Review Article

LncRNAs:在结直肠癌中潜在的新型预后和诊断生物标志物。

卷 27, 期 30, 2020

页: [5067 - 5077] 页: 11

弟呕挨: 10.2174/0929867326666190227230024

价格: $65

摘要

背景:长非编码RNA(lncRNA)是一种调节性RNA,在众多细胞途径中起关键作用。 已指定这组非编码RNA的异位表达与多种疾病有关。 此外,已经确认lncRNA在包括结直肠癌(CRC)的癌症的引发和发展中的作用。 目的:在本综述中,lncRNAs作为CRC中预后和诊断生物标志物的作用以及其对CRC形成的贡献的分子机制已得到解决。 结果:目前的研究表明CRC中各种lncRNA的异位表达。 与健康对照组相比,一些被认为是抑癌基因的lncRNA在大肠癌组织中被下调。 然而,一些具有致癌作用的基因被上调。 LncRNA通过多种分子机制(例如表观遗传学控制靶基因的表达,与miRNA作为其海绵相互作用)来促进肿瘤的发展。 结论:已被认为是预后生物标志物的LncRNA可能为临床管理铺平道路,为CRC患者提供辅助治疗。

关键词: 生物标志物,结直肠癌(CRC),lncRNA,结直肠癌的诊断性生物标志物,CRC,支架因子。

[1]
Wu, S.; Liu, J.; Wang, X.; Li, M.; Chen, Z.; Tang, Y. Aberrant expression of the long non-coding rna ghrlos and its prognostic significance in patients with colorectal cancer. J. Cancer, 2017, 8(19), 4040-4047.
[http://dx.doi.org/10.7150/jca.21304] [PMID: 29187879]
[2]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[3]
Del Cornò, M.; Conti, L.; Gessani, S. Innate lymphocytes in adipose tissue homeostasis and their alterations in obesity and colorectal cancer. Front. Immunol., 2018, 9, 2556.
[http://dx.doi.org/10.3389/fimmu.2018.02556] [PMID: 30455701]
[4]
Yiu, A.J.; Yiu, C.Y. Biomarkers in colorectal cancer. Anticancer Res., 2016, 36(3), 1093-1102.
[PMID: 26977004]
[5]
Shen, X.; Bai, Y.; Luo, B.; Zhou, X. Upregulation of LncRNA BANCR associated with the lymph node metastasis and poor prognosis in colorectal cancer. Biol. Res., 2017, 50(1), 32.
[http://dx.doi.org/10.1186/s40659-017-0136-5] [PMID: 28969673]
[6]
Baratti, D.; Kusamura, S.; Pietrantonio, F.; Guaglio, M.; Niger, M.; Deraco, M. Progress in treatments for colorectal cancer peritoneal metastases during the years 2010-2015. A systematic review. Crit. Rev. Oncol. Hematol., 2016, 100, 209-222.
[http://dx.doi.org/10.1016/j.critrevonc.2016.01.017] [PMID: 26867984]
[7]
Vatandoust, S.; Price, T.J.; Karapetis, C.S. Colorectal cancer: metastases to a single organ. World J. Gastroenterol., 2015, 21(41), 11767-11776.
[http://dx.doi.org/10.3748/wjg.v21.i41.11767] [PMID: 26557001]
[8]
Ma, Z.; Gu, S.; Song, M.; Yan, C.; Hui, B.; Ji, H.; Wang, J.; Zhang, J.; Wang, K.; Zhao, Q. Long non-coding RNA SNHG17 is an unfavourable prognostic factor and promotes cell proliferation by epigenetically silencing P57 in colorectal cancer. Mol. Biosyst., 2017, 13(11), 2350-2361.
[http://dx.doi.org/10.1039/C7MB00280G] [PMID: 28933484]
[9]
Li, J.; Lian, Y.; Yan, C.; Cai, Z.; Ding, J.; Ma, Z.; Peng, P.; Wang, K. Long non-coding RNA FOXP4-AS1 is an unfavourable prognostic factor and regulates proliferation and apoptosis in colorectal cancer. Cell Prolif., 2017, 50(1), e12312.
[http://dx.doi.org/10.1111/cpr.12312] [PMID: 27790757]
[10]
Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; Xue, C.; Marinov, G.K.; Khatun, J.; Williams, B.A.; Zaleski, C.; Rozowsky, J.; Röder, M.; Kokocinski, F.; Abdelhamid, R.F.; Alioto, T.; Antoshechkin, I.; Baer, M.T.; Bar, N.S.; Batut, P.; Bell, K.; Bell, I.; Chakrabortty, S.; Chen, X.; Chrast, J.; Curado, J.; Derrien, T.; Drenkow, J.; Dumais, E.; Dumais, J.; Duttagupta, R.; Falconnet, E.; Fastuca, M.; Fejes-Toth, K.; Ferreira, P.; Foissac, S.; Fullwood, M.J.; Gao, H.; Gonzalez, D.; Gordon, A.; Gunawardena, H.; Howald, C.; Jha, S.; Johnson, R.; Kapranov, P.; King, B.; Kingswood, C.; Luo, O.J.; Park, E.; Persaud, K.; Preall, J.B.; Ribeca, P.; Risk, B.; Robyr, D.; Sammeth, M.; Schaffer, L.; See, L.H.; Shahab, A.; Skancke, J.; Suzuki, A.M.; Takahashi, H.; Tilgner, H.; Trout, D.; Walters, N.; Wang, H.; Wrobel, J.; Yu, Y.; Ruan, X.; Hayashizaki, Y.; Harrow, J.; Gerstein, M.; Hubbard, T.; Reymond, A.; Antonarakis, S.E.; Hannon, G.; Giddings, M.C.; Ruan, Y.; Wold, B.; Carninci, P.; Guigó, R.; Gingeras, T.R. Landscape of transcription in human cells. Nature, 2012, 489(7414), 101-108.
[http://dx.doi.org/10.1038/nature11233] [PMID: 22955620]
[11]
Harrow, J.; Frankish, A.; Gonzalez, J.M.; Tapanari, E.; Diekhans, M.; Kokocinski, F.; Aken, B.L.; Barrell, D.; Zadissa, A.; Searle, S.; Barnes, I.; Bignell, A.; Boychenko, V.; Hunt, T.; Kay, M.; Mukherjee, G.; Rajan, J.; Despacio-Reyes, G.; Saunders, G.; Steward, C.; Harte, R.; Lin, M.; Howald, C.; Tanzer, A.; Derrien, T.; Chrast, J.; Walters, N.; Balasubramanian, S.; Pei, B.; Tress, M.; Rodriguez, J.M.; Ezkurdia, I.; van Baren, J.; Brent, M.; Haussler, D.; Kellis, M.; Valencia, A.; Reymond, A.; Gerstein, M.; Guigó, R.; Hubbard, T.J. GENCODE: the reference human genome annotation for the ENCODE project. Genome Res., 2012, 22(9), 1760-1774.
[http://dx.doi.org/10.1101/gr.135350.111] [PMID: 22955987]
[12]
Wang, R.; Du, L.; Yang, X.; Jiang, X.; Duan, W.; Yan, S.; Xie, Y.; Zhu, Y.; Wang, Q.; Wang, L.; Yang, Y.; Wang, C. Identification of long noncoding RNAs as potential novel diagnosis and prognosis biomarkers in colorectal cancer. J. Cancer Res. Clin. Oncol., 2016, 142(11), 2291-2301.
[http://dx.doi.org/10.1007/s00432-016-2238-9] [PMID: 27591862]
[13]
Blythe, A.J.; Fox, A.H.; Bond, C.S. The ins and outs of lncRNA structure: how, why and what comes next? Biochim. Biophys. Acta, 2016, 1859(1), 46-58.
[http://dx.doi.org/10.1016/j.bbagrm.2015.08.009] [PMID: 26325022]
[14]
Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet., 2011, 12(12), 861-874.
[http://dx.doi.org/10.1038/nrg3074] [PMID: 22094949]
[15]
Wang, R.; Du, L.; Yang, X.; Jiang, X.; Duan, W.; Yan, S.; Xie, Y.; Zhu, Y.; Wang, Q.; Wang, L.; Yang, Y.; Wang, C. Long noncoding RNA BCYRN1 promotes the proliferation of colorectal cancer cells via up-regulating NPR3 expression. J. Cancer Res. Clin. Oncol., 2016, 142(11), 2291-2301.
[http://dx.doi.org/10.1007/s00432-016-2238-9] [PMID: 27591862]
[16]
Yang, Z.; Guo, X.; Li, G.; Shi, Y.; Li, L. Long noncoding RNAs as potential biomarkers in gastric cancer: opportunities and challenges. Cancer Lett., 2016, 371(1), 62-70.
[http://dx.doi.org/10.1016/j.canlet.2015.11.011] [PMID: 26577810]
[17]
Marchese, F.P.; Raimondi, I.; Huarte, M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol., 2017, 18(1), 206.
[http://dx.doi.org/10.1186/s13059-017-1348-2] [PMID: 29084573]
[18]
Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet., 2016, 17(1), 47-62.
[http://dx.doi.org/10.1038/nrg.2015.10] [PMID: 26666209]
[19]
Mao, Y.S.; Sunwoo, H.; Zhang, B.; Spector, D.L. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat. Cell Biol., 2011, 13(1), 95-101.
[http://dx.doi.org/10.1038/ncb2140] [PMID: 21170033]
[20]
Sasaki, Y.T.; Ideue, T.; Sano, M.; Mituyama, T.; Hirose, T. MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc. Natl. Acad. Sci. USA, 2009, 106(8), 2525-2530.
[http://dx.doi.org/10.1073/pnas.0807899106] [PMID: 19188602]
[21]
Spitale, R.C.; Tsai, M.C.; Chang, H.Y. RNA templating the epigenome: long noncoding RNAs as molecular scaffolds. Epigenetics, 2011, 6(5), 539-543.
[http://dx.doi.org/10.4161/epi.6.5.15221] [PMID: 21393997]
[22]
Mohammad, F.; Weissmann, S.; Leblanc, B.; Pandey, D.P.; Højfeldt, J.W.; Comet, I.; Zheng, C.; Johansen, J.V.; Rapin, N.; Porse, B.T.; Tvardovskiy, A.; Jensen, O.N.; Olaciregui, N.G.; Lavarino, C.; Suñol, M.; de Torres, C.; Mora, J.; Carcaboso, A.M.; Helin, K. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat. Med., 2017, 23(4), 483-492.
[http://dx.doi.org/10.1038/nm.4293] [PMID: 28263309]
[23]
He, W.; Cai, Q.; Sun, F.; Zhong, G.; Wang, P.; Liu, H.; Luo, J.; Yu, H.; Huang, J.; Lin, T. linc-UBC1 physically associates with polycomb repressive complex 2 (PRC2) and acts as a negative prognostic factor for lymph node metastasis and survival in bladder cancer. Biochim. Biophys. Acta, 2013, 1832(10), 1528-1537.
[http://dx.doi.org/10.1016/j.bbadis.2013.05.010] [PMID: 23688781]
[24]
Su, J.; Zhang, E.; Han, L.; Yin, D.; Liu, Z.; He, X.; Zhang, Y.; Lin, F.; Lin, Q.; Mao, P.; Mao, W.; Shen, D. Long noncoding RNA BLACAT1 indicates a poor prognosis of colorectal cancer and affects cell proliferation by epigenetically silencing of p15. Cell Death Dis., 2017, 8(3), e2665.
[http://dx.doi.org/10.1038/cddis.2017.83] [PMID: 28277544]
[25]
Ozawa, T.; Matsuyama, T.; Toiyama, Y.; Takahashi, N.; Ishikawa, T.; Uetake, H.; Yamada, Y.; Kusunoki, M.; Calin, G.; Goel, A. CCAT1 and CCAT2 long noncoding RNAs, located within the 8q.24.21 ‘gene desert’, serve as important prognostic biomarkers in colorectal cancer. Ann. Oncol., 2017, 28(8), 1882-1888.
[http://dx.doi.org/10.1093/annonc/mdx248] [PMID: 28838211]
[26]
Bhat, S.A.; Ahmad, S.M.; Mumtaz, P.T.; Malik, A.A.; Dar, M.A.; Urwat, U.; Shah, R.A.; Ganai, N.A. Long non-coding RNAs: mechanism of action and functional utility. Noncoding RNA Res., 2016, 1(1), 43-50.
[http://dx.doi.org/10.1016/j.ncrna.2016.11.002] [PMID: 30159410]
[27]
Seim, I.; Collet, C.; Herington, A.C.; Chopin, L.K. Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts. BMC Genomics, 2007, 8, 298.
[http://dx.doi.org/10.1186/1471-2164-8-298] [PMID: 17727735]
[28]
Nikolopoulos, D.; Theocharis, S.; Kouraklis, G. Ghrelin’s role on gastrointestinal tract cancer. Surg. Oncol., 2010, 19(1), e2-e10.
[http://dx.doi.org/10.1016/j.suronc.2009.02.011] [PMID: 19328680]
[29]
Papotti, M.; Cassoni, P.; Volante, M.; Deghenghi, R.; Muccioli, G.; Ghigo, E. Ghrelin-producing endocrine tumors of the stomach and intestine. J. Clin. Endocrinol. Metab., 2001, 86(10), 5052-5059.
[http://dx.doi.org/10.1210/jcem.86.10.7918] [PMID: 11600584]
[30]
Hirata, H.; Hinoda, Y.; Shahryari, V.; Deng, G.; Nakajima, K.; Tabatabai, Z.L.; Ishii, N.; Dahiya, R. Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Cancer Res., 2015, 75(7), 1322-1331.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2931] [PMID: 25600645]
[31]
Qi, Y.; Ooi, H.S.; Wu, J.; Chen, J.; Zhang, X.; Tan, S.; Yu, Q.; Li, Y.Y.; Kang, Y.; Li, H.; Xiong, Z.; Zhu, T.; Liu, B.; Shao, Z.; Zhao, X. MALAT1 long ncRNA promotes gastric cancer metastasis by suppressing PCDH10. Oncotarget, 2016, 7(11), 12693-12703.
[http://dx.doi.org/10.18632/oncotarget.7281] [PMID: 26871474]
[32]
Li, P.; Zhang, X.; Wang, H.; Wang, L.; Liu, T.; Du, L.; Yang, Y.; Wang, C. MALAT1 is associated with poor response to oxaliplatin-based chemotherapy in colorectal cancer patients and promotes chemoresistance through EZH2. Mol. Cancer Ther., 2017, 16(4), 739-751.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0591] [PMID: 28069878]
[33]
Liu, T.; Han, Z.; Li, H.; Zhu, Y.; Sun, Z.; Zhu, A. LncRNA DLEU1 contributes to colorectal cancer progression via activation of KPNA3. Mol. Cancer, 2018, 17(1), 118.
[http://dx.doi.org/10.1186/s12943-018-0873-2] [PMID: 30098595]
[34]
Lebedeva, S.; Jens, M.; Theil, K.; Schwanhäusser, B.; Selbach, M.; Landthaler, M.; Rajewsky, N. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell, 2011, 43(3), 340-352.
[http://dx.doi.org/10.1016/j.molcel.2011.06.008] [PMID: 21723171]
[35]
Denkert, C.; Koch, I.; von Keyserlingk, N.; Noske, A.; Niesporek, S.; Dietel, M.; Weichert, W. Expression of the ELAV-like protein HuR in human colon cancer: association with tumor stage and cyclooxygenase-2. Mod. Pathol., 2006, 19(9), 1261-1269.
[http://dx.doi.org/10.1038/modpathol.3800645] [PMID: 16799479]
[36]
López de Silanes, I.; Fan, J.; Yang, X.; Zonderman, A.B.; Potapova, O.; Pizer, E.S.; Gorospe, M. Role of the RNA-binding protein HuR in colon carcinogenesis. Oncogene, 2003, 22(46), 7146-7154.
[http://dx.doi.org/10.1038/sj.onc.1206862] [PMID: 14562043]
[37]
Abdelmohsen, K.; Srikantan, S.; Yang, X.; Lal, A.; Kim, H.H.; Kuwano, Y.; Galban, S.; Becker, K.G.; Kamara, D.; de Cabo, R.; Gorospe, M. Ubiquitin-mediated proteolysis of HuR by heat shock. EMBO J., 2009, 28(9), 1271-1282.
[http://dx.doi.org/10.1038/emboj.2009.67] [PMID: 19322201]
[38]
Lan, Y.; Xiao, X.; He, Z.; Luo, Y.; Wu, C.; Li, L.; Song, X. Long noncoding RNA OCC-1 suppresses cell growth through destabilizing HuR protein in colorectal cancer. Nucleic Acids Res., 2018, 46(11), 5809-5821.
[http://dx.doi.org/10.1093/nar/gky214] [PMID: 29931370]
[39]
Shin, S.; Rossow, K.L.; Grande, J.P.; Janknecht, R. Involvement of RNA helicases p68 and p72 in colon cancer. Cancer Res., 2007, 67(16), 7572-7578.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4652] [PMID: 17699760]
[40]
Jacob, J.; Favicchio, R.; Karimian, N.; Mehrabi, M.; Harding, V.; Castellano, L.; Stebbing, J.; Giamas, G. LMTK3 escapes tumour suppressor miRNAs via sequestration of DDX5. Cancer Lett., 2016, 372(1), 137-146.
[http://dx.doi.org/10.1016/j.canlet.2015.12.026] [PMID: 26739063]
[41]
Zhang, M.; Weng, W.; Zhang, Q.; Wu, Y.; Ni, S.; Tan, C.; Xu, M.; Sun, H.; Liu, C.; Wei, P.; Du, X. The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. J. Hematol. Oncol., 2018, 11(1), 113.
[http://dx.doi.org/10.1186/s13045-018-0656-7] [PMID: 30185232]
[42]
Xu, L.; Zhang, Y.; Zhao, Z.; Chen, Z.; Wang, Z.; Xu, S.; Zhang, X.; Liu, T.; Yu, S. The long non-coding RNA CRNDE competed endogenously with miR-205 to promote proliferation and metastasis of melanoma cells by targeting CCL18. Cell Cycle, 2018, 17(18), 2296-2308.
[http://dx.doi.org/10.1080/15384101.2018.1526602] [PMID: 30257602]
[43]
Li, G.; Wang, C.; Wang, Y.; Xu, B.; Zhang, W. LINC00312 represses proliferation and metastasis of colorectal cancer cells by regulation of miR-21. J. Cell. Mol. Med., 2018, 22(11), 5565-5572.
[http://dx.doi.org/10.1111/jcmm.13830] [PMID: 30134003]
[44]
Yoon, J.H.; Abdelmohsen, K.; Gorospe, M. Functional interactions among microRNAs and long noncoding RNAs. Semin. Cell Dev. Biol., 2014, 34, 9-14.
[http://dx.doi.org/10.1016/j.semcdb.2014.05.015] [PMID: 24965208]
[45]
Ito, D.; Yogosawa, S.; Mimoto, R.; Hirooka, S.; Horiuchi, T.; Eto, K.; Yanaga, K.; Yoshida, K. Dual-specificity tyrosine-regulated kinase 2 is a suppressor and potential prognostic marker for liver metastasis of colorectal cancer. Cancer Sci., 2017, 108(8), 1565-1573.
[http://dx.doi.org/10.1111/cas.13280] [PMID: 28502078]
[46]
Wang, Y.; Sun, J.; Wei, X.; Luan, L.; Zeng, X.; Wang, C.; Zhao, W. Decrease of miR-622 expression suppresses migration and invasion by targeting regulation of DYRK2 in colorectal cancer cells. OncoTargets Ther., 2017, 10, 1091-1100.
[http://dx.doi.org/10.2147/OTT.S125724] [PMID: 28260923]
[47]
Zou, Y.; Yao, S.; Chen, X.; Liu, D.; Wang, J.; Yuan, X.; Rao, J.; Xiong, H.; Yu, S.; Yuan, X.; Zhu, F.; Hu, G.; Wang, Y.; Xiong, H. LncRNA OIP5-AS1 regulates radioresistance by targeting DYRK1A through miR-369-3p in colorectal cancer cells. Eur. J. Cell Biol., 2018, 97(5), 369-378.
[http://dx.doi.org/10.1016/j.ejcb.2018.04.005] [PMID: 29773344]
[48]
Lin, J.; Shi, Z.; Yu, Z.; He, Z. LncRNA HIF1A-AS2 positively affects the progression and EMT formation of colorectal cancer through regulating miR-129-5p and DNMT3A. Biomed. Pharmacother., 2018, 98, 433-439.
[http://dx.doi.org/10.1016/j.biopha.2017.12.058] [PMID: 29278853]
[49]
Fang, J.Y.; Richardson, B.C. The MAPK signalling pathways and colorectal cancer. Lancet Oncol., 2005, 6(5), 322-327.
[http://dx.doi.org/10.1016/S1470-2045(05)70168-6] [PMID: 15863380]
[50]
Song, H.; He, P.; Shao, T.; Li, Y.; Li, J.; Zhang, Y. Long non-coding RNA XIST functions as an oncogene in human colorectal cancer by targeting miR-132-3p. J. BUON, 2017, 22(3), 696-703.
[PMID: 28730777]
[51]
Bennett, E.P.; Mandel, U.; Clausen, H.; Gerken, T.A.; Fritz, T.A.; Tabak, L.A. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology, 2012, 22(6), 736-756.
[http://dx.doi.org/10.1093/glycob/cwr182] [PMID: 22183981]
[52]
Stiegelbauer, V.; Vychytilova-Faltejskova, P.; Karbiener, M.; Pehserl, A.M.; Reicher, A.; Resel, M.; Heitzer, E.; Ivan, C.; Bullock, M.; Ling, H.; Deutsch, A.; Wulf-Goldenberg, A.; Adiprasito, J.B.; Stoeger, H.; Haybaeck, J.; Svoboda, M.; Stotz, M.; Hoefler, G.; Slaby, O.; Calin, G.A.; Gerger, A.; Pichler, M. miR-196b-5p regulates colorectal cancer cell migration and metastases through interaction with HOXB7 and GALNT5. Clin. Cancer Res., 2017, 23(17), 5255-5266.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0023] [PMID: 28533224]
[53]
Shan, Y.; Ma, J.; Pan, Y.; Hu, J.; Liu, B.; Jia, L. LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1. Cell Death Dis., 2018, 9(7), 722.
[http://dx.doi.org/10.1038/s41419-018-0759-7] [PMID: 29915311]
[54]
Mu, Y.; Yan, X.; Li, D.; Zhao, D.; Wang, L.; Wang, X.; Gao, D.; Yang, J.; Zhang, H.; Li, Y.; Sun, Y.; Wei, Y.; Zhang, Z.; Chang, X.; Yao, Z.; Tian, S.; Zhang, K.; Terada, L.S.; Ma, Z.; Liu, Z. NUPR1 maintains autolysosomal efflux by activating SNAP25 transcription in cancer cells. Autophagy, 2018, 14(4), 654-670.
[http://dx.doi.org/10.1080/15548627.2017.1338556] [PMID: 29130426]
[55]
Li, J.; Ren, S.; Liu, Y.; Lian, Z.; Dong, B.; Yao, Y.; Xu, Y. Knockdown of NUPR1 inhibits the proliferation of glioblastoma cells via ERK1/2, p38 MAPK and caspase-3. J. Neurooncol., 2017, 132(1), 15-26.
[http://dx.doi.org/10.1007/s11060-016-2337-0] [PMID: 28000106]
[56]
Wang, L.; Jiang, F.; Xia, X.; Zhang, B. LncRNA FAL1 promotes carcinogenesis by regulation of miR-637/NUPR1 pathway in colorectal cancer. Int. J. Biochem. Cell Biol., 2018.
[http://dx.doi.org/10.1016/j.biocel.2018.09.015] [PMID: 30267804]
[57]
Bhardwaj, A.; Singh, H.; Rajapakshe, K.; Tachibana, K.; Ganesan, N.; Pan, Y.; Gunaratne, P.H.; Coarfa, C.; Bedrosian, I. Regulation of miRNA-29c and its downstream pathways in preneoplastic progression of triple-negative breast cancer. Oncotarget, 2017, 8(12), 19645-19660.
[http://dx.doi.org/10.18632/oncotarget.14902] [PMID: 28160548]
[58]
Zhang, M.; Li, Y.; Wang, H.; Yu, W.; Lin, S.; Guo, J. LncRNA SNHG5 affects cell proliferation, metastasis and migration of colorectal cancer through regulating miR-132-3p/CREB5. Cancer Biol. Ther., 2018, 5, 1-13.
[http://dx.doi.org/10.1080/15384047.2018.1537579] [PMID: 30395767]
[59]
Santhanam, A.N.; Baker, A.R.; Hegamyer, G.; Kirschmann, D.A.; Colburn, N.H. Pdcd4 repression of lysyl oxidase inhibits hypoxia-induced breast cancer cell invasion. Oncogene, 2010, 29(27), 3921-3932.
[http://dx.doi.org/10.1038/onc.2010.158] [PMID: 20498644]
[60]
Wang, H.; Li, H.; Zhang, L.; Yang, D. Overexpression of MEG3 sensitizes colorectal cancer cells to oxaliplatin through regulation of miR-141/PDCD4 axis. Biomed. Pharmacother., 2018, 106, 1607-1615.
[http://dx.doi.org/10.1016/j.biopha.2018.07.131] [PMID: 30119236]
[61]
Zhu, Z.; Yu, Z.; Wang, J.; Zhou, L.; Zhang, J.; Yao, B.; Dou, J.; Qiu, Z.; Huang, C. Kruppel-like factor 4 inhibits pancreatic cancer epithelial-to-mesenchymal transition and metastasis by down-regulating Caveolin-1 expression. Cell. Physiol. Biochem., 2018, 46(1), 238-252.
[http://dx.doi.org/10.1159/000488426] [PMID: 29587259]
[62]
Li, S.; Qin, X.; Cui, A.; Wu, W.; Ren, L.; Wang, X. Low expression of KLF17 is associated with tumor invasion in esophageal carcinoma. Int. J. Clin. Exp. Pathol., 2015, 8(9), 11157-11163.
[PMID: 26617836]
[63]
Zhou, J.; Lin, J.; Zhang, H.; Zhu, F.; Xie, R. LncRNA HAND2-AS1 sponging miR-1275 suppresses colorectal cancer progression by upregulating KLF14. Biochem. Biophys. Res. Commun., 2018, 503(3), 1848-1853.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.125] [PMID: 30078677]
[64]
Wang, T.; He, Y.; Zhu, Y.; Chen, M.; Weng, M.; Yang, C.; Zhang, Y.; Ning, N.; Zhao, R.; Yang, W.; Jin, Y.; Li, J.; Redpath, R.J.; Zhang, L.; Jin, X.; Zhong, Z.; Zhang, F.; Wei, Y.; Shen, G.; Wang, D.; Liu, Y.; Wang, G.; Li, X. Comparison of the expression and function of Lin28A and Lin28B in colon cancer. Oncotarget, 2016, 7(48), 79605-79616.
[http://dx.doi.org/10.18632/oncotarget.12869] [PMID: 27793004]
[65]
He, F.; Song, Z.; Chen, H.; Chen, Z.; Yang, P.; Li, W.; Yang, Z.; Zhang, T.; Wang, F.; Wei, J.; Wei, F.; Wang, Q.; Cao, J. Long noncoding RNA PVT1-214 promotes proliferation and invasion of colorectal cancer by stabilizing Lin28 and interacting with miR-128. Oncogene, 2019, 38(2), 164-179.
[http://dx.doi.org/10.1038/s41388-018-0432-8] [PMID: 30076414]
[66]
Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell, 2011, 43(6), 904-914.
[http://dx.doi.org/10.1016/j.molcel.2011.08.018] [PMID: 21925379]
[67]
Qin, S.; Zhu, Y.; Ai, F.; Li, Y.; Bai, B.; Yao, W.; Dong, L. MicroRNA-191 correlates with poor prognosis of colorectal carcinoma and plays multiple roles by targeting tissue inhibitor of metalloprotease 3. Neoplasma, 2014, 61(1), 27-34.
[http://dx.doi.org/10.4149/neo_2014_005] [PMID: 24195505]
[68]
Lin, J.; Tan, X.; Qiu, L.; Huang, L.; Zhou, Y.; Pan, Z.; Liu, R.; Chen, S.; Geng, R.; Wu, J.; Huang, W. Long noncoding RNA BC032913 as a novel therapeutic target for colorectal cancer that suppresses metastasis by upregulating TIMP3. Mol. Ther. Nucleic Acids, 2017, 8, 469-481.
[http://dx.doi.org/10.1016/j.omtn.2017.07.009] [PMID: 28918047]
[69]
Hung, T.; Wang, Y.; Lin, M.F.; Koegel, A.K.; Kotake, Y.; Grant, G.D.; Horlings, H.M.; Shah, N.; Umbricht, C.; Wang, P.; Wang, Y.; Kong, B.; Langerød, A.; Børresen-Dale, A-L.; Kim, S.K.; van de Vijver, M.; Sukumar, S.; Whitfield, M.L.; Kellis, M.; Xiong, Y.; Wong, D.J.; Chang, H.Y. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat. Genet., 2011, 43(7), p.621-629.
[http://dx.doi.org/10.1038/ng.848]]
[70]
Li, X.; Wang, F.; Sun, Y.; Fan, Q.; Cui, G. Expression of long non-coding RNA PANDAR and its prognostic value in colorectal cancer patients. Int. J. Biol. Markers, 2017, 32(2), e218-e223.
[http://dx.doi.org/10.5301/jbm.5000249] [PMID: 28106228]
[71]
Lu, M.; Liu, Z.; Li, B.; Wang, G.; Li, D.; Zhu, Y. The high expression of long non-coding RNA PANDAR indicates a poor prognosis for colorectal cancer and promotes metastasis by EMT pathway. J. Cancer Res. Clin. Oncol., 2017, 143(1), 71-81.
[http://dx.doi.org/10.1007/s00432-016-2252-y] [PMID: 27629879]
[72]
White, B.D.; Chien, A.J.; Dawson, D.W. Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology, 2012, 142(2), 219-232.
[http://dx.doi.org/10.1053/j.gastro.2011.12.001] [PMID: 22155636]
[73]
Yu, J.; Han, Z.; Sun, Z.; Wang, Y.; Zheng, M.; Song, C. LncRNA SLCO4A1-AS1 facilitates growth and metastasis of colorectal cancer through β-catenin-dependent Wnt pathway. J. Exp. Clin. Cancer Res., 2018, 37(1), 222.
[http://dx.doi.org/10.1186/s13046-018-0896-y] [PMID: 30201010]
[74]
Zhang, W.; Yuan, W.; Song, J.; Wang, S.; Gu, X. LncRNA CPS1-IT1 suppresses EMT and metastasis of colorectal cancer by inhibiting hypoxia-induced autophagy through inactivation of HIF-1α. Biochimie, 2018, 144, 21-27.
[http://dx.doi.org/10.1016/j.biochi.2017.10.002] [PMID: 29017924]
[75]
Duffy, M.J. Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? Clin. Chem., 2001, 47(4), 624-630.
[http://dx.doi.org/10.1093/clinchem/47.4.624] [PMID: 11274010]
[76]
Winkle, M.; Kluiver, J.L.; Diepstra, A.; van den Berg, A. Emerging roles for long noncoding RNAs in B-cell development and malignancy. Crit. Rev. Oncol. Hematol., 2017, 120, 77-85.
[http://dx.doi.org/10.1016/j.critrevonc.2017.08.011] [PMID: 29198340]
[77]
Inamura, K. Major tumor suppressor and oncogenic non-coding RNAs: clinical relevance in lung cancer. Cells, 2017, 6(2), E12.
[http://dx.doi.org/10.3390/cells6020012] [PMID: 28486418]
[78]
Bolha, L.; Ravnik-Glavač, M.; Glavač, D. Long noncoding RNAs as biomarkers in cancer. Dis. Markers, 2017.20177243968
[http://dx.doi.org/10.1155/2017/7243968] [PMID: 28634418]
[79]
Droop, J.; Szarvas, T.; Schulz, W.A.; Niedworok, C.; Niegisch, G.; Scheckenbach, K.; Hoffmann, M.J. Diagnostic and prognostic value of long noncoding RNAs as biomarkers in urothelial carcinoma. PLoS One, 2017, 12(4), e0176287.
[http://dx.doi.org/10.1371/journal.pone.0176287] [PMID: 28430799]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy