10.1016/j.beha.2018.09.005]. [PMID: 30466753].
[83]
Brunetti, C.; Anelli, L.; Zagaria, A.; Specchia, G.; Albano, F. CPX-351 in acute myeloid leukemia: Can a new formulation maximize the efficacy of old compounds? Expert Rev. Hematol., 2017, 10(10), 853-862. [http://dx.doi.org/10.1080/17474086.2017.1369400]. [PMID: 28814164].
[84]
J. E. Uy, G. L.; Cortes, J. E.; Newell, L. F.; Lin, T. L.; Ritchie, E. K.; Stuart, R. K.; Strickland, S. A.; Hogge, D.; Solomon, S. R.; Stone, R. M.; Bixby, D. L.; Kolitz, J. E.; Schiller, G. J.; Wieduwilt, M. J.; Ryan, D. H.; Hoering, A.; Banerjee, K.; Chiarella, M.; Louie, A. C.; Medeiros, B. C. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J. Clin. Oncol., 2018, 36, 2684-2692. [DOI: doi: 10.1200/JCO.2017.77.6112].
[85]
Chen, E.C.; Fathi, A.T.; Brunner, A.M. Reformulating acute myeloid leukemia: liposomal cytarabine and daunorubicin (CPX-351) as an emerging therapy for secondary AML. OncoTargets Ther., 2018, 11, 3425-3434. [http://dx.doi.org/10.2147/OTT.S141212]. [PMID: 29928134].
[86]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7)E1414 [http://dx.doi.org/10.3390/ijms18071414]. [PMID: 28671573].
[87]
Cappellacci, L.; Perinelli, D.R.; Maggi, F.; Grifantini, M.; Petrelli, R. Recent progress in histone deacetylase inhibitors as anticancer agents. Curr. Med. Chem., 2018. [Epub ahead of print]. [http://dx.doi.org/10.2174/0929867325666181016163110]. [PMID: 30332940].
[88]
Balasubramaniam, S.; Redon, C.E.; Peer, C.J.; Bryla, C.; Lee, M.J.; Trepel, J.B.; Tomita, Y.; Rajan, A.; Giaccone, G.; Bonner, W.M.; Figg, W.D.; Fojo, T.; Piekarz, R.L.; Bates, S.E. Phase I trial of belibelinostat with cisplatin and etoposide in advanced solid tumors, with a focus on neuroendocrine and small cell cancers of the lung. Anticancer Drugs, 2018, 29(5), 457-465. [http://dx.doi.org/10.1097/CAD.0000000000000596]. [PMID: 29420340].
[89]
Hu, B.; Younes, A.; Westin, J.R.; Turturro, F.; Claret, L.; Feng, L.; Fowler, N.; Neelapu, S.; Romaguera, J.; Hagemeister, F.B.; Rodriguez, M.A.; Samaniego, F.; Fayad, L.E.; Copeland, A.R.; Nastoupil, L.J.; Nieto, Y.; Fanale, M.A.; Oki, Y. Phase-I and randomized phase-II trial of panobinostat in combination with ICE (ifosfamide, carboplatin, etoposide) in relapsed or refractory classical Hodgkin lymphoma. Leuk. Lymphoma, 2018, 59(4), 863-870. [http://dx.doi.org/10.1080/10428194.2017.1359741]. [PMID: 28792260].
[90]
Feld, E.; Mitchell, T.C. Immunjournalapy in melanoma. Immunjournalapy, 2018, 10(11), 987-998. [http://dx.doi.org/10.2217/imt-2017-0143]. [PMID: 30149766].
[91]
Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol., 2016, 39(1), 98-106. [http://dx.doi.org/10.1097/COC.0000000000000239]. [PMID: 26558876].
[92]
George, S.; Rini, B.I.; Hammers, H.J. Emerging role of combination immunjournalapy in the first-line treatment of advanced renal cell carcinoma: A review. JAMA Oncol., 2018. [Epub ahead of print]. [PMID: 30476955].
[93]
Wilt, C.; Le, D.T. Integrating immunjournalapy into colorectal cancer care. Oncology (Williston Park), 2018, 32(10), 494-498. [PMID: 30334238].
[94]
Chae, Y.K.; Arya, A.; Iams, W.; Cruz, M.R.; Chandra, S.; Choi, J.; Giles, F. Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunjournalapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC). J. Immunjournal. Cancer., 2018, 6(1), 39.
[95]
Cooper, M.R.; Alrajhi, A.M.; Durand, C.R. Role of immune checkpoint inhibitors in small cell lung cancer. Am. J. Ther., 2018, 25(3), e349-e356. [http://dx.doi.org/10.1097/MJT.0000000000000686]. [PMID: 29722737].
[96]
Nakad, R.; Schumacher, B. DNA damage response and immune defense: Links and mechanisms. Front. Genet., 2016, 7, 147. [http://dx.doi.org/10.3389/fgene.2016.00147]. [PMID: 27555866].
[97]
Mondal, P.; Jain, D.; Aronow, W.S.; Frishman, W.H. Cardiotoxicity of cancer therapies. Cardiol. Rev., 2018, 23(30), 7685-7696. [http://dx.doi.org/10.1097/CRD.0000000000000239]. [PMID: 30433897].
[98]
McGowan, J.V.; Chung, R.; Maulik, A.; Piotrowska, I.; Walker, J.M.; Yellon, D.M. Anthracycline chemjournalapy and cardiotoxicity. Cardiovasc. Drugs Ther., 2017, 31(1), 63-75. [http://dx.doi.org/10.1007/s10557-016-6711-0]. [PMID: 28185035].
[99]
Abdel-Qadir, H.; Ong, G.; Fazelzad, R.; Amir, E.; Lee, D.S.; Thavendiranathan, P.; Tomlinson, G. Interventions for preventing cardiomyopathy due to anthracyclines: A Bayesian network meta-analysis. Ann. Oncol., 2017, 28(3), 628-633. [PMID: 28028033].
[100]
Finet, J. E.; Tang, W. H. W. Protecting the heart in cancer therapy. F1000Res, 2018, 7 F1000 Faculty Rev-1566. [http://dx.doi.org/10.12688/f1000research.15190.1]
[101]
Dong, J.; Chen, H. Cardiotoxicity of anticancer therapeutics. Front. Cardiovasc. Med., 2018, 5, 9. [http://dx.doi.org/10.3389/fcvm.2018.00009]. [PMID: 29473044].
[102]
Vejpongsa, P.; Yeh, E.T. Topoisomerase 2β: A promising molecular target for primary prevention of anthracycline-induced cardiotoxicity. Clin. Pharmacol. Ther., 2014, 95(1), 45-52. [http://dx.doi.org/10.1038/clpt.2013.201]. [PMID: 24091715].
[103]
Huang, W.C.; Lee, C.Y.; Hsieh, T.S. Single-molecule Förster resonance energy transfer (FRET) analysis discloses the dynamics of the DNA-topoisomerase II (Top2) interaction in the presence of TOP2-targeting agents. J. Biol. Chem., 2017, 292(30), 12589-12598. [http://dx.doi.org/10.1074/jbc.M117.792861]. [PMID: 28630044].
[104]
Schloemer, N.J.; Brickler, M.; Hoffmann, R.; Pan, A.; Simpson, P.; McFadden, V.; Block, J.; Tower, R.L., II; Burke, M.J. Administration of dexrazoxane improves cardiac indices in children and young adults with acute myeloid leukemia (AML) while maintaining survival outcomes. J. Pediatr. Hematol. Oncol., 2017, 39(5), e254-e258. [http://dx.doi.org/10.1097/MPH.0000000000000838]. [PMID: 28452856].
[105]
Asselin, B.L.; Devidas, M.; Chen, L.; Franco, V.I.; Pullen, J.; Borowitz, M.J.; Hutchison, R.E.; Ravindranath, Y.; Armenian, S.H.; Camitta, B.M.; Lipshultz, S.E. Cardioprotection and safety of dexrazoxane in patients treated for newly diagnosed t-cell acute lymphoblastic leukemia or advanced-stage lymphoblastic non-hodgkin lymphoma: A report of the children’s oncology group randomized trial pediatric oncology group 9404. J. Clin. Oncol., 2016, 34(8), 854-862. [http://dx.doi.org/10.1200/JCO.2015.60.8851]. [PMID: 26700126].
[106]
Tahover, E.; Segal, A.; Isacson, R.; Rosengarten, O.; Grenader, T.; Gips, M.; Cherny, N.; Heching, N.I.; Mesika, L.; Catane, R.; Gabizon, A. Dexrazoxane added to doxorubicin-based adjuvant chemjournalapy of breast cancer: A retrospective cohort study with a comparative analysis of toxicity and survival. Anticancer Drugs, 2017, 28(7), 787-794. [http://dx.doi.org/10.1097/CAD.0000000000000514]. [PMID: 28562379].
[107]
Liesse, K.; Harris, J.; Chan, M.; Schmidt, M.L.; Chiu, B. Dexrazoxane significantly reduces anthracycline-induced cardiotoxicity in pediatric solid tumor patients: A systematic review. J. Pediatr. Hematol. Oncol., 2018, 40(6), 417-425. [http://dx.doi.org/10.1097/MPH.0000000000001118]. [PMID: 29432315].
[108]
Gujral, D.M.; Lloyd, G.; Bhattacharyya, S. Effect of prophylactic betablocker or ACE inhibitor on cardiac dysfunction & heart failure during anthracycline chemjournalapy ± trastuzumab. Breast, 2018, 37, 64-71. [http://dx.doi.org/10.1016/j.breast.2017.10.010]. [PMID: 29101824].
[109]
Avila, M.S.; Ayub-Ferreira, S.M.; de Barros Wanderley, M.R., Jr das Dores Cruz, F.; Gonçalves Brandão, S.M.; Rigaud, V.O.C.; Higuchi-Dos-Santos, M.H.; Hajjar, L.A.; Kalil Filho, R.; Hoff, P.M.; Sahade, M.; Ferrari, M.S.M.; de Paula Costa, R.L.; Mano, M.S.; Bittencourt Viana Cruz, C.B.; Abduch, M.C.; Lofrano Alves, M.S.; Guimaraes, G.V.; Issa, V.S.; Bittencourt, M.S.; Bocchi, E.A. Carvedilol for prevention of chemjournalapy-related cardiotoxicity: The CECCY trial. J. Am. Coll. Cardiol., 2018, 71(20), 2281-2290. [http://dx.doi.org/10.1016/j.jacc.2018.02.049]. [PMID: 29540327].
[110]
Yang, L.; Jiang, X.; Yan, H.; Li, Y.; Zhen, H.; Chang, B.; Kariminia, S.; Li, Q. Irinotecan-containing doublet treatment versus irinotecan monjournalapy as second-line choice for advanced gastric cancer. BMC Gastroenterol., 2018, 18(1), 43. [http://dx.doi.org/10.1186/s12876-018-0772-4].
[111]
Martino, E.; Della Volpe, S.; Terribile, E.; Benetti, E.; Sakaj, M.; Centamore, A.; Sala, A.; Collina, S. The long story of camptothecin: From traditional medicine to drugs. Bioorg. Med. Chem. Lett., 2017, 27(4), 701-707. [http://dx.doi.org/10.1016/j.bmcl.2016.12.085]. [PMID: 28073672].
[112]
Franco, Y.L.; Vaidya, T.R.; Ait-Oudhia, S. Anticancer and cardio-protective effects of liposomal doxorubicin in the treatment of breast cancer. Breast Cancer (Dove Med. Press), 2018, 10, 131-141. [http://dx.doi.org/10.2147/BCTT.S170239]. [PMID: 30237735].

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy