[1]
Sarkhail, P. Traditional uses, phytochemistry and pharmacological properties of the genus Peucedanum: A review. J. Ethnopharmacol., 2014, 156, 235-270.
[2]
Sayed-Ahmad, B.; Talou, T.; Saad, Z.; Hijazi, A.; Meraha, O. The Apiaceae: Ethnomedicinal family as source for industrial uses. Ind. Crops Prod., 2017, 109, 661-671.
[3]
Jeyabalan, J.; Aqil, F.; Soper, L.; David, J.; Schultz, D.J.; Ramesh, C.; Gupta, R.C. Potent chemopreventive/antioxidant activity detected in common spices of the Apiaceae family. Nutr. Cancer, 2015, 67, 1201-1207.
[4]
Martins, N.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C.F.R. Antioxidant potential of two Apiaceae plant extracts: A comparative study focused on the phenolic composition. Ind. Crops Prod., 2016, 79, 188-194.
[5]
Amiri, M.S.; Joharchi, M.R. Ethnobotanical knowledge of Apiaceae family in Iran: A review. Avicenna J. Phytomed., 2016, 6, 621-635.
[6]
Saleem, F.; Sarkar, D.; Ankolekar, C.; Shetty, K. Phenolic bioactives and associated antioxidant and anti-hyperglycemic functions of select species of Apiaceae family targeting for type 2 diabetes relevant nutraceuticals. Ind. Crops Prod., 2017, 107, 518-525.
[7]
Maulidiani, A.; Faridah, K.; Alfi, S.; Khozirah, L.; Nordin, H. Chemical characterization and antioxidant activity of three medicinal Apiaceae species. Ind. Crops Prod., 2014, 55, 238-247.
[8]
El-Sayed, W.M.; Hussin, W.A.; Mahmoud, A.A.; AlFredan, M.A. Antimutagenic activities of Anisosciadium lanatum extracts could predict the anticancer potential in different cell lines. Int. J. Pharm. Pharm. Res, 2017, 9, 197-206.
[9]
Chaturvedula, V.S.P.; Prakash, I. Isolation of stigmasterol and β-sitosterol from the dichloromethane extract of Rubus suavissimus. Int. J. Curr. Pham. Res, 2012, 1, 239-242.
[10]
Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods, 1986, 89, 271-277.
[11]
Ismail, M.A.; Youssef, M.M.; Arafa, R.K.; Al-Shihry, S.S.; El-Sayed, W.M. Synthesis and antiproliferative activity of monocationic arylthiophene derivatives. Eur. J. Med. Chem., 2016, 126, 789-798.
[12]
Nishiya, K.; Kimura, T.; Takeya, K.; Itokawa, H. Ssesquiterpenoids and iridoid glycosides from Valeriana fauriei. Phytochemistry, 1992, 31, 3511-3514.
[13]
Wang, H-X.; Liu, C-M.; Liu, Q.; Gao, K. Three types of sesquiterpenes from rhizomes of Atractylodes lancea. Phytochemistry, 2008, 69, 2088-2094.
[14]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100, 57-70.
[15]
Mariaule, G.; Belmont, P. Cyclin-dependent kinase inhibitors as marketed anticancer drugs: Where are we now? A short survey. Molecules, 2014, 19, 14366-14382.
[16]
Hochegger, H.; Dejsuphong, D.; Sonoda, E.; Saberi, A.; Rajendra, E.; Kirk, J.; Hunt, T.; Takeda, S. An essential role for Cdk1 in S phase control is revealed via chemical genetics in vertebrate cells. J. Cell Biol., 2007, 178, 257-268.
[17]
Bai, J.; Li, Y.; Zhang, G. Cell cycle regulation and anticancer drug discovery. Cancer Biol. Med., 2017, 14, 348-362.
[18]
Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell, 1997, 88, 323-331.
[19]
Folkman, J. Tumor suppression by p53 is mediated in part by the antiangiogenic activity of endostatin and tumstatin. Sci. STKE, 2006, 354, 35.
[20]
Teodoro, J.G.; Evans, S.K.; Green, M.R. Inhibition of tumor angiogenesis by p53: A new role for the guardian of the genome. J. Mol. Med., 2007, 85, 1175-1186.
[21]
Schuler, M.; Bossy-Wetzel, E.; Goldstein, J.C.; Fitzgerald, P.; Green, D.R. p53 Induces apoptosis by caspase activation through mitochondrial cytochrome c release. J. Biol. Chem., 2000, 275, 7337-7342.
[22]
Ueno, M.; Kakinuma, Y.; Yuhki, K.; Murakoshi, N.; Iemitsu, M.; Miyauchi, T.; Yamaguchi, I. Doxorubicin induces apoptosis by activation of caspase-3 in cultured cardiomyocytes in vitro and rat cardiac ventricles in vivo. J. Pharmacol. Sci., 2006, 101, 151-158.
[23]
Shirley, S.H.; Rundhaug, J.E.; Tian, J.; Cullinan-Ammann, N.; Lambertz, I.; Conti, C.J.; Fuchs-Young, R. Transcriptional regulation of estrogen receptor-A by p53 in human breast cancer cells. Cancer Res., 2009, 69, 3405-3414.
[24]
Rathos, M.J.; Khanwalkar, H.; Joshi, K.; Manohar, S.M.; Joshi, K.S. Potentiation of in vitro and in vivo antitumor efficacy of doxorubicin by cyclin-dependent kinase inhibitor P276-00 in human non-small cell lung cancer cells. BMC Cancer, 2013, 13, 1-10.
[25]
Sharifi, S.; Barar, J.; Hejazi, M.S.; Samadi, N. Doxorubicin changes Bax /Bcl-xL ratio, caspase-8 and 9 in breast cancer cells. Adv. Pharm. Bull., 2015, 5, 351-359.
[26]
Soussi, T.; Beroud, C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nat. Rev. Cancer, 2001, 1, 233-240.
[27]
Mayer, E.L. Targeting breast cancer with CDK inhibitors. Curr. Oncol. Rep., 2015, 17, 20-24.
[28]
Hill, R.; Rabb, M.; Madureira, P.A.; Clements, D.; Gujar, S.A.; Waisman, D.M.; Giacomantonio, C.A.; Lee, P.W. Gemcitabine-mediated tumour regression and p53-dependent gene expression: Implications for colon and pancreatic cancer therapy. Cell Death Dis., 2013, 4, 1-12.
[29]
Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase-role and significance in cancer. Int. J. Med. Sci., 2004, 1, 101-115.