[1]
Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science 2002; 298(5600): 1912-34.
[2]
Dhanasekaran N, Premkumar Reddy E. Signaling by dual specificity kinases. Oncogene 1998; 17: 1447-55.
[3]
Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy. Int J Mol Med 2017; 40(2): 271-80.
[4]
Krupa A, Abhinandan K, Srinivasan N. KinG: a database of protein kinases in genomes. Nucleic Acids Res 2004; 32: 153-5.
[5]
Indo HP, Hawkins CL, Naknishi I, et al. Role of mitochondrial reactive oxygen species in the activation of cellular signals, molecules and function. Handb Exp Pharmacol 2017; 240: 439-56.
[6]
Cohen P. Protein kinases-the major drug targets of the twenty-first century? Nat Rev Drug Discov 2002; 1: 309-15.
[7]
Han E, McGonigal T. Role of focal adhesion kinase in human cancer: a potential target for drug discovery. Anticancer Agents Med Chem 2007; 7: 681-4.
[8]
Hardie D. AMP-activated protein kinase as a drug target. Annu Rev Pharmacol Toxicol 2007; 47: 185-210.
[9]
Pardo-Pastor C, Rubio-Moscardo F, Vogel-González M, et al. Piezo2 channel regulates RhoA and actin cytoskeleton to promote cell mechanobiological responses. Proc Natl Acad Sci 2018; 115(8): 1925-30.
[10]
Pearce LR, Komander D and, Alessi DR. The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol 2010; 11(1): 9-22.
[11]
Kannan N, Haste N, Taylor SS and, Neuwald AF. The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module. Proc Natl Acad Sci USA 2007; 104(4): 1272-7.
[12]
Amin E, Dubey BN, Zhang SC, et al. Rho-kinase: regulation, (dys) function, and inhibition. Biological Chem 2013; 394(11): 1399-410.
[13]
Singh RM, Cummings E, Pantos C, Singh J. Protein kinase C and cardiac dysfunction: a review. Heart Fail Rev 2017; 22(6): 843-59.
[14]
Kumar R, Singh VP, Baker KM. Kinase inhibitors for cardiovascular disease. J Mol Cell Cardiol 2007; 42(1): 1-11.
[15]
Girouard MP, Pool M, Alchini R, Rambaldi I, Fournier AE, Rho A. Proteolysis Regulates the Actin Cytoskeleton in Response to Oxidative Stress. PLoS One 2016; 11(12): e0168641.
[16]
Johnson DS, Chen YH. Ras family of small GTPases in immunity and inflammation. Curr Opin Pharmacol 2012; 12(4): 458-63.
[17]
Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 2002; 16(13): 1587-609.
[18]
Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 2007; 129(5): 865-77.
[19]
Rai A, Goody RS, Müller MP. Multivalency in Rab effector interactions. Small GTPases 2017; 1-7.
[20]
Hahmann C, Schroeter T. Rho-kinase inhibitors as therapeutics: from pan inhibition to isoform selectivity. Cell Mol Life Sci 2010; 67(2): 171-7.
[21]
Riento K, Ridley AJ. Rocks: multifunctional kinases in cell behaviours. Nat Rev Mol Cell Biol 2003; 4(6): 446-56.
[22]
Leung T, Chen XQ, Manser E, Lim L. The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol 1996; 16(10): 5313-27.
[23]
Shi J, Wei L. Rho kinases in cardiovascular physiology and pathophysiology: the effect of fasudil. J Cardiovasc Pharmacol 2013; 62(4): 10.
[24]
Hernández-Cuevas NA, Jhingan GD, Petropolis D, Vargas M, Guillen N. Acetylation is the most abundant actin modification in Entamoeba histolytica and modifications of actin’s amino-terminal domain change cytoskeleton activities. Cell Microbiol 2018; e12983.
[25]
Tönges L, Frank T, Tatenhorst L, et al. Inhibition of Rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson’s disease. Brain 2012; 11: 3355-70.
[26]
Dahal BK, Kosanovic D, Pamarthi PK, et al. Therapeutic efficacy of azaindole-1 in experimental pulmonary hypertension. Europ Respirat J 2010; 36(4): 808-18.
[27]
Samuel MS, Lopez JI, McGhee EJ, et al. Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induce interfollicular epidermal hyperplasia and tumor growth. Cancer Cell 2011; 19(6): 776-91.
[28]
Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol 2007; 147(2): 227-35.
[29]
Abbas AB, Lichtman AH. Ch.2 Innate Immunity In: Saunders (Elsevier) Basic Immunology Functions and disorders of the immune system. 2009. 3rd ed.
[30]
Nozaki Y, Kinoshita K, Hino S, et al. Signaling Rho-kinase mediates inflammation and apoptosis in T cells and renal tubules in cisplatin nephrotoxicity. Am J Physiol Renal Physiol 2015; 308(8): F899-909.
[31]
Rikitake Y, Liao JK. Rho GTPases, Statins, and Nitric Oxide. Circ Res 2005; 97(12): 1232-5.
[32]
Shimokawa H, Seto M, Katsumata N, et al. Rho-kinase-mediated pathway induces enhanced myosin light-chain phosphorylations in a swine model of coronary artery spasm. Cardiovasc Res 1999; 43: 1029-39.
[33]
Kandabashi T, Shimokawa H, Miyata K, et al. Inhibition of myosin phosphatase by upregulated Rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1β. Circulation 2000; 101: 1319-23.
[34]
Kataoka C, Egashira K, Inoue S, et al. Important role of Rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Hypertension 2002; 39: 245-50.
[35]
Ikegaki I, Hattori T, Yamaguchi T, et al. Involvement of Rho-kinase in vascular remodeling caused by long-term inhibition of nitric oxide synthesis in rats. Eur J Pharmacol 2001; 427: 69-75.
[36]
Wolfrum S, Dendorfer A, Rikitake Y, et al. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arterioscler Thromb Vasc Biol 2004; 24: 1842-7.
[37]
Bao W, Hu E, Tao L, et al. Inhibition of Rho-kinase protects the heart against ischemia/reperfusion injury. Cardiovasc Res 2004; 61(3): 548-58.
[38]
Hamid SA, Bower HS, Baxter GF. Rho kinase activation plays a major role as a mediator of irreversible injury in reperfused myocardium. Am J Physiol Heart Circ Physiol 2007; 292(6): 2598-606.
[39]
Zhang J, Li XX, Bian HJ, Liu XB, Ji XP, Zhang Y. Inhibition of the activity of Rho-kinase reduces cardiomyocyte apoptosis in heart ischemia/reperfusion via suppressing JNK-mediated AIF translocation. Clin Chim Acta 2009; 401(1-2): 76-80.
[40]
Shibata I, Yoshitomi O, Use T, et al. Administration of the Rho-kinase inhibitor fasudil before ischemia or just after reperfusion, but not 30 min after reperfusion, protects the stunned myocardium in swine. Cardiovasc Drugs Ther 2008; 22(4): 293-8.
[41]
Zhang J, Xu F, Liu XB, Bi SJ, Lu QH. Increased Rho kinase activity in patients with heart ischemia/reperfusion. Perfusion 2018.
[42]
Hausenloy DJ, Yellon DM. Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev 2007; 12(3-4): 217-34.
[43]
Cadete VJ, Sawicka J, Polewicz D, Doroszko A, Wozniak M, Sawicki G. Effect of the Rho kinase inhibitor Y-27632 on the proteome of hearts with ischemia-reperfusion injury. Proteomics 2010; 10(24): 4377-85.
[44]
Zhang J, Bian HJ, Li XX, et al. ERK-MAPK signaling opposes Rho-kinase to reduce cardiomyocyte apoptosis in heart ischemic preconditioning. Mol Med 2010; 16(7-8): 307-31.
[45]
Zhao JL, Yang YJ, Pei WD, Sun YH, You SJ, Gao RL. Remote periconditioning reduces myocardial no-reflow by the activation of K ATP channel via inhibition of Rho-kinase. Int J Cardiol 2009; 133(2): 179-84.
[46]
Sakamoto K, Nakahara T, Ishii K. Rho-Rho kinase pathway is involved in the protective effect of early ischemic preconditioning in the rat heart. Biol Pharm Bull 2011; 34(1): 156-9.
[47]
Demiryurek S, Kara AF, Celik A, Babul A, Tarakcioglu M, Demiryurek AT. Effects of fasudil, a Rho-kinase inhibitor, on myocardial preconditioning in anesthetized rats. Eur J Pharmacol 2005; 527(1-3): 129-40.
[48]
Dong LY, Qiu XX, Zhuang Y. Xeu S. Y-27632, a Rho-kinase inhibitor, attenuates myocardial ischemia-reperfusion injury in rats. Int J Mol Med 2019; 43(4): 1911-9.
[49]
Kobayashi M, Tanoue Y, Eto M, et al. A Rho-kinase inhibitor improves cardiac function after 24-hour heart preservation. J Thorac Cardiovasc Surg 2008; 136(6): 1586-92.
[50]
Haudek SB, Gupta D, Dewald O, et al. Rho kinase-1 mediates cardiac fibrosis by regulating fibroblast precursor cell differentiation. Cardiovasc Res 2009; 83(3): 511-8.
[51]
Yang W, Zhou G, Yu T, et al. Critical role of ROCK2 activity in facilitating mucosal CD4+ T cell activation in inflammatory bowel disease. J Autoimmun 2018; 89: 125-38.
[52]
Lackland DT, Weber MA. Global burden of cardiovascular disease and stroke: hypertension at the core. Canad J Cardiol 2015; 31(5): 569-71.
[53]
MendisShanthi, PuskaPekka, Norrving Bo. Global atlas on cardiovascular disease prevention and control .Geneva: World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization. 2011. 1st ed p. 38.ISBN 9789241564373.
[54]
Weir MR, Dzau VJ. The renin-angiotensin-aldosterone system: a specific target for hypertension management. Am J Hypertens 1999; 12(12 Pt 3): 205S-13S.
[55]
Schulz E, Gori T, Munzel T. Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res 2011; 34(6): 665-73.
[56]
Ocaranza MP, Rivera P, Novoa U, et al. Rho kinase inhibition activates the homologous angiotensin-converting enzyme-angiotensin-(1-9) axis in experimental hypertension. J Hypertens 2011; 29: 706-15.
[57]
Tsounapi P, Saito M, Kitatani K, et al. Fasudil improves the endothelial dysfunction in the aorta of spontaneously hypertensive rats. Eur J Pharmacol 2012; 691: 182-9.
[58]
Hassona MD, Abouelnaga ZA, Elnakish MT, et al. Vascular hypertrophy-associated hypertension of profilin1 transgenic mouse model leads to functional remodeling of peripheral arteries. Am J Physiol Heart Circ Physiol 2010; 298(6): H2112-20.
[59]
Ruiz-Ortega M, Lorenzo O, Ruperez M, et al. Role of the renin-angiotensin system in vascular diseases: expanding the field. Hypertension 2001; 38: 1382-7.
[60]
Touyz RM, Schiffrin EL. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 2000; 52(4): 639-72.
[61]
de Cavanagh EM, Ferder M, Inserra F, Ferder L. Angiotensin II, mitochondria, cytoskeletal, and extracellular matrix connections: an integrating viewpoint. Am J Physiol Heart Circ Physiol 2009; 296(3): H550-8.
[62]
Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000; 86(5): 494-501.
[63]
Mukai Y, Shimokawa H, Matoba T, et al. Involvement of Rho-kinase in hypertensive vascular disease: a novel therapeutic target in hypertension. FASEB J 2001; 15(6): 1062-4.
[64]
Satoh K, Fukumoto Y, Shimokawa H. Rho-kinase: important new therapeutic target in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2011; 301(2): H287-96.
[65]
Sun Q, Yue P, Ying Z, et al. Air pollution exposure potentiates hypertension through reactive oxygen species-mediated activation of Rho/ROCK. Arterioscler Thromb Vasc Biol 2008; 28(10): 1760-6.
[66]
Guilluy C, Bregeon J, Toumaniantz G, et al. The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure. Nat Med 2010; 16(2): 183-90.
[67]
Wirth A, Benyo Z, Lukasova M, et al. G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat Med 2008; 14(1): 64-8.
[68]
Moriki N, Ito M, Seko T, et al. RhoA activation in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. Hypertens Res 2004; 27(4): 263-70.
[69]
Tsounapi P, Saito M, Kitatani K, et al. Fasudil improves the endothelial dysfunction in the aorta of spontaneously hypertensive rats. Eur J Pharmacol 2012; 691: 182-9.
[70]
Masumoto A, Hirooka Y, Shimokawa H, Hironaga K, Setoguchi S, Takeshita A. Possible involvement of Rho-kinase in the pathogenesis of hypertension in humans. Hypertension 2001; 38(6): 1307-10.
[71]
Seko T, Ito M, Kureishi Y, et al. Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle. Circ Res 2003; 92: 411-8.
[72]
Hassona MD, Abouelnaga ZA, Elnakish MT, et al. Vascular hypertrophy-associated hypertension of profilin1 transgenic mouse model leads to functional remodeling of peripheral arteries. Am J Physiol Heart Cir Physiol 2010; 298: H2112-20.
[73]
Chan CK, Mak JC, Man RY, Vanhoutte PM. Rho kinase inhibitors prevent endothelium-dependent contractions in the rat aorta. J Pharmacol Exp Ther 2009; 329: 820-6.
[74]
Takeda K, Ichiki T, Tokunou T, et al. Critical role of Rho-kinase and MEK/ERK pathways for angiotensin II-induced plasminogen activator inhibitor type-1 gene expression. Arterioscler Thromb Vasc Biol 2001; 21: 868-73.
[75]
Rikitake Y, Liao JK. Rho-kinase mediates hyperglycemia-induced plasminogen activator inhibitor-1 expression in vascular endothelial cells. Circulation 2005; 111: 3261-8.
[76]
Ito K, Hirooka Y, Sakai K, et al. Rho/Rho-kinase pathway in brain stem contributes to blood pressure regulation via sympathetic nervous system: possible involvement in neural mechanisms of hypertension. Circ Res 2003; 92(12): 1337-43.
[77]
Ito K, Hirooka Y, Kishi T, et al. Rho/Rho-kinase pathway in the brainstem contributes to hypertension caused by chronic nitric oxide synthase inhibition. Hypertension 2004; 43(2): 156-62.
[78]
Ito K, Kimura Y, Hirooka Y, Sagara Y, Sunagawa K. Activation of Rho-kinase in the brainstem enhances sympathetic drive in mice with heart failure. Auton Neurosci 2008; 142(1-2): 77-81.
[79]
Surma M, Wei L, Shi J. Rho kinase as a therapeutic target in cardiovascular disease. Future Cardiol 2011; 7(5): 657-71.
[80]
Zhou Q, Liao JK. Rho kinase: an important mediator of atherosclerosis and vascular disease. Curr Pharm Des 2009; 15(27): 3108-15.
[81]
Hiroi Y, Noma K, Kim HH, et al. Neuroprotection mediated by upregulation of endothelial nitric oxide synthase in Rho-associated, coiled-coil-containing kinase 2 deficient mice. Circ Res 2018; 82(4): 1195-204.
[82]
Rabinovitch M. Pulmonary hypertension: updating a mysterious disease. Cardiovasc Res 1997; 34: 268-72.
[83]
Rubin LJ. Cellular and molecular mechanisms responsible for the pathogenesis of primary pulmonary hypertension. Pediatr Pulmonol Suppl 1999; 18: 194-7.
[84]
Kimura H, Kasahara Y, Kurosu K, et al. Alleviation of monocrotaline-induced pulmonary hypertension by antibodies to monocyte chemotactic and activating factor/monocyte chemoattractant protein-1. Lab Invest 1998; 78: 571-81.
[85]
Runo JR, Loyd JE. Primary pulmonary hypertension. Lancet 2003; 361: 1533-44.
[86]
Mill C, George SJ. Wnt signalling in smooth muscle cells and its role in cardiovascular disorders. Cardiovasc Res 2012; 95(2): 233-40.
[87]
Guilluy C, Rolli-Derkinderen M, Tharaux PL, Melino G, Pacaud P, Loirand G. Transglutaminase-dependent RhoA activation and depletion by serotonin in vascular smooth muscle cells. J Biol Chem 2007; 282: 2918-28.
[88]
Guilluy C, Eddahibi S, Agard C, et al. RhoA and Rho kinase activation in human pulmonary hypertension: role of 5-HT signaling. Am J Respir Crit Care Med 2009; 179: 1151-8.
[89]
Garcia JH, Yoshida Y, Chen H, et al. Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol 1993; 142: 623-35.
[90]
Shin HK, Salomone S, Potts EM, et al. Rho-kinase inhibition acutely augments blood flow in focal cerebral ischemia via endothelial mechanisms. J Cereb Blood Flow Metab 2007; 27: 998-1009.
[91]
Ding J, Li QY, Wang X, Sun CH, Lu CZ, Xiao BG. Fasudil protects hippocampal neurons against hypoxia-reoxygenation injury by suppressing microglial inflammatory responses in mice. J Neurochem 2010; 114: 1619-29.
[92]
Feske SK, Sorond FA, Henderson GV, et al. Increased leukocyte ROCK activity in patients after acute ischemic stroke. Brain Res 2009; 1257: 89-93.
[93]
Kahles T, Luedike P, Endres M, et al. NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 2007; 38(11): 3000-6.
[94]
Wu J, Li J, Hu H, Liu P, Fang Y, Wu D. Rho-kinase inhibitor, fasudil, prevents neuronal apoptosis via the Akt activation and PTEN inactivation in the ischemic penumbra of rat brain. Cell Mol Neurobiol 2012; 32: 1187-97.
[95]
Satoh S, Utsunomiya T, Tsurui K, et al. Pharmacological profile of hydroxy fasudil as a selective rho kinase inhibitor on ischemic brain damage. Life Sci 2001; 69(12): 1441-53.
[96]
Vesterinen HM, Currie GL, Carter S, et al. Systematic review and stratified meta-analysis of the efficacy of RhoA and Rho kinase inhibitors in animal models of ischaemic stroke. Syst Rev 2013; 2: 33.
[97]
Definition of Heart failure. Medical Dictionary. MedicineNet 2011.
[98]
Chronic Heart Failure: National Clinical Guideline for Diagnosis and Management in Primary and Secondary Care: Partial Update. National Clinical Guideline Centre 2010; pp. 19-24.
[99]
McDonagh Theresa A Oxford textbook of heart failure. Oxford: Oxford University Press 2011; p. 3. ISBN 9780199577729.
[100]
O'Connor, Christopher M Managing Acute Decompensated Heart Failure a Clinician’s Guide to Diagnosis and Treatment. London: Informal Healthcare 2005; p. 572. ISBN 9780203421345.
[101]
McMurray JJ, Pfeffer MA. Heart failure 2005; 365(9474): 1877-89.
[102]
Chronic Heart Failure National Clinical Guideline for Diagnosis and Management in Primary and Secondary Care: Partial Update. National Clinical Guideline Centre 2010; pp. 38-70.
[103]
Willard & Spackman’s occupational therapy. 12th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins 2014; p. 1124. ISBN 9781451110807.
[104]
Bootman MD. Calcium signaling. Cold Spring Harb Perspect Biol 2012; 4(7): a011171.
[105]
Lincoln TM. Myosin phosphatase regulatory pathways: Different functions or redundant functions? Circ Res 2007; 100: 10-2.
[106]
Feng J, Ito M, Ichikawa K, et al. Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase. J Biol Chem 1999; 274: 37385-90.
[107]
Kiss E, Muranyi A, Csortos C, et al. Integrin-linked kinase phosphorylates the myosin phosphatase target subunit at the inhibitory site in platelet cytoskeleton. Biochem J 2002; 365: 79-87.
[108]
Manintveld OC, Verdouw PD, Duncker DJ. The RISK of ROCK. Am J Physiol Heart Circ Physiol 2007; 292: H2563-5.
[109]
Kobayashi N, Takeshima H, Fukushima H, et al. Cardioprotective effects of pitavastatin on cardiac performance and remodeling in failing rat hearts. Am J Hypertens 2009; 22: 176-82.
[110]
Dulak J, Jozkowicz A. Anti-angiogenic and anti-inflammatory effects of statins: relevance to anti-cancer therapy. Curr Cancer Drug Targets 2005; 5: 579-94.
[111]
Fritz G, Kaina B. Rho GTPases: promising cellular targets for novel anticancer drugs. Curr Cancer Drug Targets 2006; 6: 1-14.
[112]
Kuo IY, Ehrlich BE. Signaling in muscle contraction. Cold Spring Harb Perspect Biol 2015; 7(2): a006023.
[113]
Lee TM, Lin SZ, Chang NC. Nicorandil regulates the macrophage skewing and ameliorates myofibroblasts by inhibition of RhoA/Rho‐kinase signalling in infarcted rats. J Cell Mol Med 2018; 22(2): 1056-69.
[114]
Sasaki Y, Suzuki M, Hidaka H. The novel and specific Rho-kinase inhibitor (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinoline)sulfonyl]-homopiperazine as a probing molecule for Rho-kinase-involved pathway. Pharmacol Ther 2002; 93: 225-32.
[115]
Shibuya M, Hirai S, Seto M, Satoh S, Ohtomo E. Effects of fasudil in acute ischemic stroke: Results of a prospective placebo-controlled double-blind trial. J Neurol Sci 2005; 238: 31-9.
[116]
Zhao J, Zhou D, Guo J, et al. Effect of fasudil hydrochloride, a protein kinase inhibitor, on cerebral vasospasm and delayed cerebral ischemic symptoms after aneurysmal subarachnoid hemorrhage. Neurol Med Chir (Tokyo) 2006; 46: 421-8.
[117]
Suzuki Y, Shibuya M, Satoh S, Sugimoto Y, Takakura K. A postmarketing surveillance study of fasudil treatment after aneurysmal subarachnoid hemorrhage. Surg Neurol 2007; 68: 126-31.
[118]
Laufs U, Endres M, Stagliano N, et al. Neuroprotection mediated by changes in the endothelial actin cytoskeleton. J Clin Invest 2000; 106: 15-24.
[119]
Toshima Y, Satoh S, Ikegaki I, et al. A new model of cerebral microthrombosis in rats and the neuroprotective effect of a Rho-kinase inhibitor. Stroke 2000; 31: 2245-50.
[120]
Rikitake Y, Kim HH, Huang Z, et al. Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke 2005; 36: 2251-7.
[121]
Satoh S, Toshima Y, Ikegaki I, Iwasaki M, Asano T. Wide therapeutic time window for fasudil neuroprotection against ischemia-induced delayed neuronal death in gerbils. Brain Res 2007; 1128: 175-80.
[122]
Shimokawa H, Hiramori K, Iinuma H, et al. Anti-anginal effect of fasudil, a Rho-kinase inhibitor, in patients with stable effort angina: a multicenter study. J Cardiovasc Pharmacol 2002; 40: 751-61.
[123]
Vicari RM, Chaitman B, Keefe D, et al. Efficacy and safety of fasudil in patients with stable angina: a double-blind, placebo-controlled, phase 2 trial. J Am Coll Cardiol 2005; 46: 1803-11.
[124]
Fukumoto Y, Matoba T, Ito A, et al. Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart 2005; 91: 391-2.
[125]
Masumoto A, Mohri M, Shimokawa H, Urakami L, Usui M, Takeshita A. Suppression of coronary artery spasm by a Rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation 2002; 105: 1545-7.
[126]
Kishi T, Hirooka Y, Masumoto A, et al. Rho-kinase inhibitor improves increased vascular resistance and impaired vasodilation of the forearm in patients with heart failure. Circulation 2005; 111: 2741-7.
[127]
Narumiya S, Ishizaki T, Uehata M. Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol 2000; 325: 273-84.
[128]
Olson MF. Applications for ROCK kinase inhibition. Curr Opin Cell Biol 2008; 20(2): 242-8.
[129]
Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 2000; 351(Pt 1): 95-105.
[130]
Bain J, Plater L, Elliott M, et al. The selectivity of protein kinase inhibitors: a further update. Biochem J 2007; 408(3): 297-15.
[131]
Liao JK, Seto M, Noma K. Rho kinase (ROCK) inhibitors. J Cardiovasc Pharmacol 2007; 50(1): 17-24.
[132]
Lohn M, Plettenburg O, Ivashchenko Y, et al. Pharmacological characterization of SAR407899, a novel Rho-kinase inhibitor. Hypertension 2009; 54(3): 676-83.
[133]
Kast R, Schirok H, Figueroa-Perez S, et al. Cardiovascular effects of a novel potent and highlyselectiveazaindole-based inhibitor of Rho-kinase. Br J Pharmacol 2007; 152(7): 1070-80.
[134]
Doe C, Bentley R, Behm DJ, et al. Novel Rho kinase inhibitors with anti-inflammatory and vasodilatory activities. J Pharmacol Exp Ther 2007; 320(1): 89-98.
[135]
Dhaliwal JS. BadejoAMJr, Casey DB, Murthy SN, Kadowitz PJ. Analysis of pulmonary vasodilator responses to SB-772077-B [4-(7-((3-amino-1-pyrrolidinyl) carbonyl)-1-ethyl-1Himidazo(4,5-c) pyridin-2-yl)-1,2,5-oxadiazol-3-amine], a novel aminofurazan-based Rho kinase inhibitor. J Pharmacol Exp Ther 2009; 330(1): 334-41.
[136]
Boerma M, Fu Q, Wang J, et al. Comparative gene expression profiling in three primary human cell lines after treatment with a novel inhibitor of Rho kinase or atorvastatin. Blood Coagul Fibrinolysis 2008; 19(7): 709-18.
[137]
Ming XF, Viswambharan H, Barandier C, et al. Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol 2002; 22: 8467-77.
[138]
Moncada S. A2. Nitric oxide and bioenergetics: Physiology and pathophysiology. Nitric Oxide 2007; 17: 9.
[139]
Jakala P, Pere E, Lehtinen R, Turpeinen A, Korpela R, Vapaatalo H. Cardiovascular activity of milk casein-derived tripeptides and plant sterols in spontaneously hypertensive rats. J Physiol Pharmacol 2009; 60: 11-20.
[140]
Shibuya M, Suzuki Y, Sugita K, et al. Effect of AT877 on cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Results of a prospective placebo-controlled double-blind trial. J Neurosurg 1992; 76: 571-7.
[141]
Laufs U, La Fata V, Plutzky J, et al. Upregulation of endothelial nitric oxide synthase by HMG CoA reductaseinhibitors. Circulation 1998; 97: 1129-35.
[142]
Takemoto M, Sun J, Hiroki J, et al. Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation 2002; 106: 57-62.
[143]
Eto M, Barandier C, Rathgeb L, et al. Thrombin suppresses endothelial nitric oxide synthase and upregulatesendothelin-converting enzyme-1 expression by distinct pathways: role of Rho/ROCK and mitogen-activated protein kinase. Circ Res 2001; 89(7): 583-90.