Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

LncRNAs: Potential Novel Prognostic and Diagnostic Biomarkers in Colorectal Cancer

Author(s): Narges Dastmalchi , Reza Safaralizadeh* and Mirsaed Miri Nargesi

Volume 27, Issue 30, 2020

Page: [5067 - 5077] Pages: 11

DOI: 10.2174/0929867326666190227230024

Price: $65

Abstract

Background: Long non-coding RNAs (lncRNAs), a type of regulatory RNAs, play a key role in numerous cellular pathways. Ectopic expression of this group of non-coding RNAs has been specified to be involved in numerous diseases. Moreover, the role of lncRNAs in the initiation and development of cancers including colorectal cancer (CRC) has been acknowledged.

Objective: In the present review, the role of lncRNAs as prognostic and diagnostic biomarkers in CRC as well as the molecular mechanisms of their contribution to development of CRC has been addressed.

Results: The presented studies have indicated the ectopic expression of various lncRNAs in CRC. Some lncRNAs which were considered as tumor suppressors were downregulated in the colorectal cancerous tissues compared with healthy controls; however, some with oncogenic effects were upregulated. LncRNAs contribute to tumor development via various molecular mechanisms such as epigenetically controlling the expression of target genes, interacting with miRNAs as their sponge, etc.

Conclusion: LncRNAs that have been recognized as prognostic biomarkers may pave the way for clinical management to offer adjuvant treatments for patients with CRC.

Keywords: Biomarkers, colorectal cancer (CRC), lncRNAs, diagnostic biomarkers in colorectal cancer, CRC, scaffolding factor.

[1]
Wu, S.; Liu, J.; Wang, X.; Li, M.; Chen, Z.; Tang, Y. Aberrant expression of the long non-coding rna ghrlos and its prognostic significance in patients with colorectal cancer. J. Cancer, 2017, 8(19), 4040-4047.
[http://dx.doi.org/10.7150/jca.21304] [PMID: 29187879]
[2]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[3]
Del Cornò, M.; Conti, L.; Gessani, S. Innate lymphocytes in adipose tissue homeostasis and their alterations in obesity and colorectal cancer. Front. Immunol., 2018, 9, 2556.
[http://dx.doi.org/10.3389/fimmu.2018.02556] [PMID: 30455701]
[4]
Yiu, A.J.; Yiu, C.Y. Biomarkers in colorectal cancer. Anticancer Res., 2016, 36(3), 1093-1102.
[PMID: 26977004]
[5]
Shen, X.; Bai, Y.; Luo, B.; Zhou, X. Upregulation of LncRNA BANCR associated with the lymph node metastasis and poor prognosis in colorectal cancer. Biol. Res., 2017, 50(1), 32.
[http://dx.doi.org/10.1186/s40659-017-0136-5] [PMID: 28969673]
[6]
Baratti, D.; Kusamura, S.; Pietrantonio, F.; Guaglio, M.; Niger, M.; Deraco, M. Progress in treatments for colorectal cancer peritoneal metastases during the years 2010-2015. A systematic review. Crit. Rev. Oncol. Hematol., 2016, 100, 209-222.
[http://dx.doi.org/10.1016/j.critrevonc.2016.01.017] [PMID: 26867984]
[7]
Vatandoust, S.; Price, T.J.; Karapetis, C.S. Colorectal cancer: metastases to a single organ. World J. Gastroenterol., 2015, 21(41), 11767-11776.
[http://dx.doi.org/10.3748/wjg.v21.i41.11767] [PMID: 26557001]
[8]
Ma, Z.; Gu, S.; Song, M.; Yan, C.; Hui, B.; Ji, H.; Wang, J.; Zhang, J.; Wang, K.; Zhao, Q. Long non-coding RNA SNHG17 is an unfavourable prognostic factor and promotes cell proliferation by epigenetically silencing P57 in colorectal cancer. Mol. Biosyst., 2017, 13(11), 2350-2361.
[http://dx.doi.org/10.1039/C7MB00280G] [PMID: 28933484]
[9]
Li, J.; Lian, Y.; Yan, C.; Cai, Z.; Ding, J.; Ma, Z.; Peng, P.; Wang, K. Long non-coding RNA FOXP4-AS1 is an unfavourable prognostic factor and regulates proliferation and apoptosis in colorectal cancer. Cell Prolif., 2017, 50(1), e12312.
[http://dx.doi.org/10.1111/cpr.12312] [PMID: 27790757]
[10]
Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; Xue, C.; Marinov, G.K.; Khatun, J.; Williams, B.A.; Zaleski, C.; Rozowsky, J.; Röder, M.; Kokocinski, F.; Abdelhamid, R.F.; Alioto, T.; Antoshechkin, I.; Baer, M.T.; Bar, N.S.; Batut, P.; Bell, K.; Bell, I.; Chakrabortty, S.; Chen, X.; Chrast, J.; Curado, J.; Derrien, T.; Drenkow, J.; Dumais, E.; Dumais, J.; Duttagupta, R.; Falconnet, E.; Fastuca, M.; Fejes-Toth, K.; Ferreira, P.; Foissac, S.; Fullwood, M.J.; Gao, H.; Gonzalez, D.; Gordon, A.; Gunawardena, H.; Howald, C.; Jha, S.; Johnson, R.; Kapranov, P.; King, B.; Kingswood, C.; Luo, O.J.; Park, E.; Persaud, K.; Preall, J.B.; Ribeca, P.; Risk, B.; Robyr, D.; Sammeth, M.; Schaffer, L.; See, L.H.; Shahab, A.; Skancke, J.; Suzuki, A.M.; Takahashi, H.; Tilgner, H.; Trout, D.; Walters, N.; Wang, H.; Wrobel, J.; Yu, Y.; Ruan, X.; Hayashizaki, Y.; Harrow, J.; Gerstein, M.; Hubbard, T.; Reymond, A.; Antonarakis, S.E.; Hannon, G.; Giddings, M.C.; Ruan, Y.; Wold, B.; Carninci, P.; Guigó, R.; Gingeras, T.R. Landscape of transcription in human cells. Nature, 2012, 489(7414), 101-108.
[http://dx.doi.org/10.1038/nature11233] [PMID: 22955620]
[11]
Harrow, J.; Frankish, A.; Gonzalez, J.M.; Tapanari, E.; Diekhans, M.; Kokocinski, F.; Aken, B.L.; Barrell, D.; Zadissa, A.; Searle, S.; Barnes, I.; Bignell, A.; Boychenko, V.; Hunt, T.; Kay, M.; Mukherjee, G.; Rajan, J.; Despacio-Reyes, G.; Saunders, G.; Steward, C.; Harte, R.; Lin, M.; Howald, C.; Tanzer, A.; Derrien, T.; Chrast, J.; Walters, N.; Balasubramanian, S.; Pei, B.; Tress, M.; Rodriguez, J.M.; Ezkurdia, I.; van Baren, J.; Brent, M.; Haussler, D.; Kellis, M.; Valencia, A.; Reymond, A.; Gerstein, M.; Guigó, R.; Hubbard, T.J. GENCODE: the reference human genome annotation for the ENCODE project. Genome Res., 2012, 22(9), 1760-1774.
[http://dx.doi.org/10.1101/gr.135350.111] [PMID: 22955987]
[12]
Wang, R.; Du, L.; Yang, X.; Jiang, X.; Duan, W.; Yan, S.; Xie, Y.; Zhu, Y.; Wang, Q.; Wang, L.; Yang, Y.; Wang, C. Identification of long noncoding RNAs as potential novel diagnosis and prognosis biomarkers in colorectal cancer. J. Cancer Res. Clin. Oncol., 2016, 142(11), 2291-2301.
[http://dx.doi.org/10.1007/s00432-016-2238-9] [PMID: 27591862]
[13]
Blythe, A.J.; Fox, A.H.; Bond, C.S. The ins and outs of lncRNA structure: how, why and what comes next? Biochim. Biophys. Acta, 2016, 1859(1), 46-58.
[http://dx.doi.org/10.1016/j.bbagrm.2015.08.009] [PMID: 26325022]
[14]
Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet., 2011, 12(12), 861-874.
[http://dx.doi.org/10.1038/nrg3074] [PMID: 22094949]
[15]
Wang, R.; Du, L.; Yang, X.; Jiang, X.; Duan, W.; Yan, S.; Xie, Y.; Zhu, Y.; Wang, Q.; Wang, L.; Yang, Y.; Wang, C. Long noncoding RNA BCYRN1 promotes the proliferation of colorectal cancer cells via up-regulating NPR3 expression. J. Cancer Res. Clin. Oncol., 2016, 142(11), 2291-2301.
[http://dx.doi.org/10.1007/s00432-016-2238-9] [PMID: 27591862]
[16]
Yang, Z.; Guo, X.; Li, G.; Shi, Y.; Li, L. Long noncoding RNAs as potential biomarkers in gastric cancer: opportunities and challenges. Cancer Lett., 2016, 371(1), 62-70.
[http://dx.doi.org/10.1016/j.canlet.2015.11.011] [PMID: 26577810]
[17]
Marchese, F.P.; Raimondi, I.; Huarte, M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol., 2017, 18(1), 206.
[http://dx.doi.org/10.1186/s13059-017-1348-2] [PMID: 29084573]
[18]
Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet., 2016, 17(1), 47-62.
[http://dx.doi.org/10.1038/nrg.2015.10] [PMID: 26666209]
[19]
Mao, Y.S.; Sunwoo, H.; Zhang, B.; Spector, D.L. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat. Cell Biol., 2011, 13(1), 95-101.
[http://dx.doi.org/10.1038/ncb2140] [PMID: 21170033]
[20]
Sasaki, Y.T.; Ideue, T.; Sano, M.; Mituyama, T.; Hirose, T. MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc. Natl. Acad. Sci. USA, 2009, 106(8), 2525-2530.
[http://dx.doi.org/10.1073/pnas.0807899106] [PMID: 19188602]
[21]
Spitale, R.C.; Tsai, M.C.; Chang, H.Y. RNA templating the epigenome: long noncoding RNAs as molecular scaffolds. Epigenetics, 2011, 6(5), 539-543.
[http://dx.doi.org/10.4161/epi.6.5.15221] [PMID: 21393997]
[22]
Mohammad, F.; Weissmann, S.; Leblanc, B.; Pandey, D.P.; Højfeldt, J.W.; Comet, I.; Zheng, C.; Johansen, J.V.; Rapin, N.; Porse, B.T.; Tvardovskiy, A.; Jensen, O.N.; Olaciregui, N.G.; Lavarino, C.; Suñol, M.; de Torres, C.; Mora, J.; Carcaboso, A.M.; Helin, K. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat. Med., 2017, 23(4), 483-492.
[http://dx.doi.org/10.1038/nm.4293] [PMID: 28263309]
[23]
He, W.; Cai, Q.; Sun, F.; Zhong, G.; Wang, P.; Liu, H.; Luo, J.; Yu, H.; Huang, J.; Lin, T. linc-UBC1 physically associates with polycomb repressive complex 2 (PRC2) and acts as a negative prognostic factor for lymph node metastasis and survival in bladder cancer. Biochim. Biophys. Acta, 2013, 1832(10), 1528-1537.
[http://dx.doi.org/10.1016/j.bbadis.2013.05.010] [PMID: 23688781]
[24]
Su, J.; Zhang, E.; Han, L.; Yin, D.; Liu, Z.; He, X.; Zhang, Y.; Lin, F.; Lin, Q.; Mao, P.; Mao, W.; Shen, D. Long noncoding RNA BLACAT1 indicates a poor prognosis of colorectal cancer and affects cell proliferation by epigenetically silencing of p15. Cell Death Dis., 2017, 8(3), e2665.
[http://dx.doi.org/10.1038/cddis.2017.83] [PMID: 28277544]
[25]
Ozawa, T.; Matsuyama, T.; Toiyama, Y.; Takahashi, N.; Ishikawa, T.; Uetake, H.; Yamada, Y.; Kusunoki, M.; Calin, G.; Goel, A. CCAT1 and CCAT2 long noncoding RNAs, located within the 8q.24.21 ‘gene desert’, serve as important prognostic biomarkers in colorectal cancer. Ann. Oncol., 2017, 28(8), 1882-1888.
[http://dx.doi.org/10.1093/annonc/mdx248] [PMID: 28838211]
[26]
Bhat, S.A.; Ahmad, S.M.; Mumtaz, P.T.; Malik, A.A.; Dar, M.A.; Urwat, U.; Shah, R.A.; Ganai, N.A. Long non-coding RNAs: mechanism of action and functional utility. Noncoding RNA Res., 2016, 1(1), 43-50.
[http://dx.doi.org/10.1016/j.ncrna.2016.11.002] [PMID: 30159410]
[27]
Seim, I.; Collet, C.; Herington, A.C.; Chopin, L.K. Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts. BMC Genomics, 2007, 8, 298.
[http://dx.doi.org/10.1186/1471-2164-8-298] [PMID: 17727735]
[28]
Nikolopoulos, D.; Theocharis, S.; Kouraklis, G. Ghrelin’s role on gastrointestinal tract cancer. Surg. Oncol., 2010, 19(1), e2-e10.
[http://dx.doi.org/10.1016/j.suronc.2009.02.011] [PMID: 19328680]
[29]
Papotti, M.; Cassoni, P.; Volante, M.; Deghenghi, R.; Muccioli, G.; Ghigo, E. Ghrelin-producing endocrine tumors of the stomach and intestine. J. Clin. Endocrinol. Metab., 2001, 86(10), 5052-5059.
[http://dx.doi.org/10.1210/jcem.86.10.7918] [PMID: 11600584]
[30]
Hirata, H.; Hinoda, Y.; Shahryari, V.; Deng, G.; Nakajima, K.; Tabatabai, Z.L.; Ishii, N.; Dahiya, R. Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Cancer Res., 2015, 75(7), 1322-1331.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2931] [PMID: 25600645]
[31]
Qi, Y.; Ooi, H.S.; Wu, J.; Chen, J.; Zhang, X.; Tan, S.; Yu, Q.; Li, Y.Y.; Kang, Y.; Li, H.; Xiong, Z.; Zhu, T.; Liu, B.; Shao, Z.; Zhao, X. MALAT1 long ncRNA promotes gastric cancer metastasis by suppressing PCDH10. Oncotarget, 2016, 7(11), 12693-12703.
[http://dx.doi.org/10.18632/oncotarget.7281] [PMID: 26871474]
[32]
Li, P.; Zhang, X.; Wang, H.; Wang, L.; Liu, T.; Du, L.; Yang, Y.; Wang, C. MALAT1 is associated with poor response to oxaliplatin-based chemotherapy in colorectal cancer patients and promotes chemoresistance through EZH2. Mol. Cancer Ther., 2017, 16(4), 739-751.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0591] [PMID: 28069878]
[33]
Liu, T.; Han, Z.; Li, H.; Zhu, Y.; Sun, Z.; Zhu, A. LncRNA DLEU1 contributes to colorectal cancer progression via activation of KPNA3. Mol. Cancer, 2018, 17(1), 118.
[http://dx.doi.org/10.1186/s12943-018-0873-2] [PMID: 30098595]
[34]
Lebedeva, S.; Jens, M.; Theil, K.; Schwanhäusser, B.; Selbach, M.; Landthaler, M.; Rajewsky, N. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell, 2011, 43(3), 340-352.
[http://dx.doi.org/10.1016/j.molcel.2011.06.008] [PMID: 21723171]
[35]
Denkert, C.; Koch, I.; von Keyserlingk, N.; Noske, A.; Niesporek, S.; Dietel, M.; Weichert, W. Expression of the ELAV-like protein HuR in human colon cancer: association with tumor stage and cyclooxygenase-2. Mod. Pathol., 2006, 19(9), 1261-1269.
[http://dx.doi.org/10.1038/modpathol.3800645] [PMID: 16799479]
[36]
López de Silanes, I.; Fan, J.; Yang, X.; Zonderman, A.B.; Potapova, O.; Pizer, E.S.; Gorospe, M. Role of the RNA-binding protein HuR in colon carcinogenesis. Oncogene, 2003, 22(46), 7146-7154.
[http://dx.doi.org/10.1038/sj.onc.1206862] [PMID: 14562043]
[37]
Abdelmohsen, K.; Srikantan, S.; Yang, X.; Lal, A.; Kim, H.H.; Kuwano, Y.; Galban, S.; Becker, K.G.; Kamara, D.; de Cabo, R.; Gorospe, M. Ubiquitin-mediated proteolysis of HuR by heat shock. EMBO J., 2009, 28(9), 1271-1282.
[http://dx.doi.org/10.1038/emboj.2009.67] [PMID: 19322201]
[38]
Lan, Y.; Xiao, X.; He, Z.; Luo, Y.; Wu, C.; Li, L.; Song, X. Long noncoding RNA OCC-1 suppresses cell growth through destabilizing HuR protein in colorectal cancer. Nucleic Acids Res., 2018, 46(11), 5809-5821.
[http://dx.doi.org/10.1093/nar/gky214] [PMID: 29931370]
[39]
Shin, S.; Rossow, K.L.; Grande, J.P.; Janknecht, R. Involvement of RNA helicases p68 and p72 in colon cancer. Cancer Res., 2007, 67(16), 7572-7578.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4652] [PMID: 17699760]
[40]
Jacob, J.; Favicchio, R.; Karimian, N.; Mehrabi, M.; Harding, V.; Castellano, L.; Stebbing, J.; Giamas, G. LMTK3 escapes tumour suppressor miRNAs via sequestration of DDX5. Cancer Lett., 2016, 372(1), 137-146.
[http://dx.doi.org/10.1016/j.canlet.2015.12.026] [PMID: 26739063]
[41]
Zhang, M.; Weng, W.; Zhang, Q.; Wu, Y.; Ni, S.; Tan, C.; Xu, M.; Sun, H.; Liu, C.; Wei, P.; Du, X. The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. J. Hematol. Oncol., 2018, 11(1), 113.
[http://dx.doi.org/10.1186/s13045-018-0656-7] [PMID: 30185232]
[42]
Xu, L.; Zhang, Y.; Zhao, Z.; Chen, Z.; Wang, Z.; Xu, S.; Zhang, X.; Liu, T.; Yu, S. The long non-coding RNA CRNDE competed endogenously with miR-205 to promote proliferation and metastasis of melanoma cells by targeting CCL18. Cell Cycle, 2018, 17(18), 2296-2308.
[http://dx.doi.org/10.1080/15384101.2018.1526602] [PMID: 30257602]
[43]
Li, G.; Wang, C.; Wang, Y.; Xu, B.; Zhang, W. LINC00312 represses proliferation and metastasis of colorectal cancer cells by regulation of miR-21. J. Cell. Mol. Med., 2018, 22(11), 5565-5572.
[http://dx.doi.org/10.1111/jcmm.13830] [PMID: 30134003]
[44]
Yoon, J.H.; Abdelmohsen, K.; Gorospe, M. Functional interactions among microRNAs and long noncoding RNAs. Semin. Cell Dev. Biol., 2014, 34, 9-14.
[http://dx.doi.org/10.1016/j.semcdb.2014.05.015] [PMID: 24965208]
[45]
Ito, D.; Yogosawa, S.; Mimoto, R.; Hirooka, S.; Horiuchi, T.; Eto, K.; Yanaga, K.; Yoshida, K. Dual-specificity tyrosine-regulated kinase 2 is a suppressor and potential prognostic marker for liver metastasis of colorectal cancer. Cancer Sci., 2017, 108(8), 1565-1573.
[http://dx.doi.org/10.1111/cas.13280] [PMID: 28502078]
[46]
Wang, Y.; Sun, J.; Wei, X.; Luan, L.; Zeng, X.; Wang, C.; Zhao, W. Decrease of miR-622 expression suppresses migration and invasion by targeting regulation of DYRK2 in colorectal cancer cells. OncoTargets Ther., 2017, 10, 1091-1100.
[http://dx.doi.org/10.2147/OTT.S125724] [PMID: 28260923]
[47]
Zou, Y.; Yao, S.; Chen, X.; Liu, D.; Wang, J.; Yuan, X.; Rao, J.; Xiong, H.; Yu, S.; Yuan, X.; Zhu, F.; Hu, G.; Wang, Y.; Xiong, H. LncRNA OIP5-AS1 regulates radioresistance by targeting DYRK1A through miR-369-3p in colorectal cancer cells. Eur. J. Cell Biol., 2018, 97(5), 369-378.
[http://dx.doi.org/10.1016/j.ejcb.2018.04.005] [PMID: 29773344]
[48]
Lin, J.; Shi, Z.; Yu, Z.; He, Z. LncRNA HIF1A-AS2 positively affects the progression and EMT formation of colorectal cancer through regulating miR-129-5p and DNMT3A. Biomed. Pharmacother., 2018, 98, 433-439.
[http://dx.doi.org/10.1016/j.biopha.2017.12.058] [PMID: 29278853]
[49]
Fang, J.Y.; Richardson, B.C. The MAPK signalling pathways and colorectal cancer. Lancet Oncol., 2005, 6(5), 322-327.
[http://dx.doi.org/10.1016/S1470-2045(05)70168-6] [PMID: 15863380]
[50]
Song, H.; He, P.; Shao, T.; Li, Y.; Li, J.; Zhang, Y. Long non-coding RNA XIST functions as an oncogene in human colorectal cancer by targeting miR-132-3p. J. BUON, 2017, 22(3), 696-703.
[PMID: 28730777]
[51]
Bennett, E.P.; Mandel, U.; Clausen, H.; Gerken, T.A.; Fritz, T.A.; Tabak, L.A. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology, 2012, 22(6), 736-756.
[http://dx.doi.org/10.1093/glycob/cwr182] [PMID: 22183981]
[52]
Stiegelbauer, V.; Vychytilova-Faltejskova, P.; Karbiener, M.; Pehserl, A.M.; Reicher, A.; Resel, M.; Heitzer, E.; Ivan, C.; Bullock, M.; Ling, H.; Deutsch, A.; Wulf-Goldenberg, A.; Adiprasito, J.B.; Stoeger, H.; Haybaeck, J.; Svoboda, M.; Stotz, M.; Hoefler, G.; Slaby, O.; Calin, G.A.; Gerger, A.; Pichler, M. miR-196b-5p regulates colorectal cancer cell migration and metastases through interaction with HOXB7 and GALNT5. Clin. Cancer Res., 2017, 23(17), 5255-5266.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0023] [PMID: 28533224]
[53]
Shan, Y.; Ma, J.; Pan, Y.; Hu, J.; Liu, B.; Jia, L. LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1. Cell Death Dis., 2018, 9(7), 722.
[http://dx.doi.org/10.1038/s41419-018-0759-7] [PMID: 29915311]
[54]
Mu, Y.; Yan, X.; Li, D.; Zhao, D.; Wang, L.; Wang, X.; Gao, D.; Yang, J.; Zhang, H.; Li, Y.; Sun, Y.; Wei, Y.; Zhang, Z.; Chang, X.; Yao, Z.; Tian, S.; Zhang, K.; Terada, L.S.; Ma, Z.; Liu, Z. NUPR1 maintains autolysosomal efflux by activating SNAP25 transcription in cancer cells. Autophagy, 2018, 14(4), 654-670.
[http://dx.doi.org/10.1080/15548627.2017.1338556] [PMID: 29130426]
[55]
Li, J.; Ren, S.; Liu, Y.; Lian, Z.; Dong, B.; Yao, Y.; Xu, Y. Knockdown of NUPR1 inhibits the proliferation of glioblastoma cells via ERK1/2, p38 MAPK and caspase-3. J. Neurooncol., 2017, 132(1), 15-26.
[http://dx.doi.org/10.1007/s11060-016-2337-0] [PMID: 28000106]
[56]
Wang, L.; Jiang, F.; Xia, X.; Zhang, B. LncRNA FAL1 promotes carcinogenesis by regulation of miR-637/NUPR1 pathway in colorectal cancer. Int. J. Biochem. Cell Biol., 2018.
[http://dx.doi.org/10.1016/j.biocel.2018.09.015] [PMID: 30267804]
[57]
Bhardwaj, A.; Singh, H.; Rajapakshe, K.; Tachibana, K.; Ganesan, N.; Pan, Y.; Gunaratne, P.H.; Coarfa, C.; Bedrosian, I. Regulation of miRNA-29c and its downstream pathways in preneoplastic progression of triple-negative breast cancer. Oncotarget, 2017, 8(12), 19645-19660.
[http://dx.doi.org/10.18632/oncotarget.14902] [PMID: 28160548]
[58]
Zhang, M.; Li, Y.; Wang, H.; Yu, W.; Lin, S.; Guo, J. LncRNA SNHG5 affects cell proliferation, metastasis and migration of colorectal cancer through regulating miR-132-3p/CREB5. Cancer Biol. Ther., 2018, 5, 1-13.
[http://dx.doi.org/10.1080/15384047.2018.1537579] [PMID: 30395767]
[59]
Santhanam, A.N.; Baker, A.R.; Hegamyer, G.; Kirschmann, D.A.; Colburn, N.H. Pdcd4 repression of lysyl oxidase inhibits hypoxia-induced breast cancer cell invasion. Oncogene, 2010, 29(27), 3921-3932.
[http://dx.doi.org/10.1038/onc.2010.158] [PMID: 20498644]
[60]
Wang, H.; Li, H.; Zhang, L.; Yang, D. Overexpression of MEG3 sensitizes colorectal cancer cells to oxaliplatin through regulation of miR-141/PDCD4 axis. Biomed. Pharmacother., 2018, 106, 1607-1615.
[http://dx.doi.org/10.1016/j.biopha.2018.07.131] [PMID: 30119236]
[61]
Zhu, Z.; Yu, Z.; Wang, J.; Zhou, L.; Zhang, J.; Yao, B.; Dou, J.; Qiu, Z.; Huang, C. Kruppel-like factor 4 inhibits pancreatic cancer epithelial-to-mesenchymal transition and metastasis by down-regulating Caveolin-1 expression. Cell. Physiol. Biochem., 2018, 46(1), 238-252.
[http://dx.doi.org/10.1159/000488426] [PMID: 29587259]
[62]
Li, S.; Qin, X.; Cui, A.; Wu, W.; Ren, L.; Wang, X. Low expression of KLF17 is associated with tumor invasion in esophageal carcinoma. Int. J. Clin. Exp. Pathol., 2015, 8(9), 11157-11163.
[PMID: 26617836]
[63]
Zhou, J.; Lin, J.; Zhang, H.; Zhu, F.; Xie, R. LncRNA HAND2-AS1 sponging miR-1275 suppresses colorectal cancer progression by upregulating KLF14. Biochem. Biophys. Res. Commun., 2018, 503(3), 1848-1853.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.125] [PMID: 30078677]
[64]
Wang, T.; He, Y.; Zhu, Y.; Chen, M.; Weng, M.; Yang, C.; Zhang, Y.; Ning, N.; Zhao, R.; Yang, W.; Jin, Y.; Li, J.; Redpath, R.J.; Zhang, L.; Jin, X.; Zhong, Z.; Zhang, F.; Wei, Y.; Shen, G.; Wang, D.; Liu, Y.; Wang, G.; Li, X. Comparison of the expression and function of Lin28A and Lin28B in colon cancer. Oncotarget, 2016, 7(48), 79605-79616.
[http://dx.doi.org/10.18632/oncotarget.12869] [PMID: 27793004]
[65]
He, F.; Song, Z.; Chen, H.; Chen, Z.; Yang, P.; Li, W.; Yang, Z.; Zhang, T.; Wang, F.; Wei, J.; Wei, F.; Wang, Q.; Cao, J. Long noncoding RNA PVT1-214 promotes proliferation and invasion of colorectal cancer by stabilizing Lin28 and interacting with miR-128. Oncogene, 2019, 38(2), 164-179.
[http://dx.doi.org/10.1038/s41388-018-0432-8] [PMID: 30076414]
[66]
Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell, 2011, 43(6), 904-914.
[http://dx.doi.org/10.1016/j.molcel.2011.08.018] [PMID: 21925379]
[67]
Qin, S.; Zhu, Y.; Ai, F.; Li, Y.; Bai, B.; Yao, W.; Dong, L. MicroRNA-191 correlates with poor prognosis of colorectal carcinoma and plays multiple roles by targeting tissue inhibitor of metalloprotease 3. Neoplasma, 2014, 61(1), 27-34.
[http://dx.doi.org/10.4149/neo_2014_005] [PMID: 24195505]
[68]
Lin, J.; Tan, X.; Qiu, L.; Huang, L.; Zhou, Y.; Pan, Z.; Liu, R.; Chen, S.; Geng, R.; Wu, J.; Huang, W. Long noncoding RNA BC032913 as a novel therapeutic target for colorectal cancer that suppresses metastasis by upregulating TIMP3. Mol. Ther. Nucleic Acids, 2017, 8, 469-481.
[http://dx.doi.org/10.1016/j.omtn.2017.07.009] [PMID: 28918047]
[69]
Hung, T.; Wang, Y.; Lin, M.F.; Koegel, A.K.; Kotake, Y.; Grant, G.D.; Horlings, H.M.; Shah, N.; Umbricht, C.; Wang, P.; Wang, Y.; Kong, B.; Langerød, A.; Børresen-Dale, A-L.; Kim, S.K.; van de Vijver, M.; Sukumar, S.; Whitfield, M.L.; Kellis, M.; Xiong, Y.; Wong, D.J.; Chang, H.Y. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat. Genet., 2011, 43(7), p.621-629.
[http://dx.doi.org/10.1038/ng.848]]
[70]
Li, X.; Wang, F.; Sun, Y.; Fan, Q.; Cui, G. Expression of long non-coding RNA PANDAR and its prognostic value in colorectal cancer patients. Int. J. Biol. Markers, 2017, 32(2), e218-e223.
[http://dx.doi.org/10.5301/jbm.5000249] [PMID: 28106228]
[71]
Lu, M.; Liu, Z.; Li, B.; Wang, G.; Li, D.; Zhu, Y. The high expression of long non-coding RNA PANDAR indicates a poor prognosis for colorectal cancer and promotes metastasis by EMT pathway. J. Cancer Res. Clin. Oncol., 2017, 143(1), 71-81.
[http://dx.doi.org/10.1007/s00432-016-2252-y] [PMID: 27629879]
[72]
White, B.D.; Chien, A.J.; Dawson, D.W. Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology, 2012, 142(2), 219-232.
[http://dx.doi.org/10.1053/j.gastro.2011.12.001] [PMID: 22155636]
[73]
Yu, J.; Han, Z.; Sun, Z.; Wang, Y.; Zheng, M.; Song, C. LncRNA SLCO4A1-AS1 facilitates growth and metastasis of colorectal cancer through β-catenin-dependent Wnt pathway. J. Exp. Clin. Cancer Res., 2018, 37(1), 222.
[http://dx.doi.org/10.1186/s13046-018-0896-y] [PMID: 30201010]
[74]
Zhang, W.; Yuan, W.; Song, J.; Wang, S.; Gu, X. LncRNA CPS1-IT1 suppresses EMT and metastasis of colorectal cancer by inhibiting hypoxia-induced autophagy through inactivation of HIF-1α. Biochimie, 2018, 144, 21-27.
[http://dx.doi.org/10.1016/j.biochi.2017.10.002] [PMID: 29017924]
[75]
Duffy, M.J. Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? Clin. Chem., 2001, 47(4), 624-630.
[http://dx.doi.org/10.1093/clinchem/47.4.624] [PMID: 11274010]
[76]
Winkle, M.; Kluiver, J.L.; Diepstra, A.; van den Berg, A. Emerging roles for long noncoding RNAs in B-cell development and malignancy. Crit. Rev. Oncol. Hematol., 2017, 120, 77-85.
[http://dx.doi.org/10.1016/j.critrevonc.2017.08.011] [PMID: 29198340]
[77]
Inamura, K. Major tumor suppressor and oncogenic non-coding RNAs: clinical relevance in lung cancer. Cells, 2017, 6(2), E12.
[http://dx.doi.org/10.3390/cells6020012] [PMID: 28486418]
[78]
Bolha, L.; Ravnik-Glavač, M.; Glavač, D. Long noncoding RNAs as biomarkers in cancer. Dis. Markers, 2017.20177243968
[http://dx.doi.org/10.1155/2017/7243968] [PMID: 28634418]
[79]
Droop, J.; Szarvas, T.; Schulz, W.A.; Niedworok, C.; Niegisch, G.; Scheckenbach, K.; Hoffmann, M.J. Diagnostic and prognostic value of long noncoding RNAs as biomarkers in urothelial carcinoma. PLoS One, 2017, 12(4), e0176287.
[http://dx.doi.org/10.1371/journal.pone.0176287] [PMID: 28430799]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy