Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Atorvastatin Inhibited ROS Generation and Increased IL-1β And IL-6 Release by Mononuclear Cells from Diabetic Patients

Author(s): Paula M.F. dos Anjos, Caroline M.O. Volpe, Thaís C. Miranda and José A. Nogueira-Machado*

Volume 19, Issue 8, 2019

Page: [1207 - 1215] Pages: 9

DOI: 10.2174/1871530319666190617160349

Price: $65

Abstract

Background: Atorvastatin (ATV) inhibits the conversion of 3-Hydroxy-3-Methylglutaryl Coenzyme A (HMG-CoA) to mevalonate formation and promotes lowering of the LDL cholesterol fraction. However, ATV exhibits pleiotropic metabolic actions beyond cholesterol-lowering properties.

Objective: We aimed to evaluate the effect of ATV on oxidizing species generation and cytokine secretion in Peripheral Blood Mononuclear Cells (PBMNC) of Type 2 Diabetes Mellitus (T2DM) patients in comparison to healthy control.

Methods: Both NADPH-oxidase-dependent and mitochondrial ROS generation were assessed by chemoluminescence luminol-dependent assay and fluorometric experiment, using Dichlorofluorescein Assay (DCFH-DA), respectively. IL-1β and IL-6 were quantified by classical ELISA.

Results: ATV inhibited NADPH-oxidase dependent ROS generation, but showed no effect on mitochondrial ROS generation and activated IL-1β and IL-6 secretions in PBMNC from control and T2DM patients. ROS generation and cytokine secretion in the presence of an inhibitor of Protein Kinase Cβ (iPKCβ) and ATV led to similar results. The secretion of IL-1β, PDB-induced in the presence of iPKCβ, but not ATV, was increased. ATV and iPKCβ exacerbated PDB-induced IL-6 secretion. LPS activated the secretion of IL-1β and IL-6 which was potentiated by ATV.

Conclusion: ATV inhibited ROS generation and activated IL-1 β/IL-6 secretion in PBMNC of diabetes patients. Its effect was not affected by the hyperglymemia.

Keywords: Diabetes type 2, atorvastatin, ROS, IL-1β, IL-6, mononuclear cells.

Graphical Abstract

[1]
Dimitroulakos, J.; Nohynek, D.; Backway, K.L.; Hedley, D.W.; Yeger, H.; Freedman, M.H.; Minden, M.D.; Penn, L.Z. Increased sensitivity of acute myeloid leukemias to lovastatin-induced apoptosis: A potential therapeutic approach. Blood, 1999, 93(4), 1308-1318.
[PMID: 9949174]
[2]
Dimitroulakos, J.; Ye, L.Y.; Benzaquen, M.; Moore, M.J.; Kamel-Reid, S.; Freedman, M.H.; Yeger, H.; Penn, L.Z. Differential sensitivity of various pediatric cancers and squamous cell carcinomas to lovastatin-induced apoptosis: therapeutic implications. Clin. Cancer Res., 2001, 7(1), 158-167.
[PMID: 11205904]
[3]
Dunzendorfer, S.; Rothbucher, D.; Schratzberger, P.; Reinisch, N.; Kähler, C.M.; Wiedermann, C.J. Mevalonate-dependent inhibition of transendothelial migration and chemotaxis of human peripheral blood neutrophils by pravastatin. Circ. Res., 1997, 81(6), 963-969.
[http://dx.doi.org/10.1161/01.RES.81.6.963] [PMID: 9400376]
[4]
Jones, K.D.; Couldwell, W.T.; Hinton, D.R.; Su, Y.; He, S.; Anker, L.; Law, R.E. Lovastatin induces growth inhibition and apoptosis in human malignant glioma cells. Biochem. Biophys. Res. Commun., 1994, 205(3), 1681-1687.
[http://dx.doi.org/10.1006/bbrc.1994.2861] [PMID: 7811252]
[5]
Kawakami, A.; Tanaka, A.; Nakajima, K.; Shimokado, K.; Yoshida, M. Atorvastatin attenuates remnant lipoprotein-induced monocyte adhesion to vascular endothelium under flow conditions. Circ. Res., 2002, 91(3), 263-271.
[http://dx.doi.org/10.1161/01.RES.0000028454.42385.8B] [PMID: 12169653]
[6]
Paumelle, R.; Blanquart, C.; Briand, O.; Barbier, O.; Duhem, C.; Woerly, G.; Percevault, F.; Fruchart, J.C.; Dombrowicz, D.; Glineur, C.; Staels, B. Acute antiinflammatory properties of statins involve peroxisome proliferator-activated receptor-alpha via inhibition of the protein kinase C signaling pathway. Circ. Res., 2006, 98(3), 361-369.
[http://dx.doi.org/10.1161/01.RES.0000202706.70992.95] [PMID: 16397146]
[7]
Ren, X.M.; Zuo, G.F.; Wu, W.; Luo, J.; Ye, P.; Chen, S.L.; Hu, Z.Y. Atorvastatin Alleviates Experimental Diabetic Cardiomyopathy by Regulating the GSK-3β-PP2Ac-NF-κB Signaling Axis. PLoS One, 2016, 11(11)e0166740
[http://dx.doi.org/10.1371/journal.pone.0166740] [PMID: 27851811]
[8]
Saijonmaa, O.; Nyman, T.; Stewen, P.; Fyhrquist, F. Atorvastatin completely inhibits VEGF-induced ACE upregulation in human endothelial cells. Am. J. Physiol. Heart Circ. Physiol., 2004, 286(6), H2096-H2102.
[http://dx.doi.org/10.1152/ajpheart.00894.2003] [PMID: 14704227]
[9]
Sassano, A.; Altman, J.K.; Gordon, L.I.; Platanias, L.C. Statin-dependent activation of protein kinase Cδ in acute promyelocytic leukemia cells and induction of leukemic cell differentiation. Leuk. Lymphoma, 2012, 53(9), 1779-1784.
[http://dx.doi.org/10.3109/10428194.2012.668287] [PMID: 22356114]
[10]
Cimato, T.R.; Palka, B.A. Effects of statins on TH1 modulating cytokines in human subjects. PeerJ, 2015.3e764
[http://dx.doi.org/10.7717/peerj.764] [PMID: 25699211]
[11]
Giugliano, D.; Ceriello, A.; Paolisso, G. Oxidative stress and diabetic vascular complications. Diabetes Care, 1996, 19(3), 257-267.
[http://dx.doi.org/10.2337/diacare.19.3.257] [PMID: 8742574]
[12]
Bruder-Nascimento, T.; Callera, G.; Montezano, A.C.; Antunes, T.T.; He, Y.; Cat, A.N.; Ferreira, N.S.; Barreto, P.A.; Olivon, V.C.; Tostes, R.C.; Touyz, R.M. Renoprotective Effects of Atorvastatin in Diabetic Mice: Downregulation of RhoA and Upregulation of Akt/GSK3. PLoS One, 2016, 11(9)e0162731
[http://dx.doi.org/10.1371/journal.pone.0162731] [PMID: 27649495]
[13]
Fagundes-Netto, F.S.; Anjos, P.M.; Volpe, C.M.; Nogueira-Machado, J.A. The production of reactive oxygen species in TLR-stimulated granulocytes is not enhanced by hyperglycemia in diabetes. Int. Immunopharmacol., 2013, 17(3), 924-929.
[http://dx.doi.org/10.1016/j.intimp.2013.09.018] [PMID: 24121038]
[14]
Bicalho, H.M.; Gontijo, C.M.; Nogueira-Machado, J.A. A simple technique for simultaneous human leukocytes separation. J. Immunol. Methods, 1981, 40(1), 115-116.
[http://dx.doi.org/10.1016/0022-1759(81)90087-9] [PMID: 7204999]
[15]
Keller, A.; Mohamed, A.; Dröse, S.; Brandt, U.; Fleming, I.; Brandes, R.P. Analysis of dichlorodihydrofluorescein and dihydrocalcein as probes for the detection of intracellular reactive oxygen species. Free Radic. Res., 2004, 38(12), 1257-1267.
[http://dx.doi.org/10.1080/10715760400022145] [PMID: 15763950]
[16]
Goldstein, J.L.; Brown, M.S. Regulation of the mevalonate pathway. Nature, 1990, 343(6257), 425-430.
[http://dx.doi.org/10.1038/343425a0] [PMID: 1967820]
[17]
Ekstrand, M.; Gustafsson Trajkovska, M.; Perman-Sundelin, J.; Fogelstrand, P.; Adiels, M.; Johansson, M.; Mattsson-Hultén, L.; Borén, J.; Levin, M. Imaging of Intracellular and Extracellular ROS Levels in Atherosclerotic Mouse Aortas Ex Vivo: Effects of Lipid Lowering by Diet or Atorvastatin. PLoS One, 2015, 10(6)e0130898
[http://dx.doi.org/10.1371/journal.pone.0130898] [PMID: 26098110]
[18]
An, L.P.; An, S.K.; Wei, X.H.; Fu, S.Y.; Wu, H.A. Atorvastatin improves cardiac function of rats with chronic cardiac failure via inhibiting Rac1/P47phox/P67phox-mediated ROS release. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(20), 3940-3946.
[PMID: 26531283]
[19]
Maggard, M.A.; Ke, B.; Wang, T.; Kaldas, F.; Seu, P.; Busuttil, R.W.; Imagawa, D.K. Effects of pravastatin on chronic rejection of rat cardiac allografts. Transplantation, 1998, 65(2), 149-155.
[http://dx.doi.org/10.1097/00007890-199801270-00001] [PMID: 9458006]
[20]
McCarey, D.W.; McInnes, I.B.; Madhok, R.; Hampson, R.; Scherbakov, O.; Ford, I.; Capell, H.A.; Sattar, N. Trial of Atorvastatin in Rheumatoid Arthritis (TARA): double-blind, randomised placebo-controlled trial. Lancet, 2004, 363(9426), 2015-2021.
[http://dx.doi.org/10.1016/S0140-6736(04)16449-0] [PMID: 15207950]
[21]
McKay, A.; Leung, B.P.; McInnes, I.B.; Thomson, N.C.; Liew, F.Y. A novel anti-inflammatory role of simvastatin in a murine model of allergic asthma. J. Immunol., 2004, 172(5), 2903-2908.
[http://dx.doi.org/10.4049/jimmunol.172.5.2903] [PMID: 14978092]
[22]
Stüve, O.; Youssef, S.; Steinman, L.; Zamvil, S.S. Statins as potential therapeutic agents in neuroinflammatory disorders. Curr. Opin. Neurol., 2003, 16(3), 393-401.
[http://dx.doi.org/10.1097/01.wco.0000073942.19076.d1] [PMID: 12858078]
[23]
Takemoto, M.; Liao, J.K. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler. Thromb. Vasc. Biol., 2001, 21(11), 1712-1719.
[http://dx.doi.org/10.1161/hq1101.098486] [PMID: 11701455]
[24]
Dichtl, W.; Dulak, J.; Frick, M.; Alber, H.F.; Schwarzacher, S.P.; Ares, M.P.; Nilsson, J.; Pachinger, O.; Weidinger, F. HMG-CoA reductase inhibitors regulate inflammatory transcription factors in human endothelial and vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 2003, 23(1), 58-63.
[http://dx.doi.org/10.1161/01.ATV.0000043456.48735.20] [PMID: 12524225]
[25]
McFarland, A.J.; Davey, A.K.; Anoopkumar-Dukie, S. Statins Reduce Lipopolysaccharide-Induced Cytokine and Inflammatory Mediator Release in an In Vitro Model of Microglial-Like Cells. Mediators Inflamm., 2017, •••20172582745
[http://dx.doi.org/10.1155/2017/2582745] [PMID: 28546657]
[26]
Pal, S.; Ghosh, M.; Ghosh, S.; Bhattacharyya, S.; Sil, P.C. Atorvastatin induced hepatic oxidative stress and apoptotic damage via MAPKs, mitochondria, calpain and caspase12 dependent pathways. Food Chem. Toxicol., 2015, 83, 36-47.
[http://dx.doi.org/10.1016/j.fct.2015.05.016] [PMID: 26051349]
[27]
Violi, F.; Carnevale, R.; Pastori, D.; Pignatelli, P. Antioxidant and antiplatelet effects of atorvastatin by Nox2 inhibition. Trends Cardiovasc. Med., 2014, 24(4), 142-148.
[http://dx.doi.org/10.1016/j.tcm.2013.09.006] [PMID: 24263084]
[28]
Endres, M.; Laufs, U.; Huang, Z.; Nakamura, T.; Huang, P.; Moskowitz, M.A.; Liao, J.K. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA, 1998, 95(15), 8880-8885.
[http://dx.doi.org/10.1073/pnas.95.15.8880] [PMID: 9671773]
[29]
Kaneider, N.C.; Egger, P.; Dunzendorfer, S.; Wiedermann, C.J. Rho-GTPase-dependent platelet-neutrophil interaction affected by HMG-CoA reductase inhibition with altered adenosine nucleotide release and function. Arterioscler. Thromb. Vasc. Biol., 2002, 22(6), 1029-1035.
[http://dx.doi.org/10.1161/01.ATV.0000018306.68268.86] [PMID: 12067916]
[30]
Zhang, J.; Xu, F.; Liu, X.B.; Bi, S.J.; Lu, Q.H. Increased Rho kinase activity in patients with heart ischemia/reperfusion. Perfusion, 2018. 267659118787432
[PMID: 30004298]
[31]
Liao, Y.H.; Lin, Y.C.; Tsao, S.T.; Lin, Y.C.; Yang, A.J.; Huang, C.T.; Huang, K.C.; Lin, W.W. HMG-CoA reductase inhibitors activate caspase-1 in human monocytes depending on ATP release and P2X7 activation. J. Leukoc. Biol., 2013, 93(2), 289-299.
[http://dx.doi.org/10.1189/jlb.0812409] [PMID: 23159926]
[32]
Henriksbo, B.D.; Lau, T.C.; Cavallari, J.F.; Denou, E.; Chi, W.; Lally, J.S.; Crane, J.D.; Duggan, B.M.; Foley, K.P.; Fullerton, M.D.; Tarnopolsky, M.A.; Steinberg, G.R.; Schertzer, J.D. Fluvastatin causes NLRP3 inflammasome-mediated adipose insulin resistance. Diabetes, 2014, 63(11), 3742-3747.
[http://dx.doi.org/10.2337/db13-1398] [PMID: 24917577]
[33]
Sattar, N.; Preiss, D.; Murray, H.M.; Welsh, P.; Buckley, B.M.; de Craen, A.J.; Seshasai, S.R.; McMurray, J.J.; Freeman, D.J.; Jukema, J.W.; Macfarlane, P.W.; Packard, C.J.; Stott, D.J.; Westendorp, R.G.; Shepherd, J.; Davis, B.R.; Pressel, S.L.; Marchioli, R.; Marfisi, R.M.; Maggioni, A.P.; Tavazzi, L.; Tognoni, G.; Kjekshus, J.; Pedersen, T.R.; Cook, T.J.; Gotto, A.M.; Clearfield, M.B.; Downs, J.R.; Nakamura, H.; Ohashi, Y.; Mizuno, K.; Ray, K.K.; Ford, I. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet, 2010, 375(9716), 735-742.
[http://dx.doi.org/10.1016/S0140-6736(09)61965-6] [PMID: 20167359]
[34]
Agostini, L.; Martinon, F.; Burns, K.; McDermott, M.F.; Hawkins, P.N.; Tschopp, J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity, 2004, 20(3), 319-325.
[http://dx.doi.org/10.1016/S1074-7613(04)00046-9] [PMID: 15030775]
[35]
Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol., 2009, 7(2), 99-109.
[http://dx.doi.org/10.1038/nrmicro2070] [PMID: 19148178]
[36]
Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, 440(7081), 237-241.
[http://dx.doi.org/10.1038/nature04516] [PMID: 16407889]
[37]
Sutterwala, F.S.; Ogura, Y.; Szczepanik, M.; Lara-Tejero, M.; Lichtenberger, G.S.; Grant, E.P.; Bertin, J.; Coyle, A.J.; Galán, J.E.; Askenase, P.W.; Flavell, R.A. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity, 2006, 24(3), 317-327.
[http://dx.doi.org/10.1016/j.immuni.2006.02.004] [PMID: 16546100]
[38]
Henriksbo, B.D.; Schertzer, J.D. Is immunity a mechanism contributing to statin-induced diabetes? Adipocyte, 2015, 4(4), 232-238.
[http://dx.doi.org/10.1080/21623945.2015.1024394] [PMID: 26451278]
[39]
Jager, J.; Grémeaux, T.; Cormont, M.; Le Marchand-Brustel, Y.; Tanti, J.F. Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology, 2007, 148(1), 241-251.
[http://dx.doi.org/10.1210/en.2006-0692] [PMID: 17038556]
[40]
Lamkanfi, M.; Mueller, J.L.; Vitari, A.C.; Misaghi, S.; Fedorova, A.; Deshayes, K.; Lee, W.P.; Hoffman, H.M.; Dixit, V.M. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J. Cell Biol., 2009, 187(1), 61-70.
[http://dx.doi.org/10.1083/jcb.200903124] [PMID: 19805629]
[41]
Santoro, A.; Ciaglia, E.; Nicolin, V.; Pescatore, A.; Prota, L.; Capunzo, M.; Ursini, M.V.; Nori, S.L.; Bifulco, M. The isoprenoid end product N6-isopentenyladenosine reduces inflammatory response through the inhibition of the NFkappaB and STAT3 pathways in cystic fibrosis cells. Inflamm. Res., 2018, 67(4), 315-326.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy