[1]
Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; Hotchkiss, R.S.; Levy, M.M.; Marshall, J.C.; Martin, G.S.; Opal, S.M.; Rubenfeld, G.D.; van der Poll, T.; Vincent, J.L.; Angus, D.C. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA, 2016, 315(8), 801-810.
[2]
Delano, M.J.; Ward, P.A. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol. Rev., 2016, 274(1), 330-353.
[3]
Goodwin, A.J.; Rice, D.A.; Simpson, K.N.; Ford, D.W. Frequency, cost, and risk factors of readmissions among severe sepsis survivors. Crit. Care Med., 2015, 43(4), 738-746.
[4]
Xu, P.B.; Lou, J.S.; Ren, Y.; Miao, C.H.; Deng, X.M. Gene expression profiling reveals the defining features of monocytes from septic patients with compensatory anti-inflammatory response syndrome. J. Infect., 2012, 65(5), 380-391.
[5]
Unsinger, J.; Kazama, H.; McDonough, J.S.; Hotchkiss, R.S.; Ferguson, T.A. Differential lymphopenia-induced homeostatic proliferation for CD4+ and CD8+ T cells following septic injury. J. Leukoc. Biol., 2009, 85(3), 382-390.
[6]
Benjamim, C.F.; Hogaboam, C.M.; Kunkel, S.L. The chronic consequences of severe sepsis. J. Leukoc. Biol., 2004, 75(3), 408-412.
[7]
Benjamim, C.F.; Ferreira, S.H.; Cunha, F.Q. Role of nitric oxide in the failure of neutrophil migration in sepsis. J. Infect. Dis., 2000, 182(1), 214-223.
[8]
Alves-Filho, J.C.; Freitas, A.; Souto, F.O.; Spiller, F.; Paula-Neto, H.; Silva, J.S.; Gazzinelli, R.T.; Teixeira, M.M.; Ferreira, S.H.; Cunha, F.Q. Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc. Natl. Acad. Sci. USA, 2009, 106(10), 4018-4023.
[9]
Deering, R.P.; Orange, J.S. Development of a clinical assay to evaluate toll-like receptor function. Clin. Vaccine Immunol., 2006, 13(1), 68-76.
[10]
Sakai, K.; Suzuki, H.; Oda, H.; Akaike, T.; Azuma, Y.; Murakami, T.; Sugi, K.; Ito, T.; Ichinose, H.; Koyasu, S.; Shirai, M. Phosphoinositide 3-kinase in nitric oxide synthesis in macrophage: Critical dimerization of inducible nitric-oxide synthase. J. Biol. Chem., 2006, 281(26), 17736-17742.
[11]
Dal Secco, D.; Moreira, A.P.; Freitas, A.; Silva, J.S.; Rossi, M.A.; Ferreira, S.H.; Cunha, F.Q. Nitric oxide inhibits neutrophil migration by a mechanism dependent on ICAM-1: Role of soluble guanylate cyclase. Nitric Oxide Biol. Chem., 2006, 15(1), 77-86.
[12]
Evron, T.; Daigle, T.L.; Caron, M.G. GRK2: Multiple roles beyond G protein-coupled receptor desensitization. Trends Pharmacol. Sci., 2012, 33(3), 154-164.
[13]
Khandaker, M.H.; Xu, L.; Rahimpour, R.; Mitchell, G.; DeVries, M.E.; Pickering, J.G.; Singhal, S.K.; Feldman, R.D.; Kelvin, D.J. CXCR1 and CXCR2 are rapidly down-modulated by bacterial endotoxin
through a unique agonist-independent, tyrosine kinasedependent
mechanism. J. Immunol., (Baltimore, Md.: 1950), 1998, 161(4), 1930-1938.
[14]
Benjamim, C.F.; Silva, J.S.; Fortes, Z.B.; Oliveira, M.A.; Ferreira, S.H.; Cunha, F.Q. Inhibition of leukocyte rolling by nitric oxide during sepsis leads to reduced migration of active microbicidal neutrophils. Infect. Immun., 2002, 70(7), 3602-3610.
[15]
Paula-Neto, H.A.; Alves-Filho, J.C.; Souto, F.O.; Spiller, F.; Amendola, R.S.; Freitas, A.; Cunha, F.Q.; Barja-Fidalgo, C. Inhibition of guanylyl cyclase restores neutrophil migration and maintains bactericidal activity increasing survival in sepsis. Shock (Augusta, Ga.), 2011, 35(1), 17-27.
[16]
Arraes, S.M.; Freitas, M.S.; da Silva, S.V.; de Paula Neto, H.A.; Alves-Filho, J.C.; Auxiliadora Martins, M.; Basile-Filho, A.; Tavares-Murta, B.M.; Barja-Fidalgo, C.; Cunha, F.Q. Impaired neutrophil chemotaxis in sepsis associates with GRK expression and inhibition of actin assembly and tyrosine phosphorylation. Blood, 2006, 108(9), 2906-2913.
[17]
Tavares-Murta, B.M.; Zaparoli, M.; Ferreira, R.B.; Silva-Vergara, M.L.; Oliveira, C.H.; Murta, E.F.; Ferreira, S.H.; Cunha, F.Q. Failure of neutrophil chemotactic function in septic patients. Crit. Care Med., 2002, 30(5), 1056-1061.
[18]
O'Brien, A.D.; Rosenstreich, D.L.; Scher, I.; Campbell, G.H.; MacDermott, R.P.; Formal, S.B. Genetic control of susceptibility to
Salmonella typhimurium in mice: Role of the LPS gene. J. Immunol.,
(Baltimore, Md. : 1950), 1980, 124(1), 20-24.
[19]
Alves-Filho, J.C.; de Freitas, A.; Russo, M.; Cunha, F.Q. Toll-like receptor 4 signaling leads to neutrophil migration impairment in polymicrobial sepsis. Crit. Care Med., 2006, 34(2), 461-470.
[20]
Opal, S.M.; Laterre, P.F.; Francois, B.; LaRosa, S.P.; Angus, D.C.; Mira, J.P.; Wittebole, X.; Dugernier, T.; Perrotin, D.; Tidswell, M.; Jauregui, L.; Krell, K.; Pachl, J.; Takahashi, T.; Peckelsen, C.; Cordasco, E.; Chang, C.S.; Oeyen, S.; Aikawa, N.; Maruyama, T.; Schein, R.; Kalil, A.C.; Van Nuffelen, M.; Lynn, M.; Rossignol, D.P.; Gogate, J.; Roberts, M.B.; Wheeler, J.L.; Vincent, J.L. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: The ACCESS randomized trial. JAMA, 2013, 309(11), 1154-1162.
[21]
Klesius, P.H.; Chambers, W.H.; Schultz, R.D. Effect of bacterial lipopolysaccharide on bovine polymorphonuclear neutrophil migration in vitro. Vet. Immunol. Immunopathol., 1984, 7(3-4), 239-244.
[22]
Rios-Santos, F.; Alves-Filho, J.C.; Souto, F.O.; Spiller, F.; Freitas, A.; Lotufo, C.M.; Soares, M.B.; Dos Santos, R.R.; Teixeira, M.M.; Cunha, F.Q. Down-regulation of CXCR2 on neutrophils in severe sepsis is mediated by inducible nitric oxide synthase-derived nitric oxide. Am. J. Respir. Crit. Care Med., 2007, 175(5), 490-497.
[23]
Alves-Filho, J.C.; Sonego, F.; Souto, F.O.; Freitas, A.; Verri, W.A., Jr; Auxiliadora-Martins, M.; Basile-Filho, A.; McKenzie, A.N.; Xu, D.; Cunha, F.Q.; Liew, F.Y. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat. Med., 2010, 16(6), 708-712.
[24]
Cummings, C.J.; Martin, T.R.; Frevert, C.W.; Quan, J.M.; Wong, V.A.; Mongovin, S.M.; Hagen, T.R.; Steinberg, K.P.; Goodman, R.B. Expression and function of the chemokine receptors CXCR1 and CXCR2 in sepsis. J. Immunol., (Baltimore, Md. : 1950),, 1999, 162(4), 2341-2346.
[25]
Drifte, G.; Dunn-Siegrist, I.; Tissieres, P.; Pugin, J. Innate immune functions of immature neutrophils in patients with sepsis and severe systemic inflammatory response syndrome. Crit. Care Med., 2013, 41(3), 820-832.
[26]
Ostuni, R.; Natoli, G.; Cassatella, M.A.; Tamassia, N. Epigenetic regulation of neutrophil development and function. Semin. Immunol., 2016, 28(2), 83-93.
[27]
Manz, M.G.; Boettcher, S. Emergency granulopoiesis. Nat. Rev. Immunol., 2014, 14(5), 302-314.
[28]
Branzk, N.; Lubojemska, A.; Hardison, S.E.; Wang, Q.; Gutierrez, M.G.; Brown, G.D.; Papayannopoulos, V. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol., 2014, 15(11), 1017-1025.
[29]
Anzilotti, C.; Pratesi, F.; Tommasi, C.; Migliorini, P. Peptidylarginine deiminase 4 and citrullination in health and disease. Autoimmun. Rev., 2010, 9(3), 158-160.
[30]
Ma, A.C.; Kubes, P. Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J. Thromb. Haemost., 2008, 6(3), 415-420.
[31]
Yipp, B.G.; Kubes, P. NETosis: How vital is it? Blood, 2013, 122(16), 2784-2794.
[32]
Hakkim, A.; Fuchs, T.A.; Martinez, N.E.; Hess, S.; Prinz, H.; Zychlinsky, A.; Waldmann, H. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat. Chem. Biol., 2011, 7(2), 75-77.
[33]
Metzler, K.D.; Goosmann, C.; Lubojemska, A.; Zychlinsky, A.; Papayannopoulos, V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Reports, 2014, 8(3), 883-896.
[34]
Sollberger, G.; Tilley, D.O.; Zychlinsky, A. Neutrophil extracellular traps: The biology of chromatin externalization. Dev. Cell, 2018, 44(5), 542-553.
[35]
Desai, J.; Mulay, S.R.; Nakazawa, D.; Anders, H.J. Matters of life and death. How neutrophils die or survive along NET release and is “NETosis” = necroptosis? Cell. Mol. Life Sci., 2016, 73(11-12), 2211-2219.
[36]
Kenny, E.F.; Herzig, A.; Kruger, R.; Muth, A.; Mondal, S.; Thompson, P.R.; Brinkmann, V.; Bernuth, H.V.; Zychlinsky, A. Diverse stimuli engage different neutrophil extracellular trap pathways. eLife, 2017, 6, e24437.
[37]
Sollberger, G.; Amulic, B.; Zychlinsky, A. Neutrophil extracellular trap formation is independent of de novo gene expression. PLoS One, 2016, 11(6), e0157454.
[38]
Park, S.Y.; Shrestha, S.; Youn, Y.J.; Kim, J.K.; Kim, S.Y.; Kim, H.J.; Park, S.H.; Ahn, W.G.; Kim, S.; Lee, M.G.; Jung, K.S.; Park, Y.B.; Mo, E.K.; Ko, Y.; Lee, S.Y.; Koh, Y.; Park, M.J.; Song, D.K.; Hong, C.W. Autophagy primes neutrophils for neutrophil extracellular trap formation during sepsis. Am. J. Respir. Crit. Care Med., 2017, 196(5), 577-589.
[39]
Meng, W.; Paunel-Gorgulu, A.; Flohe, S.; Hoffmann, A.; Witte, I.; MacKenzie, C.; Baldus, S.E.; Windolf, J.; Logters, T.T. Depletion of neutrophil extracellular traps in vivo results in hypersusceptibility to polymicrobial sepsis in mice. Crit. Care (London, England), 2012, 16(4), R137.
[40]
Saffarzadeh, M.; Juenemann, C.; Queisser, M.A.; Lochnit, G.; Barreto, G.; Galuska, S.P.; Lohmeyer, J.; Preissner, K.T. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: A predominant role of histones. PLoS One, 2012, 7(2), e32366.
[41]
Weber, C. Liver: Neutrophil extracellular traps mediate bacterial liver damage. Nat. Rev. Gastroenterol. Hepatol., 2015, 12(5), 251.
[42]
Xu, J.; Zhang, X.; Pelayo, R.; Monestier, M.; Ammollo, C.T.; Semeraro, F.; Taylor, F.B.; Esmon, N.L.; Lupu, F.; Esmon, C.T. Extracellular histones are major mediators of death in sepsis. Nat. Med., 2009, 15(11), 1318-1321.
[43]
Czaikoski, P.G.; Mota, J.M.; Nascimento, D.C.; Sonego, F.; Castanheira, F.V.; Melo, P.H.; Scortegagna, G.T.; Silva, R.L.; Barroso-Sousa, R.; Souto, F.O.; Pazin-Filho, A.; Figueiredo, F.; Alves-Filho, J.C.; Cunha, F.Q. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS One, 2016, 11(2), e0148142.
[44]
Storisteanu, D.M.; Pocock, J.M.; Cowburn, A.S.; Juss, J.K.; Nadesalingam, A.; Nizet, V.; Chilvers, E.R. Evasion of neutrophil extracellular traps by respiratory pathogens. Am. J. Respir. Cell Mol. Biol., 2017, 56(4), 423-431.
[45]
Yoo, S.; Ha, S.J. Generation of tolerogenic dendritic cells and their therapeutic applications. Immune Netw., 2016, 16(1), 52-60.
[46]
Steinman, R.M.; Banchereau, J. Taking dendritic cells into medicine. Nature, 2007, 449(7161), 419-426.
[47]
Steinman, R.M.; Hawiger, D.; Nussenzweig, M.C. Tolerogenic dendritic cells. Annu. Rev. Immunol., 2003, 21, 685-711.
[48]
Moore, K.W.; de Waal Malefyt, R.; Coffman, R.L.; O’Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol., 2001, 19, 683-765.
[49]
Wakkach, A.; Fournier, N.; Brun, V.; Breittmayer, J.P.; Cottrez, F.; Groux, H. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity, 2003, 18(5), 605-617.
[50]
Domogalla, M.P.; Rostan, P.V.; Raker, V.K.; Steinbrink, K. Tolerance through education: How tolerogenic dendritic cells shape immunity. Front. Immunol., 2017, 8, 1764.
[51]
Reis e Sousa, C. Dendritic cells in a mature age. Nat. Rev. Immunol., 2006, 6(6), 476-483.
[52]
Yamazaki, S.; Iyoda, T.; Tarbell, K.; Olson, K.; Velinzon, K.; Inaba, K.; Steinman, R.M. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med., 2003, 198(2), 235-247.
[53]
Amodio, G.; Renna, M.; Paladino, S.; Venturi, C.; Tacchetti, C.; Moltedo, O.; Franceschelli, S.; Mallardo, M.; Bonatti, S.; Remondelli, P. Endoplasmic reticulum stress reduces the export from the ER and alters the architecture of post-ER compartments. Int. J. Biochem. Cell Biol., 2009, 41(12), 2511-2521.
[54]
Zhu, X.M.; Yao, F.H.; Yao, Y.M.; Dong, N.; Yu, Y.; Sheng, Z.Y. Endoplasmic reticulum stress and its regulator XBP-1 contributes to dendritic cell maturation and activation induced by high mobility group box-1 protein. Int. J. Biochem. Cell Biol., 2012, 44(7), 1097-1105.
[55]
Bravo, R.; Gutierrez, T.; Paredes, F.; Gatica, D.; Rodriguez, A.E.; Pedrozo, Z.; Chiong, M.; Parra, V.; Quest, A.F.; Rothermel, B.A.; Lavandero, S. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics. Int. J. Biochem. Cell Biol., 2012, 44(1), 16-20.
[56]
Benjamim, C.F.; Hogaboam, C.M.; Lukacs, N.W.; Kunkel, S.L. Septic mice are susceptible to pulmonary aspergillosis. Am. J. Pathol., 2003, 163(6), 2605-2617.
[57]
Benjamim, C.F.; Lundy, S.K.; Lukacs, N.W.; Hogaboam, C.M.; Kunkel, S.L. Reversal of long-term sepsis-induced immunosuppression by dendritic cells. Blood, 2005, 105(9), 3588-3595.
[58]
Zhang, L.T.; Yao, Y.M.; Yao, F.H.; Huang, L.F.; Dong, N.; Yu, Y.; Sheng, Z.Y. Association between high-mobility group box-1 protein release and immune function of dendritic cells in thermal injury. J. Interferon Cytokine Res., 2010, 30(7), 487-495.
[59]
Zhu, X.M.; Yao, Y.M.; Liang, H.P.; Xu, S.; Dong, N.; Yu, Y.; Sheng, Z.Y. The effect of high mobility group box-1 protein on splenic dendritic cell maturation in rats. J. Interferon Cytokine Res., 2009, 29(10), 677-686.
[60]
Blanco, P.; Palucka, A.K.; Pascual, V.; Banchereau, J. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev., 2008, 19(1), 41-52.
[61]
Coombes, J.L.; Siddiqui, K.R.; Arancibia-Carcamo, C.V.; Hall, J.; Sun, C.M.; Belkaid, Y.; Powrie, F. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med., 2007, 204(8), 1757-1764.
[62]
Mucida, D.; Park, Y.; Kim, G.; Turovskaya, O.; Scott, I.; Kronenberg, M.; Cheroutre, H. Reciprocal TH17 and regulatory T cell differentiation
mediated by retinoic acid. Science. (New York, N.Y.),, 2007, 317(5835), 256-260.
[63]
Sun, C.M.; Hall, J.A.; Blank, R.B.; Bouladoux, N.; Oukka, M.; Mora, J.R.; Belkaid, Y. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med., 2007, 204(8), 1775-1785.
[64]
Mora, J.R.; Iwata, M.; Eksteen, B.; Song, S.Y.; Junt, T.; Senman, B.; Otipoby, K.L.; Yokota, A.; Takeuchi, H.; Ricciardi-Castagnoli, P.; Rajewsky, K.; Adams, D.H.; von Andrian, U.H. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. gut-homing IgA-secreting B cells by intestinal dendritic cells Science, (New York, N.Y.),, 2006, 314(5802), 1157-1160.
[65]
Iwata, M.; Hirakiyama, A.; Eshima, Y.; Kagechika, H.; Kato, C.; Song, S.Y. Retinoic acid imprints gut-homing specificity on T cells. Immunity, 2004, 21(4), 527-538.
[66]
Laudanski, K. Adoptive transfer of naive dendritic cells in resolving post-sepsis long-term immunosuppression. Med. Hypotheses, 2012, 79(4), 478-480.
[67]
Roquilly, A.; Broquet, A.; Jacqueline, C.; Gautreau, L.; Segain, J.P.; de Coppet, P.; Caillon, J.; Altare, F.; Josien, R.; Asehnoune, K. Toll-like receptor-4 agonist in post-haemorrhage pneumonia: role of dendritic and natural killer cells. Eur. Respir. J., 2013, 42(5), 1365-1378.
[68]
Hotchkiss, R.S.; Tinsley, K.W.; Swanson, P.E.; Grayson, M.H.; Osborne, D.F.; Wagner, T.H.; Cobb, J.P.; Coopersmith, C. Karl,
I.E. Depletion of dendritic cells, but not macrophages, in patients
with sepsis. J. Immunol., (Baltimore, Md.: 1950),, 2002, 168(5), 2493-2500.
[69]
Gautier, E.L.; Huby, T.; Saint-Charles, F.; Ouzilleau, B.; Chapman, M.J.; Lesnik, P. Enhanced dendritic cell survival attenuates
lipopolysaccharide-induced immunosuppression and increases resistance
to lethal endotoxic shock. J. Immunol., (Baltimore, Md 1950), 2008, 180(10), 6941-6946.
[70]
Grimaldi, D.; Louis, S.; Pene, F.; Sirgo, G.; Rousseau, C.; Claessens, Y.E.; Vimeux, L.; Cariou, A.; Mira, J.P.; Hosmalin, A.; Chiche, J.D. Profound and persistent decrease of circulating dendritic cells is associated with ICU-acquired infection in patients with septic shock. Intensive Care Med., 2011, 37(9), 1438-1446.
[71]
Bohannon, J.; Cui, W.; Sherwood, E.; Toliver-Kinsky, T. Dendritic
cell modification of neutrophil responses to infection after burn injury. J. Immunol., (Baltimore, Md.: 1950),, 2010, 185(5), 2847-
2853.
[72]
Toliver-Kinsky, T.E.; Cui, W.; Murphey, E.D.; Lin, C.; Sherwood, E.R. Enhancement of dendritic cell production by fms-like tyrosine
kinase-3 ligand increases the resistance of mice to a burn wound infection. J. Immunol., (Baltimore, Md.: 1950),, 2005, 174(1), 404-
410.
[73]
Toliver-Kinsky, T.E.; Lin, C.Y.; Herndon, D.N.; Sherwood, E.R. Stimulation of hematopoiesis by the Fms-like tyrosine kinase 3 ligand restores bacterial induction of Th1 cytokines in thermally injured mice. Infect. Immun., 2003, 71(6), 3058-3067.
[74]
Na, Y.R.; Je, S.; Seok, S.H. Metabolic features of macrophages in inflammatory diseases and cancer. Cancer Lett., 2018, 413, 46-58.
[75]
Cazalis, M.A.; Friggeri, A.; Cave, L.; Demaret, J.; Barbalat, V.; Cerrato, E.; Lepape, A.; Pachot, A.; Monneret, G.; Venet, F. Decreased
HLA-DR antigen-associated invariant chain (CD74)
mRNA expression predicts mortality after septic shock. Crit. Care,
(London, England),, 2013, 17(6), R287.
[76]
Cheron, A.; Floccard, B.; Allaouchiche, B.; Guignant, C.; Poitevin, F.; Malcus, C.; Crozon, J.; Faure, A.; Guillaume, C.; Marcotte, G.; Vulliez, A.; Monneuse, O.; Monneret, G. Lack of recovery in
monocyte human leukocyte antigen-DR expression is independently
associated with the development of sepsis after major trauma. Crit. Care, (London, England),, 2010, 14(6), R208.
[77]
Landelle, C.; Lepape, A.; Voirin, N.; Tognet, E.; Venet, F.; Bohe, J.; Vanhems, P.; Monneret, G. Low monocyte human leukocyte antigen-DR is independently associated with nosocomial infections after septic shock. Intensive Care Med., 2010, 36(11), 1859-1866.
[78]
Muthu, K.; He, L.K.; Melstrom, K.; Szilagyi, A.; Gamelli, R.L.; Shankar, R. Perturbed bone marrow monocyte development following burn injury and sepsis promote hyporesponsive monocytes. J. Burn Care Res., 2008, 29(1), 12-21.
[79]
Saeed, S.; Quintin, J.; Kerstens, H.H.; Rao, N.A.; Aghajanirefah, A.; Matarese, F.; Cheng, S.C.; Ratter, J.; Berentsen, K.; van der Ent, M.A.; Sharifi, N.; Janssen-Megens, E.M.; Ter Huurne, M.; Mandoli, A.; van Schaik, T.; Ng, A.; Burden, F.; Downes, K.; Frontini, M.; Kumar, V.; Giamarellos-Bourboulis, E.J.; Ouwehand, W.H.; van der Meer, J.W.; Joosten, L.A.; Wijmenga, C.; Martens, J.H.; Xavier, R.J.; Logie, C.; Netea, M.G.; Stunnenberg, H.G. Epigenetic
programming of monocyte-to-macrophage differentiation
and trained innate immunity. Science, (New York, N.Y.),, 2014, 345(6204), 1251086.
[80]
Kockara, A.; Kayatas, M. Renal cell apoptosis and new treatment options in sepsis-induced acute kidney injury. Ren. Fail., 2013, 35(2), 291-294.
[81]
Lotze, M.T.; Tracey, K.J. High-mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal. Nat. Rev. Immunol., 2005, 5(4), 331-342.
[82]
Zhu, X.M.; Yao, Y.M.; Liang, H.P.; Liu, F.; Dong, N.; Yu, Y.; Sheng, Z.Y. Effect of high mobility group box-1 protein on apoptosis of peritoneal macrophages. Arch. Biochem. Biophys., 2009, 492(1-2), 54-61.
[83]
Le Tulzo, Y.; Pangault, C.; Gacouin, A.; Guilloux, V.; Tribut, O.; Amiot, L.; Tattevin, P.; Thomas, R.; Fauchet, R.; Drenou, B. Early
circulating lymphocyte apoptosis in human septic shock is associated
with poor outcome. Shock, (Augusta, Ga.),, 2002, 18(6), 487-
494.
[84]
Menzel, C.L.; Sun, Q.; Loughran, P.A.; Pape, H.C.; Billiar, T.R.; Scott, M.J. Caspase-1 is hepatoprotective during trauma and hemorrhagic
shock by reducing liver injury and inflammation. Mol.
Med., (Cambridge, Mass.),, 2011, 17(9-10), 1031-1038.
[85]
Osuka, A.; Hanschen, M.; Stoecklein, V.; Lederer, J.A. A protective
role for inflammasome activation following injury. Shock,
(Augusta, Ga.),, 2012, 37(1), 47-55.
[86]
Jorgensen, I.; Miao, E.A. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev., 2015, 265(1), 130-142.
[87]
Miao, E.A.; Leaf, I.A.; Treuting, P.M.; Mao, D.P.; Dors, M.; Sarkar, A.; Warren, S.E.; Wewers, M.D.; Aderem, A. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol., 2010, 11(12), 1136-1142.
[88]
Talmadge, J.E.; Gabrilovich, D.I. History of myeloid-derived suppressor cells. Nat. Rev. Cancer, 2013, 13(10), 739-752.
[89]
Ostrand-Rosenberg, S.; Sinha, P. Myeloid-derived suppressor cells:
Linking inflammation and cancer. J. Immunol., (Baltimore, Md.:
1950), 2009, 182(8), 4499-4506.
[90]
Brandau, S.; Trellakis, S.; Bruderek, K.; Schmaltz, D.; Steller, G.; Elian, M.; Suttmann, H.; Schenck, M.; Welling, J.; Zabel, P.; Lang, S. Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J. Leukoc. Biol., 2011, 89(2), 311-317.
[91]
Ochoa, A.C.; Zea, A.H.; Hernandez, C.; Rodriguez, P.C. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin. Cancer Res., 2007, 13(2 Pt 2), 721s-726s.
[92]
Chikamatsu, K.; Sakakura, K.; Toyoda, M.; Takahashi, K.; Yamamoto, T.; Masuyama, K. Immunosuppressive activity of CD14+ HLA-DR- cells in squamous cell carcinoma of the head and neck. Cancer Sci., 2012, 103(6), 976-983.
[93]
Gilbert, K.M.; Thoman, M.; Bauche, K.; Pham, T.; Weigle, W.O. Transforming growth factor-beta 1 induces antigen-specific unresponsiveness in naive T cells. Immunol. Invest., 1997, 26(4), 459-472.
[94]
Wan, Y.Y.; Flavell, R.A. TGF-beta and regulatory T cell in immunity and autoimmunity. J. Clin. Immunol., 2008, 28(6), 647-659.
[95]
Knapp, S.; Thalhammer, F.; Locker, G.J.; Laczika, K.; Hollenstein, U.; Frass, M.; Winkler, S.; Stoiser, B.; Wilfing, A.; Burgmann, H. Prognostic value of MIP-1 alpha, TGF-beta 2, sELAM-1, and sVCAM-1 in patients with gram-positive sepsis. Clin. Immunol. Immunopathol., 1998, 87(2), 139-144.
[96]
Marie, C.; Cavaillon, J.M.; Losser, M.R. Elevated levels of circulating transforming growth factor-beta 1 in patients with the sepsis syndrome. Ann. Intern. Med., 1996, 125(6), 520-521.
[97]
Ochando, J.C.; Chen, S.H. Myeloid-derived suppressor cells in transplantation and cancer. Immunol. Res., 2012, 54(1-3), 275-285.
[98]
Corzo, C.A.; Cotter, M.J.; Cheng, P.; Cheng, F.; Kusmartsev, S.; Sotomayor, E.; Padhya, T.; McCaffrey, T.V.; McCaffrey, J.C.; Gabrilovich, D.I. Mechanism regulating reactive oxygen species in
tumor-induced myeloid-derived suppressor cells. J. Immunol., (Baltimore,
Md.: 1950),, 2009, 182(9), 5693-5701.
[99]
Yang, R.; Cai, Z.; Zhang, Y.; Yutzy, W.H.; Roby, K.F.; Roden, R.B. CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells. Cancer Res., 2006, 66(13), 6807-6815.
[100]
Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol., 2009, 9(3), 162-174.
[101]
Delano, M.J.; Scumpia, P.O.; Weinstein, J.S.; Coco, D.; Nagaraj, S.; Kelly-Scumpia, K.M.; O’Malley, K.A.; Wynn, J.L.; Antonenko, S.; Al-Quran, S.Z.; Swan, R.; Chung, C.S.; Atkinson, M.A.; Ramphal, R.; Gabrilovich, D.I.; Reeves, W.H.; Ayala, A.; Phillips, J.; Laface, D.; Heyworth, P.G.; Clare-Salzler, M.; Moldawer, L.L. MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J. Exp. Med., 2007, 204(6), 1463-1474.
[102]
Sinha, P.; Clements, V.K.; Bunt, S.K.; Albelda, S.M.; Ostrand-Rosenberg, S. Cross-talk between myeloid-derived suppressor cells
and macrophages subverts tumor immunity toward a type 2 response. J. Immunol., (Baltimore, Md.: 1950),, 2007, 179(2), 977-
983.
[103]
Delano, M.J.; Thayer, T.; Gabrilovich, S.; Kelly-Scumpia, K.M.; Winfield, R.D.; Scumpia, P.O.; Cuenca, A.G.; Warner, E.; Wallet, S.M.; Wallet, M.A.; O'Malley, K.A.; Ramphal, R.; Clare-Salzer, M.; Efron, P.A.; Mathews, C.E.; Moldawer, L.L. Sepsis induces
early alterations in innate immunity that impact mortality to secondary
infection. J. Immunol., (Baltimore,
Md.: 1950),, 2011, 186(1), 195-202.
[104]
Noel, G.; Wang, Q.; Osterburg, A.; Schwemberger, S.; James, L.; Haar, L.; Giacalone, N.; Thomas, I.; Ogle, C. A ribonucleotide reductase
inhibitor reverses burn-induced inflammatory defects. Shock, (Augusta, Ga.),, 2010, 34(5), 535-544.
[105]
Sander, L.E.; Sackett, S.D.; Dierssen, U.; Beraza, N.; Linke, R.P.; Muller, M.; Blander, J.M.; Tacke, F.; Trautwein, C. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. J. Exp. Med., 2010, 207(7), 1453-1464.
[106]
Brudecki, L.; Ferguson, D.A.; McCall, C.E.; El Gazzar, M. Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response. Infect. Immun., 2012, 80(6), 2026-2034.
[107]
Derive, M.; Bouazza, Y.; Alauzet, C.; Gibot, S. Myeloid-derived suppressor cells control microbial sepsis. Intensive Care Med., 2012, 38(6), 1040-1049.
[108]
Kusmartsev, S.; Cheng, F.; Yu, B.; Nefedova, Y.; Sotomayor, E.; Lush, R.; Gabrilovich, D. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res., 2003, 63(15), 4441-4449.
[109]
Serafini, P.; Meckel, K.; Kelso, M.; Noonan, K.; Califano, J.; Koch, W.; Dolcetti, L.; Bronte, V.; Borrello, I. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J. Exp. Med., 2006, 203(12), 2691-2702.
[110]
De Santo, C.; Serafini, P.; Marigo, I.; Dolcetti, L.; Bolla, M.; Del Soldato, P.; Melani, C.; Guiducci, C.; Colombo, M.P.; Iezzi, M.; Musiani, P.; Zanovello, P.; Bronte, V. Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc. Natl. Acad. Sci. USA, 2005, 102(11), 4185-4190.
[111]
Zheng, Y.; Xu, M.; Li, X.; Jia, J.; Fan, K.; Lai, G. Cimetidine suppresses lung tumor growth in mice through proapoptosis of myeloid-derived suppressor cells. Mol. Immunol., 2013, 54(1), 74-83.
[112]
Hotchkiss, R.S.; Tinsley, K.W.; Swanson, P.E.; Schmieg, R.E., Jr; Hui, J.J.; Chang, K.C.; Osborne, D.F.; Freeman, B.D.; Cobb, J.P.; Buchman, T.G. Karl, I.E. Sepsis-induced apoptosis causes progressive
profound depletion of B and CD4+ T lymphocytes in humans. J. Immunol., (Baltimore, Md.: 1950),, 2001, 166(11), 6952-
6963.
[113]
Cavaillon, J.M.; Annane, D. Compartmentalization of the inflammatory response in sepsis and SIRS. J. Endotoxin Res., 2006, 12(3), 151-170.
[114]
Wesche-Soldato, D.E.; Chung, C.S.; Gregory, S.H.; Salazar-Mather, T.P.; Ayala, C.A.; Ayala, A. CD8+ T cells promote inflammation and apoptosis in the liver after sepsis: Role of Fas-FasL. Am. J. Pathol., 2007, 171(1), 87-96.
[115]
Arens, C.; Bajwa, S.A.; Koch, C.; Siegler, B.H.; Schneck, E.; Hecker, A.; Weiterer, S.; Lichtenstern, C.; Weigand, M.A.; Uhle, F. Sepsis-induced long-term immune paralysis--results of a descriptive,
explorative study. Crit. Care, (London, England),, 2016, 20, 93.
[116]
Carson, W.F.; Cavassani, K.A.; Dou, Y.; Kunkel, S.L. Epigenetic regulation of immune cell functions during post-septic immunosuppression. Epigenetics, 2011, 6(3), 273-283.
[117]
Condotta, S.A.; Khan, S.H.; Rai, D.; Griffith, T.S.; Badovinac, V.P. Polymicrobial sepsis increases susceptibility to chronic viral infection
and exacerbates CD8+ T cell exhaustion. J. Immunol., (Baltimore,
Md.: 1950),, 2015, 195(1), 116-125.
[118]
Wherry, E.J.; Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol., 2015, 15(8), 486-499.
[119]
Patil, N.K.; Guo, Y.; Luan, L.; Sherwood, E.R. Targeting immune cell checkpoints during sepsis. Int. J. Mol. Sci., 2017, 18(11), 2413.
[120]
Zhang, Y.; Li, J.; Lou, J.; Zhou, Y.; Bo, L.; Zhu, J.; Zhu, K.; Wan, X.; Cai, Z.; Deng, X. Upregulation of programmed death-1 on T
cells and programmed death ligand-1 on monocytes in septic shock
patients. Crit. Care, (London, England),, 2011, 15(1), R70.
[121]
Fife, B.T.; Pauken, K.E.; Eagar, T.N.; Obu, T.; Wu, J.; Tang, Q.; Azuma, M.; Krummel, M.F.; Bluestone, J.A. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat. Immunol., 2009, 10(11), 1185-1192.
[122]
Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev., 2010, 236, 219-242.
[123]
Bardhan, K.; Anagnostou, T.; Boussiotis, V.A. The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front. Immunol., 2016, 7, 550.
[124]
Krummel, M.F.; Allison, J.P. Pillars article: CD28 and CTLA-4
have opposing effects on the response of T cells to stimulation. J.
Immunol., (Baltimore, Md.: 1950),, 2011, 187(7), 3459-3465.
[125]
Walunas, T.L.; Lenschow, D.J.; Bakker, C.Y.; Linsley, P.S.; Freeman, G.J.; Green, J.M.; Thompson, C.B.; Bluestone, J.A. Pillars article:
CTLA-4 can function as a negative regulator of T cell activation. J. Immunol., (Baltimore, Md.: 1950),, 2011, 187(7), 3466-
3474.
[126]
Inoue, S.; Bo, L.; Bian, J.; Unsinger, J.; Chang, K.; Hotchkiss, R.S. Dose-dependent effect of anti-CTLA-4 on survival in sepsis. Shock,
(Augusta, Ga.),, 2011, 36(1), 38-44.
[127]
Zhang, Y.; Yao, Y.M.; Huang, L.F.; Dong, N.; Yu, Y.; Sheng, Z.Y. The potential effect and mechanism of high-mobility group box 1 protein on regulatory T cell-mediated immunosuppression. J. Interferon Cytokine Res., 2011, 31(2), 249-257.
[128]
O’Sullivan, S.T.; Lederer, J.A.; Horgan, A.F.; Chin, D.H.; Mannick, J.A.; Rodrick, M.L. Major injury leads to predominance of the T helper-2 lymphocyte phenotype and diminished interleukin-12 production associated with decreased resistance to infection. Ann. Surg., 1995, 222(4), 482-490 discussion 490-492.
[129]
Smeekens, S.P.; Ng, A.; Kumar, V.; Johnson, M.D.; Plantinga, T.S.; van Diemen, C.; Arts, P.; Verwiel, E.T.; Gresnigt, M.S.; Fransen, K.; van Sommeren, S.; Oosting, M.; Cheng, S.C.; Joosten, L.A.; Hoischen, A.; Kullberg, B.J.; Scott, W.K.; Perfect, J.R.; van der Meer, J.W.; Wijmenga, C.; Netea, M.G.; Xavier, R.J. Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat. Commun., 2013, 4, 1342.
[130]
Schaller, M.; Ito, T.; Allen, R.M.; Kroetz, D.; Kittan, N.; Ptaschinski, C.; Cavassani, K.; Carson, W.F.; Godessart, N.; Grembecka, J.; Cierpicki, T.; Dou, Y.; Kunkel, S.L. Epigenetic regulation of IL-12-dependent T cell proliferation. J. Leukoc. Biol., 2015, 98(4), 601-613.
[131]
Carson, W.F.; Cavassani, K.A.; Ito, T.; Schaller, M.; Ishii, M.; Dou, Y.; Kunkel, S.L. Impaired CD4+ T-cell proliferation and effector function correlates with repressive histone methylation events in a mouse model of severe sepsis. Eur. J. Immunol., 2010, 40(4), 998-1010.
[132]
Mack, V.E.; McCarter, M.D.; Naama, H.A.; Calvano, S.E.; Daly, J.M. Dominance of T-helper 2-type cytokines after severe injury. Arch. Surg., (Chicago, Ill.: 1960),, 1996, 131(12), 1303-1308; discussion
1308-1309.
[133]
T O'Sullivan, S.; Lederer, J.; Horgan, A.; Chin, D.; Mannick, J.;
Rodrick, M. Major injury leads to predominance of the T helper-2
lymphocyte phenotype and diminished interleukin-12 production
associated with decreased resistance to infection. Ann. Surg., 1995, 222(4), 482-490; discussion 490.
[134]
Mukherjee, S.; Allen, R.M.; Lukacs, N.W.; Kunkel, S.L.; Carson, W.F. STAT3-mediated IL-17 production by postseptic T cells ex acerbates viral immunopathology of the lung. Shock, (Augusta,
Ga.),, 2012, 38(5), 515-523.
[135]
Hanschen, M.; Tajima, G.; O’Leary, F.; Hoang, K.; Ikeda, K.; Lederer, J.A. Phospho-flow cytometry based analysis of differences in T cell receptor signaling between regulatory T cells and CD4+ T cells. J. Immunol. Methods, 2012, 376(1-2), 1-12.
[136]
Williams, L.M.; Rudensky, A.Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat. Immunol., 2007, 8(3), 277-284.
[137]
Wan, Y.Y.; Flavell, R.A. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature, 2007, 445(7129), 766-770.
[138]
Brunkow, M.E.; Jeffery, E.W.; Hjerrild, K.A.; Paeper, B.; Clark, L.B.; Yasayko, S.A.; Wilkinson, J.E.; Galas, D.; Ziegler, S.F.; Ramsdell, F. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet., 2001, 27(1), 68-73.
[139]
Buckner, J.H. Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat. Rev. Immunol., 2010, 10(12), 849-859.
[140]
Bluestone, J.A.; Abbas, A.K. Natural versus adaptive regulatory T cells. Nat. Rev. Immunol., 2003, 3(3), 253-257.
[141]
Yao, Y.M.; Huang, L.F. The potential role of regulatory T cells in postburn sepsis. Zhonghua Shao Shang Za Zhi Chin. J. Burns, 2011, 27(2), 81-83.
[142]
Peters, N.; Sacks, D. Immune privilege in sites of chronic infection: Leishmania and regulatory T cells. Immunol. Rev., 2006, 213, 159-179.
[143]
Vignali, D.A.; Collison, L.W.; Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol., 2008, 8(7), 523-532.
[144]
Venet, F.; Chung, C.S.; Kherouf, H.; Geeraert, A.; Malcus, C.; Poitevin, F.; Bohe, J.; Lepape, A.; Ayala, A.; Monneret, G. Increased circulating regulatory T cells (CD4(+)CD25 (+)CD127 (-)) contribute to lymphocyte anergy in septic shock patients. Intensive Care Med., 2009, 35(4), 678-686.
[145]
Cavassani, K.A.; Carson, W.F.; Moreira, A.P.; Wen, H.; Schaller, M.A.; Ishii, M.; Lindell, D.M.; Dou, Y.; Lukacs, N.W.; Keshamouni, V.G.; Hogaboam, C.M.; Kunkel, S.L. The post sepsis-induced expansion and enhanced function of regulatory T cells create an environment to potentiate tumor growth. Blood, 2010, 115(22), 4403-4411.
[146]
Delano, M.J.; Ward, P.A. Sepsis-induced immune dysfunction: Can immune therapies reduce mortality? J. Clin. Invest., 2016, 126(1), 23-31.
[147]
Hotchkiss, R.S.; Monneret, G.; Payen, D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat. Rev. Immunol., 2013, 13(12), 862-874.
[148]
Holtmeier, W.; Kabelitz, D. gammadelta T cells link innate and adaptive immune responses. Chem. Immunol. Allergy, 2005, 86, 151-183.
[149]
Andreu-Ballester, J.C.; Tormo-Calandin, C.; Garcia-Ballesteros, C.; Perez-Griera, J.; Amigo, V.; Almela-Quilis, A.; Ruiz del Castillo, J.; Penarroja-Otero, C.; Ballester, F. Association of gammadelta T cells with disease severity and mortality in septic patients. Clin. Vaccine Immunol., 2013, 20(5), 738-746.
[150]
Tomasello, E.; Bedoui, S. Intestinal innate immune cells in gut homeostasis and immunosurveillance. Immunol. Cell Biol., 2013, 91(3), 201-203.
[151]
Hu, C.K.; Venet, F.; Heffernan, D.S.; Wang, Y.L.; Horner, B.; Huang, X.; Chung, C.S.; Gregory, S.H.; Ayala, A. The role of hepatic
invariant NKT cells in systemic/local inflammation and mortality
during polymicrobial septic shock. J. Immunol., (Baltimore,
Md.: 1950),, 2009, 182(4), 2467-2475.
[152]
Godfrey, D.I.; MacDonald, H.R.; Kronenberg, M.; Smyth, M.J.; Van Kaer, L. NKT cells: What’s in a name? Nat. Rev. Immunol., 2004, 4(3), 231-237.
[153]
Parekh, V.V.; Wilson, M.T.; Olivares-Villagomez, D.; Singh, A.K.; Wu, L.; Wang, C.R.; Joyce, S.; Van Kaer, L. Glycolipid antigen induces long-term natural killer T cell anergy in mice. J. Clin. Invest., 2005, 115(9), 2572-2583.
[154]
Chuang, K.I.; Leung, B.; Hsu, N.; Harris, H.W. Heparin protects against septic mortality via apoE-antagonism. Am. J. Surg., 2011, 202(3), 325-335.
[155]
Mauri, C.; Bosma, A. Immune regulatory function of B cells. Annu. Rev. Immunol., 2012, 30, 221-241.
[156]
Gustave, C.A.; Gossez, M.; Demaret, J.; Rimmele, T.; Lepape, A.; Malcus, C.; Poitevin-Later, F.; Jallades, L.; Textoris, J.; Monneret, G.; Venet, F. Septic shock shapes B cell response toward an exhausted-
like/immunoregulatory profile in patients. J. Immunol.,
(Baltimore, Md.: 1950),, 2018, 200(7), 2418-2425.
[157]
Maecker, H.T.; McCoy, J.P.; Nussenblatt, R. Standardizing immunophenotyping for the human immunology project. Nat. Rev. Immunol., 2012, 12(3), 191-200.
[158]
Zan, H.; Casali, P. Epigenetics of peripheral B-cell differentiation and the antibody response. Front. Immunol., 2015, 6, 631.
[159]
Wang, R.X.; Yu, C.R.; Dambuza, I.M.; Mahdi, R.M.; Dolinska, M.B.; Sergeev, Y.V.; Wingfield, P.T.; Kim, S.H.; Egwuagu, C.E. Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat. Med., 2014, 20(6), 633-641.
[160]
Peng, B.; Ming, Y.; Yang, C. Regulatory B cells: The cutting edge of immune tolerance in kidney transplantation. Cell Death Dis., 2018, 9(2), 109.
[161]
Moir, S.; Fauci, A.S. B-cell exhaustion in HIV infection: The role of immune activation. Curr. Opin. HIV AIDS, 2014, 9(5), 472-477.
[162]
Kardava, L.; Moir, S.; Wang, W.; Ho, J.; Buckner, C.M.; Posada, J.G.; O’Shea, M.A.; Roby, G.; Chen, J.; Sohn, H.W.; Chun, T.W.; Pierce, S.K.; Fauci, A.S. Attenuation of HIV-associated human B cell exhaustion by siRNA downregulation of inhibitory receptors. J. Clin. Invest., 2011, 121(7), 2614-2624.
[163]
Monroe, J.G. Ligand-independent tonic signaling in B-cell receptor function. Curr. Opin. Immunol., 2004, 16(3), 288-295.
[164]
Monserrat, J.; de Pablo, R.; Diaz-Martin, D.; Rodriguez-Zapata, M.; de la Hera, A.; Prieto, A.; Alvarez-Mon, M. Early alterations of B cells in patients with septic shock. Crit. Care (London, England),, 2013, 17(3), R105.
[165]
Weber, G.F.; Chousterman, B.G.; He, S.; Fenn, A.M.; Nairz, M.; Anzai, A.; Brenner, T.; Uhle, F.; Iwamoto, Y.; Robbins, C.S.; Noiret, L.; Maier, S.L.; Zonnchen, T.; Rahbari, N.N.; Scholch, S.; Klotzsche-von Ameln, A.; Chavakis, T.; Weitz, J.; Hofer, S.; Weigand, M.A.; Nahrendorf, M.; Weissleder, R.; Swirski, F.K. Interleukin-
3 amplifies acute inflammation and is a potential therapeutic
target in sepsis. Science, (New York, N.Y.),, 2015, 347(6227), 1260-1265.
[166]
Rauch, P.J.; Chudnovskiy, A.; Robbins, C.S.; Weber, G.F.; Etzrodt, M.; Hilgendorf, I.; Tiglao, E.; Figueiredo, J.L.; Iwamoto, Y.; Theurl, I.; Gorbatov, R.; Waring, M.T.; Chicoine, A.T.; Mouded, M.; Pittet, M.J.; Nahrendorf, M.; Weissleder, R.; Swirski, F.K. Innate
response activator B cells protect against microbial sepsis. Science,
(New York, N.Y.),, 2012, 335(6068), 597-601.
[167]
Serafini, N.; Vosshenrich, C.A.; Di Santo, J.P. Transcriptional regulation of innate lymphoid cell fate. Nat. Rev. Immunol., 2015, 15(7), 415-428.
[168]
Honda, K.; Littman, D.R. The microbiota in adaptive immune homeostasis and disease. Nature, 2016, 535(7610), 75-84.
[169]
Colonna, M. Innate lymphoid cells: Diversity, plasticity, and unique functions in immunity. Immunity, 2018, 48(6), 1104-1117.
[170]
Bar-Ephraim, Y.E.; Mebius, R.E. Innate lymphoid cells in secondary lymphoid organs. Immunol. Rev., 2016, 271(1), 185-199.
[171]
Wang, S.; Xia, P.; Chen, Y.; Qu, Y.; Xiong, Z.; Ye, B.; Du, Y.; Tian, Y.; Yin, Z.; Xu, Z.; Fan, Z. Regulatory innate lymphoid cells control innate intestinal inflammation. Cell, 2017, 171(1), 201-216.e18.
[172]
Finfer, S.; Chittock, D.R.; Su, S.Y.; Blair, D.; Foster, D.; Dhingra, V.; Bellomo, R.; Cook, D.; Dodek, P.; Henderson, W.R.; Hebert, P.C.; Heritier, S.; Heyland, D.K.; McArthur, C.; McDonald, E.; Mitchell, I.; Myburgh, J.A.; Norton, R.; Potter, J.; Robinson, B.G.; Ronco, J.J. Intensive versus conventional glucose control in critically ill patients. N. Engl. J. Med., 2009, 360(13), 1283-1297.
[173]
Sprung, C.L.; Annane, D.; Keh, D.; Moreno, R.; Singer, M.; Freivogel, K.; Weiss, Y.G.; Benbenishty, J.; Kalenka, A.; Forst, H.; Laterre, P.F.; Reinhart, K.; Cuthbertson, B.H.; Payen, D.; Briegel, J. Hydrocortisone therapy for patients with septic shock. N. Engl. J. Med., 2008, 358(2), 111-124.
[174]
Marshall, J.C. Why have clinical trials in sepsis failed? Trends Mol. Med., 2014, 20(4), 195-203.
[175]
Tse, M.T. Trial watch: Sepsis study failure highlights need for trial design rethink. Nat. Rev. Drug Discov., 2013, 12(5), 334.
[176]
Pearce, E.L.; Pearce, E.J. Metabolic pathways in immune cell activation and quiescence. Immunity, 2013, 38(4), 633-643.
[177]
Cheng, S.C.; Scicluna, B.P.; Arts, R.J.; Gresnigt, M.S.; Lachmandas, E.; Giamarellos-Bourboulis, E.J.; Kox, M.; Manjeri, G.R.; Wagenaars, J.A.; Cremer, O.L.; Leentjens, J.; van der Meer, A.J.; van de Veerdonk, F.L.; Bonten, M.J.; Schultz, M.J.; Willems, P.H.; Pickkers, P.; Joosten, L.A.; van der Poll, T.; Netea, M.G. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol., 2016, 17(4), 406-413.
[178]
van Vught, L.A.; Klein Klouwenberg, P.M.; Spitoni, C.; Scicluna, B.P.; Wiewel, M.A.; Horn, J.; Schultz, M.J.; Nurnberg, P.; Bonten, M.J.; Cremer, O.L.; van der Poll, T. Incidence, risk factors, and attributable mortality of secondary infections in the intensive care unit after admission for sepsis. JAMA, 2016, 315(14), 1469-1479.
[179]
De Santa, F.; Narang, V.; Yap, Z.H.; Tusi, B.K.; Burgold, T.; Austenaa, L.; Bucci, G.; Caganova, M.; Notarbartolo, S.; Casola, S.; Testa, G.; Sung, W.K.; Wei, C.L.; Natoli, G. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J., 2009, 28(21), 3341-3352.
[180]
Ishii, M.; Wen, H.; Corsa, C.A.; Liu, T.; Coelho, A.L.; Allen, R.M.; Carson, W.F.; Cavassani, K.A.; Li, X.; Lukacs, N.W.; Hogaboam, C.M.; Dou, Y.; Kunkel, S.L. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood, 2009, 114(15), 3244-3254.
[181]
Unsinger, J.; McGlynn, M.; Kasten, K.R.; Hoekzema, A.S.; Watanabe, E.; Muenzer, J.T.; McDonough, J.S.; Tschoep, J.; Ferguson, T.A.; McDunn, J.E.; Morre, M.; Hildeman, D.A.; Caldwell, C.C.; Hotchkiss, R.S. IL-7 promotes T cell viability, trafficking, and
functionality and improves survival in sepsis. J. Immunol., (Baltimore,
Md.: 1950),, 2010, 184(7), 3768-3779.