[1]
Liu, X.; Theil, E.C. Ferritins: dynamic management of biological iron and oxygen chemistry. Acc. Chem. Res., 2005, 38, 167-175.
[2]
Gray, H.B.; Winkler, J.R. Electron transfer in proteins. Annu. Rev. Biochem., 1996, 65, 537-561.
[3]
Kaplan, C.D.; Kaplan, J. Iron acquisition and transcriptional regulation. Chem. Rev., 2009, 109, 4536-4552.
[4]
Praveen, L.; Reddy, M.L.P.; Luxmi Varma, R. Dansyl-styrylquinoline conjugate as divalent iron sensor. Tetrahedron Lett., 2010, 51, 6626-6629.
[5]
Grabchev, I.; Chovelon, J.M.; Qian, X. A copolymer of 4-N,N-dimethylaminoethylene-N-allyl-1,8-naphthalimide with methylmethacrylate as a selective fluorescent chemosensor in homogeneous systems for metal cations. J. Photochem. Photobiol. Chem., 2003, 158, 37-43.
[6]
Kikkeri, R.; Traboulsi, H.; Humbert, N. Toward iron sensors: bioinspired tripods based on fluorescent phenol-oxazoline coordination sites. Inorg. Chem., 2007, 46, 2485-2497.
[7]
Vairaperumal, T.; Kasi, P. An acyclic, dansyl based colorimetric and fluorescent chemosensor for Hg(II) via twisted intramolecular charge transfer (TICT). Anal. Chim. Acta, 2012, 751, 171-175.
[8]
Wang, H.; Lin, J.; Huang, W.; Wei, W. Fluorescence “turn-on” metal ion sensors based on switching of intramolecular charge transfer of donor-acceptor systems. Sens. Actuators B Chem., 2010, 150, 798-805.
[9]
Chen, Y.; Sun, Z-H.; Song, B-E.; Liu, Y. Naphthylthiourea-modified permethylcyclodextrin as a highly sensitive and selective “turn-on” fluorescent chemosensor for Hg2+ in water and living cells. Org. Biomol. Chem., 2011, 9, 5530-5534.
[10]
Chung, S.K.; Tseng, Y.R.; Chen, C.Y.; Sun, S.S. A selective colorimetric Hg2+ probe featuring a styryl dithiaazacrown containing platinum (II) terpyridine complex through modulation of the relative strength of ICT and MLCT transitions. Inorg. Chem., 2011, 50, 2711-2713.
[11]
Pandey, S.; Azam, A.; Pandey, S.; Chawla, H.M. Novel dansyl-appended calix[4]arene frameworks: fluorescence properties and mercury sensing. Org. Biomol. Chem., 2009, 7, 269-279.
[12]
Liu, B.; Zeng, F.; Wu, G.; Wu, S. A FRET-based ratiometric sensor for mercury ions in water with multi-layered silica nanoparticles as the scaffold. Chem. Commun. (Camb.), 2011, 47, 8913-8915.
[13]
Praveen, L.; Suresh, C.H.; Reddy, M.L.P.; Luxmi Varma, R. Molecular fluorescent probe for Zn2+ based on 2-(2-nitrostyryl)-8-methoxyquinoline. Tetrahedron Lett., 2011, 52, 4730-4733.
[14]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Chesseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Peterson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.E., Jr; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09; Revision A.I. Gaussian Inc: Wallingford, CT, 2009.
[15]
Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev., 1998, 38, 3098-3100.
[16]
Benesi, H.A.; Hildebrand, J.H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc., 1949, 71, 2703-2707.
[17]
Kumar, P.; Kumar, V.; Gupta, R. Arene-based fluorescent probes for the selective detection of iron. RSC Advances, 2015, 5, 97874-97882.
[18]
Buemi, G.; Zuccarello, F.; Venuvanalingam, P.; Ramalingam, M. Ab initio study of tautomerism and hydrogen bonding of β-carbonylamine in the gas phase and in water solution. Theor. Chem. Acc., 2000, 104, 226-234.
[19]
Sheikhshoaie, I.; Fabian, W.M.F. Theoretical insights into material properties of Schiff bases and related azo compounds. Curr. Org. Chem., 2009, 13, 149-171.
[20]
Filarowski, A.; Koll, A.; Sobczyk, L. Intramolecular hydrogen bonding in o-hydroxy aryl Schiff bases. Curr. Org. Chem., 2009, 13, 172-193.
[21]
Musin, R.N.; Mariam, Y.H. An integrated approach to the study of intramolecular hydrogen bonds in malonaldehyde enol derivatives and naphthazarin: trend in energetic versus geometrical consequences. J. Phys. Org. Chem., 2006, 19, 425-444.
[22]
Raisi, H.; Moshfeghi, E.; Jalbout, A.F.; Hosseini, M.S.; Fazli, M. An approach to estimate the energy and strength of the intramolecular hydrogen bond in different conformers of 4‐methylamino‐3‐penten‐2‐one. Int. J. Quantum Chem., 2007, 107, 1835-1845.
[23]
Lenain, P.; Mandado, M.; Mosquera, R.A.; Bultinck, P. Interplay between hydrogen-bond formation and multicenter π-electron delocalization: intramolecular hydrogen bonds. J. Phys. Chem. A, 2008, 112, 10689-10696.
[24]
Rybarczyk-Pirek, J.; Grabowski, S.J.; Malecka, M.; Nawrot-Modranka, J. Crystal and molecular structures of new chromone derivatives as empirical evidence of intramolecular proton transfer reaction; ab initio studies on intramolecular h-bonds in enaminones. J. Phys. Chem. A, 2002, 106, 11956-11962.
[25]
Nowroozi, A.; Raissi, H.; Farzad, F. The presentation of an approach for estimating the intramolecular hydrogen bond strength in conformational study of β-Aminoacrolein. J. Mol. Struct. THEOCHEM, 2005, 730, 161-169.
[26]
Nunez, C.; Fernandez-Lodeiro, J.; Dinis, M.; Capelo, J.L.; Lodeiro, C. Synthesis and photophysical studies of two luminescent chemosensors based on catechol and 8-Hydroxyquinoline chromophores, and their complexes with group 13 metal ions. Inorg. Chem. Commun., 2011, 14, 831-835.
[27]
Rifat, A.; Minati, B.; Kanungo, B.K. Design, synthesis and photophysical properties of 8-hydroxyquinoline-functionalized tripodal molecular switch as a highly selective sequential pH sensor in aqueous solution. RSC Advances, 2015, 21, 16207-16222.
[28]
Urano, Y.; Kamiya, M.; Kanda, T.; Ueno, T.; Hirose, K.; Nagano, T. Evolution of fluorescein as a platform for finely tunable fluorescence probes. J. Am. Chem. Soc., 2005, 127, 4888-4894.
[29]
Ozbek, N.; Kavak, G.; Ozcan, Y.; Ide, S.; Karacan, N. Structure, antibacterial activity and theoretical study of 2-hydroxy-1-naphthaldehyde-N-methylethanesulfonylhydrazone. J. Mol. Struct., 2009, 919, 154-159.