Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Association of CYP2D6*10 (c. 100 C>T) Genotype with Z-END Concentration in Patients with Breast Cancer Receiving Tamoxifen Therapy in Indonesian Population

Author(s): Yenny*, Sonar S. Panigoro, Denni J. Purwanto, Adi Hidayat, Melva Louisa, Rizka Andalusia and Rianto Setiabudy

Volume 19, Issue 8, 2019

Page: [1198 - 1206] Pages: 9

DOI: 10.2174/1871530319666190306094617

Price: $65

Abstract

Background: Tamoxifen (TAM) is a frequently used hormonal prodrug for patients with breast cancer that needs to be activated by cytochrome P450 2D6 (CYP2D6) into Zusammen-endoxifen (Z-END).

Objective: The purpose of the study was to determine the association between CYP2D6*10 (c.100C>T) genotype and attainment of the plasma steady-state Z-END minimal threshold concentration (MTC) in Indonesian women with breast cancer.

Methods: A cross-sectional study was performed in 125 ambulatory patients with breast cancer consuming TAM at 20 mg/day for at least 4 months. The frequency distribution of CYP2D6*10 (c.100C>T) genotypes (C/C: wild type; C/T: heterozygous mutant; T/T: homozygous mutant) was detected using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), the results of which were subsequently confirmed by sequencing. The genotypes were categorized into plasma Z- END concentrations of <5.9 ng/mL and ≥5.9 ng/mL, which were measured using ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS).

Results: Percentages of C/C, CT, and T/T genotypes were 22.4%, 29.6%, and 48.8%, respectively. Median (25-75%) Z-END concentrations in C/C, C/T, and T/T genotypes were 9.58 (0.7-6.0), 9.86 (0.7-26.6), and 3.76 (0.9-26.6) ng/mL, respectively. Statistical analysis showed a significant difference in median Z-END concentration between patients with T/T genotype and those with C/C or C/T genotypes (p<0.001). There was a significant association between CYP2D6*10 (c.100C>T) genotypes and attainment of plasma steady-state Z-END MTC (p<0.001).

Conclusion: There was a significant association between CYP2D6*10 (c.100C>T) and attainment of plasma steady-state Z-END MTC in Indonesian breast cancer patients receiving TAM at a dose of 20 mg/day.

Keywords: CYP2D6*10 (c.100C>T), breast cancer, tamoxifen, Z-endoxifen, steady state concentration, Indonesian population.

Graphical Abstract

[1]
Gradishar, W.J.; Anderson, B.O.; Balassanian, R.; Blair, S.L.; Burstein, H.J.; Cyr, A.; Elias, A.D.; Farrar, W.B.; Forero, A.; Giordano, S.H.; Goetz, M.P.; Goldstein, L.J.; Isakoff, S.J.; Lyons, J.; Marcom, P.K.; Mayer, I.A.; McCormick, B.; Moran, M.S.; O’Regan, R.M.; Patel, S.A.; Pierce, L.J.; Reed, E.C.; Salerno, K.E.; Schwartzberg, L.S.; Sitapati, A.; Smith, K.L.; Smith, M.L.; Soliman, H.; Somlo, G.; Telli, M.L.; Ward, J.H.; Kumar, R.; Shead, D.A. Breast Cancer, Version 4.2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw., 2018, 16(3), 310-320.
[http://dx.doi.org/10.6004/jnccn.2018.0012] [PMID: 29523670]
[2]
Coates, A.S.; Winer, E.P.; Goldhirsch, A.; Gelber, R.D.; Gnant, M.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.J.; Panel, M. Tailoring therapies--improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann. Oncol., 2015, 26(8), 1533-1546.
[http://dx.doi.org/10.1093/annonc/mdv221] [PMID: 25939896]
[3]
Purwanto P, H.D.; Haryono, S.J.; Harahap, WA penyunting. Panduan Penatalaksanaan Kanker Payudara Perhimpunan Ahli Bedah Onkologi Indonesia (PERABOI) , 2015. 2015
[4]
Desta, Z.; Ward, B.A.; Soukhova, N.V.; Flockhart, D.A. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J. Pharmacol. Exp. Ther., 2004, 310(3), 1062-1075.
[http://dx.doi.org/10.1124/jpet.104.065607] [PMID: 15159443]
[5]
Madlensky, L.; Natarajan, L.; Tchu, S.; Pu, M.; Mortimer, J.; Flatt, S.W.; Nikoloff, D.M.; Hillman, G.; Fontecha, M.R.; Lawrence, H.J.; Parker, B.A.; Wu, A.H.; Pierce, J.P. Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin. Pharmacol. Ther., 2011, 89(5), 718-725.
[http://dx.doi.org/10.1038/clpt.2011.32] [PMID: 21430657]
[6]
Fotoohi, A.K.; Karim, H.; Lafolie, P.; Pohanka, A.; Östervall, J.; Hatschek, T.; Vitols, S. Pronounced Interindividual But Not Intraindividual Variation in Tamoxifen and Metabolite Levels in Plasma During Adjuvant Treatment of Women With Early Breast Cancer. Ther. Drug Monit., 2016, 38(2), 239-245.
[http://dx.doi.org/10.1097/FTD.0000000000000257] [PMID: 26485084]
[7]
Lim, J.S.; Chen, X.A.; Singh, O.; Yap, Y.S.; Ng, R.C.; Wong, N.S.; Wong, M.; Lee, E.J.; Chowbay, B. Impact of CYP2D6, CYP3A5, CYP2C9 and CYP2C19 polymorphisms on tamoxifen pharmacokinetics in Asian breast cancer patients. Br. J. Clin. Pharmacol., 2011, 71(5), 737-750.
[http://dx.doi.org/10.1111/j.1365-2125.2011.03905.x] [PMID: 21480951]
[8]
Areepium, N.; Panomvana, D.; Rungwanonchai, P.; Sathaporn, S.; Voravud, N. Effects of CYP2D6 and UGT2B7 polymorphisms on pharmacokinetics of tamoxifen in Thai breast cancer patients. Breast Cancer (Dove Med. Press), 2013, 5, 73-78.
[PMID: 24648760]
[9]
Bradford, L.D. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics, 2002, 3(2), 229-243.
[http://dx.doi.org/10.1517/14622416.3.2.229] [PMID: 11972444]
[10]
Baclig, M.O.; Predicala, R.Z.; Mapua, C.A.; Lozano-Kühne, J.P.; Daroy, M.L.; Natividad, F.F.; Javier, F.O. Allelic and genotype frequencies of catechol-O-methyltransferase (Val158Met) and CYP2D6*10 (Pro34Ser) single nucleotide polymorphisms in the Philippines. Int. J. Mol. Epidemiol. Genet., 2012, 3(2), 115-121.
[PMID: 22724048]
[11]
Lu, J.; Li, H.; Guo, P.; Shen, R.; Luo, Y.; Ge, Q.; Shi, W.; Li, Y.; Zhu, W. The effect of CYP2D6 *10 polymorphism on adjuvant tamoxifen in Asian breast cancer patients: a meta-analysis. OncoTargets Ther., 2017, 10, 5429-5437.
[http://dx.doi.org/10.2147/OTT.S149197] [PMID: 29180876]
[12]
Hennig, E.E.; Piatkowska, M.; Karczmarski, J.; Goryca, K.; Brewczynska, E.; Jazwiec, R.; Kluska, A.; Omiotek, R.; Paziewska, A.; Dadlez, M.; Ostrowski, J. Limited predictive value of achieving beneficial plasma (Z)-endoxifen threshold level by CYP2D6 genotyping in tamoxifen-treated Polish women with breast cancer. BMC Cancer, 2015, 15, 570.
[http://dx.doi.org/10.1186/s12885-015-1575-4] [PMID: 26232141]
[13]
Bagheri, A.; Kamalidehghan, B.; Haghshenas, M.; Azadfar, P.; Akbari, L.; Sangtarash, M.H.; Vejdandoust, F.; Ahmadipour, F.; Meng, G.Y.; Houshmand, M. Prevalence of the CYP2D6*10 (C100T), *4 (G1846A), and *14 (G1758A) alleles among Iranians of different ethnicities. Drug Des. Devel. Ther., 2015, 9, 2627-2634.
[PMID: 25999696]
[14]
Modaresi-Nejad, M.; Shiva, M.; Afsharian, P. Novel +90G>A Intronic Polymorphism of CYP2D6. Cell J., 2015, 17(1), 83-88.
[PMID: 25870837]
[15]
Lei, L.; Wang, X.; Wu, X.D.; Wang, Z.; Chen, Z.H.; Zheng, Y.B.; Wang, X.J. Association of CYP2D6*10 (c.100C>T) polymorphisms with clinical outcome of breast cancer after tamoxifen adjuvant endocrine therapy in Chinese population. Am. J. Transl. Res., 2016, 8(8), 3585-3592.
[PMID: 27648149]
[16]
Kiyotani, K.; Mushiroda, T.; Imamura, C.K.; Hosono, N.; Tsunoda, T.; Kubo, M.; Tanigawara, Y.; Flockhart, D.A.; Desta, Z.; Skaar, T.C.; Aki, F.; Hirata, K.; Takatsuka, Y.; Okazaki, M.; Ohsumi, S.; Yamakawa, T.; Sasa, M.; Nakamura, Y.; Zembutsu, H. Significant effect of polymorphisms in CYP2D6 and ABCC2 on clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients. J. Clin. Oncol., 2010, 28(8), 1287-1293.
[http://dx.doi.org/10.1200/JCO.2009.25.7246] [PMID: 20124171]
[17]
Love, R.R.; Desta, Z.; Flockhart, D.; Skaar, T.; Ogburn, E.T.; Ramamoorthy, A.; Uy, G.B.; Laudico, A.V.; Van Dinh, N.; Quang, H.; Van To, T.; Young, G.S.; Hade, E.; Jarjoura, D. CYP2D6 genotypes, endoxifen levels, and disease recurrence in 224 Filipino and Vietnamese women receiving adjuvant tamoxifen for operable breast cancer. Springerplus, 2013, 2(1), 52.
[http://dx.doi.org/10.1186/2193-1801-2-52] [PMID: 23476897]
[18]
Katzenellenbogen, B.S.; Norman, M.J.; Eckert, R.L.; Peltz, S.W.; Mangel, W.F. Bioactivities, estrogen receptor interactions, and plasminogen activator-inducing activities of tamoxifen and hydroxy-tamoxifen isomers in MCF-7 human breast cancer cells. Cancer Res., 1984, 44(1), 112-119.
[PMID: 6537799]
[19]
Jin, Y.; Desta, Z.; Stearns, V.; Ward, B.; Ho, H.; Lee, K.H.; Skaar, T.; Storniolo, A.M.; Li, L.; Araba, A.; Blanchard, R.; Nguyen, A.; Ullmer, L.; Hayden, J.; Lemler, S.; Weinshilboum, R.M.; Rae, J.M.; Hayes, D.F.; Flockhart, D.A. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J. Natl. Cancer Inst., 2005, 97(1), 30-39.
[http://dx.doi.org/10.1093/jnci/dji005] [PMID: 15632378]
[20]
Binkhorst, L.; Mathijssen, R.H.; van Herk-Sukel, M.P.; Bannink, M.; Jager, A.; Wiemer, E.A.; van Gelder, T. Unjustified prescribing of CYP2D6 inhibiting SSRIs in women treated with tamoxifen. Breast Cancer Res. Treat., 2013, 139(3), 923-929.
[http://dx.doi.org/10.1007/s10549-013-2585-z] [PMID: 23760858]
[21]
Binkhorst, L.; van Gelder, T.; Loos, W.J.; de Jongh, F.E.; Hamberg, P.; Moghaddam-Helmantel, I.M.; de Jonge, E.; Jager, A.; Seynaeve, C.; van Schaik, R.H.; Verweij, J.; Mathijssen, R.H. Effects of CYP induction by rifampicin on tamoxifen exposure. Clin. Pharmacol. Ther., 2012, 92(1), 62-67.
[http://dx.doi.org/10.1038/clpt.2011.372] [PMID: 22617226]
[22]
Binkhorst, L.; Mathijssen, R.H.; Jager, A.; van Gelder, T. Individualization of tamoxifen therapy: much more than just CYP2D6 genotyping. Cancer Treat. Rev., 2015, 41(3), 289-299.
[http://dx.doi.org/10.1016/j.ctrv.2015.01.002] [PMID: 25618289]
[23]
Borges, S.; Li, L.; Hamman, M.A.; Jones, D.R.; Hall, S.D.; Gorski, J.C. Dextromethorphan to dextrorphan urinary metabolic ratio does not reflect dextromethorphan oral clearance. Drug Metab. Dispos., 2005, 33(7), 1052-1055.
[http://dx.doi.org/10.1124/dmd.104.003459] [PMID: 15821042]
[24]
Stearns, V.; Johnson, M.D.; Rae, J.M.; Morocho, A.; Novielli, A.; Bhargava, P.; Hayes, D.F.; Desta, Z.; Flockhart, D.A. Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J. Natl. Cancer Inst., 2003, 95(23), 1758-1764.
[http://dx.doi.org/10.1093/jnci/djg108] [PMID: 14652237]
[25]
Goetz, M.P.; Sangkuhl, K.; Guchelaar, H.J.; Schwab, M.; Province, M.; Whirl-Carrillo, M.; Symmans, W.F.; McLeod, H.L.; Ratain, M.J.; Zembutsu, H.; Gaedigk, A.; van Schaik, R.H.; Ingle, J.N.; Caudle, K.E.; Klein, T.E. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and Tamoxifen Therapy. Clin. Pharmacol. Ther., 2018, 103(5), 770-777.
[http://dx.doi.org/10.1002/cpt.1007] [PMID: 29385237]
[26]
Saladores, P.; Mürdter, T.; Eccles, D.; Chowbay, B.; Zgheib, N.K.; Winter, S.; Ganchev, B.; Eccles, B.; Gerty, S.; Tfayli, A.; Lim, J.S.; Yap, Y.S.; Ng, R.C.; Wong, N.S.; Dent, R.; Habbal, M.Z.; Schaeffeler, E.; Eichelbaum, M.; Schroth, W.; Schwab, M.; Brauch, H. Tamoxifen metabolism predicts drug concentrations and outcome in premenopausal patients with early breast cancer. Pharmacogenomics J., 2015, 15(1), 84-94.
[http://dx.doi.org/10.1038/tpj.2014.34] [PMID: 25091503]
[27]
Hertz, D.L.; Deal, A.; Ibrahim, J.G.; Walko, C.M.; Weck, K.E.; Anderson, S.; Magrinat, G.; Olajide, O.; Moore, S.; Raab, R.; Carrizosa, D.R.; Corso, S.; Schwartz, G.; Graham, M.; Peppercorn, J.M.; Jones, D.R.; Desta, Z.; Flockhart, D.A.; Evans, J.P.; McLeod, H.L.; Carey, L.A.; Irvin, W.J. Jr Tamoxifen Dose Escalation in Patients With Diminished CYP2D6 Activity Normalizes Endoxifen Concentrations Without Increasing Toxicity. Oncologist, 2016, 21(7), 795-803.
[http://dx.doi.org/10.1634/theoncologist.2015-0480] [PMID: 27226358]
[28]
Kiyotani, K.; Mushiroda, T.; Imamura, C.K.; Tanigawara, Y.; Hosono, N.; Kubo, M.; Sasa, M.; Nakamura, Y.; Zembutsu, H. Dose-adjustment study of tamoxifen based on CYP2D6 genotypes in Japanese breast cancer patients. Breast Cancer Res. Treat., 2012, 131(1), 137-145.
[http://dx.doi.org/10.1007/s10549-011-1777-7] [PMID: 21947681]
[29]
Irvin, W.J., Jr; Walko, C.M.; Weck, K.E.; Ibrahim, J.G.; Chiu, W.K.; Dees, E.C.; Moore, S.G.; Olajide, O.A.; Graham, M.L.; Canale, S.T.; Raab, R.E.; Corso, S.W.; Peppercorn, J.M.; Anderson, S.M.; Friedman, K.J.; Ogburn, E.T.; Desta, Z.; Flockhart, D.A.; McLeod, H.L.; Evans, J.P.; Carey, L.A. Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced CYP2D6 metabolism: a multicenter study. J. Clin. Oncol., 2011, 29(24), 3232-3239.
[http://dx.doi.org/10.1200/JCO.2010.31.4427] [PMID: 21768473]
[30]
Welzen, M.E.; Dezentjé, V.O.; van Schaik, R.H.; Colbers, A.P.; Guchelaar, H.J.; van Erp, N.P.; den Hartigh, J.; Burger, D.M.; van Laarhoven, H.W. The Effect of Tamoxifen Dose Increment in Patients With Impaired CYP2D6 Activity. Ther. Drug Monit., 2015, 37(4), 501-507.
[http://dx.doi.org/10.1097/FTD.0000000000000195] [PMID: 26192892]
[31]
Martinez de Dueñas, E.; Ochoa Aranda, E.; Blancas Lopez-Barajas, I.; Ferrer Magdalena, T.; Bandrés Moya, F.; Chicharro García, L.M.; Gómez Capilla, J.A.; Zafra Ceres, M.; de Haro, T.; Romero Llorens, R.; Ferrer Albiach, C.; Ferriols Lisart, R.; Chover Lara, D.; López Rodríguez, A.; Munárriz Ferrandis, J.; Olmos Antón, S. Adjusting the dose of tamoxifen in patients with early breast cancer and CYP2D6 poor metabolizer phenotype. Breast, 2014, 23(4), 400-406.
[http://dx.doi.org/10.1016/j.breast.2014.02.008] [PMID: 24685597]
[32]
Fox, P.; Balleine, R.L.; Lee, C.; Gao, B.; Balakrishnar, B.; Menzies, A.M.; Yeap, S.H.; Ali, S.S.; Gebski, V.; Provan, P.; Coulter, S.; Liddle, C.; Hui, R.; Kefford, R.; Lynch, J.; Wong, M.; Wilcken, N.; Gurney, H. Dose Escalation of Tamoxifen in Patients with Low Endoxifen Level: Evidence for Therapeutic Drug Monitoring-The TADE Study. Clin. Cancer Res., 2016, 22(13), 3164-3171.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1470] [PMID: 26847054]
[33]
Castells, A.; Gusella, J.F.; Ramesh, V.; Rustgi, A.K. A region of deletion on chromosome 22q13 is common to human breast and colorectal cancers. Cancer Res., 2000, 60(11), 2836-2839.
[PMID: 10850424]
[34]
Goetz, M.P.; Sun, J.X.; Suman, V.J.; Silva, G.O.; Perou, C.M.; Nakamura, Y.; Cox, N.J.; Stephens, P.J.; Miller, V.A.; Ross, J.S.; Chen, D.; Safgren, S.L.; Kuffel, M.J.; Ames, M.M.; Kalari, K.R.; Gomez, H.L.; Gonzalez-Angulo, A.M.; Burgues, O.; Brauch, H.B.; Ingle, J.N.; Ratain, M.J.; Yelensky, R. Loss of heterozygosity at the CYP2D6 locus in breast cancer: implications for germline pharmacogenetic studies. J. Natl. Cancer Inst., 2014, 107(2)dju401
[PMID: 25490892]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy