Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

General Research Article

Comparative Evaluation of Conventional and Novel Extracts of Stem Bark of Terminalia arjuna for Antihypertensive Activity in BSO Induced Oxidative Stress based Rat Model

Author(s): Sarita Khatkar, Arun Nanda* and Shahid H. Ansari

Volume 20, Issue 2, 2019

Page: [157 - 167] Pages: 11

DOI: 10.2174/1389201020666190222185209

Price: $65

Abstract

Background: Terminalia arjuna (TA) has been reported and explored traditionally for its cardiotonic properties while the mechanism of antihypertensive effect of TA has not been clearly reported.

Method: The oxidative stress is a major cause for hypertension, hence different extracts of TA having variable marker yield were evaluated for their antihypertensive effect in buthionine sulfoxamine (BSO) induced oxidative stress based model. Soxhlet extraction (SE), room temperature extraction (RTE), microwave assisted extraction (MAE), and ultrasound assisted extraction (USAE) were quantitatively estimated for marker compounds arjunolic acid and arjunic acid through HPTLC.

Results: The hypertension was induced using buthionine sulfoxamine (2 mmol/kg b.w. i.p.) and results suggested that the MAE and USAE showed better recovery of systolic blood pressure (110.33±0.10 and 118.33±0.10) and GSH level (3.62±0.07 nmoles/mL and 3.22±0.13 nmoles/mL), respectively as compared to the positive control group treated with ascorbic acid (Systolic BP: 119.67±0.10, GSH level: 3.11±0.10 nmoles/mL). The RTE and SE also showed a decrease in hypertension but were having moderate effect as compared with the standard positive control.

Conclusion: The total percentage yield, the yield of the marker compounds arjunolic and arjunic acid, the IC50 values for antioxidant activity as well as the antihypertensive effect were in order: MAE>USAE>SE>RTE that suggested the role of biomarkers arjunolic acid and arjunic acid in reversing the effect of buthionine sulfoxamine.

Keywords: Soxhlet extraction, room temperature extraction, microwave assisted extraction, ultrasound assisted extraction, buthionine sulfoxamine, oxidative stress, antihypertensive.

Graphical Abstract

[1]
World Health Organization (WHO). A global brief on hypertension: Silent killer. Global Public Health Crisis; , 2013, p. 2-3.
[2]
Hirshfield, S.; Downing, M.J.; Horvath, K.J.; Swartz, J.A.; Chiasson, M.A. Adapting Andersen’s behavioral model of health service use to examine risk factors for hypertension among US MSM. Am. J. Men Health, 2018, 12(4), 788-797.
[3]
Stockl, D.; Ruckert-Eheberg, I.M.; Heier, M.; Peters, A.; Schipf, S.; Krabbe, C. Regional variability of lifestyle factors and hypertension with prediabetes and newly diagnosed type 2 diabetes mellitus: The population-based KORA-F4 and SHIP-TRENDs in Germany. PLoS One, 2016, 11(6), e0156736.
[4]
Ismail, I.M.; Kulkarni, A.G.; Meundi, A.D.; Amruth, M. A community-based comparative study of prevalence and risk factors of hypertension among urban and rural populations in a coastal town of South India. Sifa Med. J., 2016, 3(2), 41-47.
[5]
Bansal, N.; McCulloch, C.E.; Rahman, M.; Kusek, J.W.; Anderson, A.H.; Xie, D. Blood pressure and risk of all-cause mortality in advanced chronic kidney disease and hemodialysis the chronic renal insufficiency cohort study. Hypertension, 2015, 65(1), 93-100.
[6]
Rosenkranz, S.; Gibbs, J.S.; Wachter, R.; De Marco, T.; Vonk-Noordegraaf, A.; Vachiery, J.L. Left ventricular heart failure and pulmonary hypertension. Eur. Heart J., 2016, 37(12), 942-954.
[7]
Gasecki, D.; Kwarciany, M.; Nyka, W.; Narkiewicz, K. Hypertension, brain damage and cognitive decline. Curr. Hypertens. Rep., 2013, 15(6), 547-558.
[8]
Gong, W.K.; Lu, J.; Wang, F.; Wang, B.; Wang, M.Y.; Huang, H.P. Effects of angiotensin type 2 receptor on secretion of the locus coeruleus in stress-induced hypertension rats. Brain Res. Bull., 2015, 111, 62-68.
[9]
Ribeiro, M.O.; Antunes, E.; de Nucci, G.; Lovisolo, S.M.; Zatz, R. Chronic inhibition of nitric oxide synthesis: A new model of arterial hypertension. Hypertension, 1992, 20(3), 298-303.
[10]
Xiao, L.; Kirabo, A.; Wu, J.; Saleh, M.A.; Zhu, L.; Wang, F. Renal denervation prevents immune cell activation and renal inflammation in angiotensin II–induced hypertension. Circ. Res., 2015, 117(6), 547-557.
[11]
Padmanabhan, S.; Caulfield, M.; Dominiczak, A.F. Genetic and molecular aspects of hypertension. Circ. Res., 2015, 116(6), 937-959.
[12]
Emre, E.; Yuksel, N.; Duruksu, G.; Pirhan, D.; Subasi, C.; Erman, G. Neuroprotective effects of intravitreally transplanted adipose tissue and bone marrow–derived mesenchymal stem cells in an experimental ocular hypertension model. Cytotherapy, 2015, 17(5), 543-559.
[13]
Dobrian, A.D.; Davies, M.J.; Schriver, S.D.; Lauterio, T.J.; Prewitt, R.L. Oxidative stress in a rat model of obesity-induced hypertension. Hypertension, 2001, 37(2), 554-560.
[14]
Ribeiro, T.; Auger, C.; Jabeen, Q.; Silva, G.; Medeiros, I.A.; Boehm, N. Chronic oral intake of a standardized Crataegus extract prevents DOCA-salt-induced hypertension, and alteration of cardiac, vascular and renal structures and functions in rats: Role of oxidative stress. Fundam. Clin. Pharmacol., 2015, 1, 29-31.
[15]
Rathod, P.S.; Patil, P.T. Current trends in prescription pattern of antihypertensive drugs in indoor hypertensive patients in a tertiary care hospital attached to a government medical college of Maharashtra: A retrospective study. Glob. J. Res. Anal, 2016, 5(6), 265-266.
[16]
Rigby, D. Medication in review: Managing hypertension: The pharmacist’s role. AJP. Aust. J. Pharm., 2016, 97(1149), 72-76.
[17]
Whyte, I.; Buckley, N.; Dawson, A. Calcium channel blockers. Medicine., 2016, 44(3), 148-150.
[18]
Al Khaja, K.A.; Sequeira, R.P.; Alkhaja, A.K.; Damanhori, A.H. Antihypertensive drugs and male sexual dysfunction a review of adult hypertension guideline recommendations. J. Cardiovasc. Pharmacol. Ther., 2016, 21(3), 233-244.
[19]
Tully, P.J.; Hanon, O.; Cosh, S.; Tzourio, C. Diuretic antihypertensive drugs and incident dementia risk: A systematic review, meta-analysis and meta-regression of prospective studies. J. Hypertens., 2016, 34(6), 1027-1035.
[20]
Westerlund, A. Central nervous system side-effects with hydrophilic and lipophilic β-blockers. Eur. J. Clin. Pharmacol., 1985, 28(1), 73-76.
[21]
Jariwalla, A.G.; Anderson, E.G. Production of ischaemic cardiac pain by nifedipine. BMJ, 1978, 1(6121), 1181-1182.
[22]
Koller, W.C.; Vetere-Overfield, B. Acute and chronic effects of propranolol and primidone in essential tremor. Neurology, 1989, 39(12), 1587-1589.
[23]
Lerman, L.O.; Textor, S.C. Hypertension in 2015: Resistant hypertension: Impact and evolving treatment options. Nat. Rev. Nephrol., 2016, 12(2), 70-72.
[24]
Olsen, J.H.; Sorensen, H.T.; Friis, S.; McLaughlin, J.K.; Steffensen, F.H.; Nielsen, G.L. Cancer risk in users of calcium channel blockers. Hypertension, 1997, 29(5), 1091-1094.
[25]
Largent, J.A.; Bernstein, L.; Horn-Ross, P.L.; Marshall, S.F.; Neuhausen, S.; Reynolds, P. Hypertension, antihypertensive medication use, and breast cancer risk in the California Teachers Study cohort. Cancer Causes Control, 2010, 21(10), 1615-1624.
[26]
Ronquist, G.; Rodriguez, L.A.; Ruigomez, A.; Johansson, S.; Wallander, M.A.; Frithz, G. Association between captopril, other antihypertensive drugs and risk of prostate cancer. Prostate, 2004, 58(1), 50-56.
[27]
Dangi, S.Y.; Jolly, C.I.; Narayanan, S. Antihypertensive activity of the total alkaloids from the leaves of Moringa oleifera. Pharm. Biol., 2002, 40(2), 144-148.
[28]
Mihailovic-Stanojevic, N.; Belscak-Cvitanovic, A.; Grujic-Milanovic, J.; Ivanov, M.; Jovovic, D.; Bugarski, D. Antioxidant and antihypertensive activity of extract from Thymus serpyllum. in experimental hypertension. Plant Foods Hum. Nutr., 2013, 68(3), 235-240.
[29]
Getiye, Y.; Tolessa, T.; Engidawork, E. Antihypertensive activity of 80% methanol seed extract of Calpurnia aurea (Ait.) Benth. subsp. aurea (Fabaceae) is mediated through calcium antagonism induced vasodilation. J. Ethnopharmacol., 2016, 189, 99-106.
[30]
Ichimura, T.; Yamanaka, A.; Ichiba, T.; Toyokawa, T.; Kamada, Y.; Tamamura, T. Antihypertensive effect of an extract of Passiflora edulis rind in spontaneously hypertensive rats. Biosci. Biotechnol. Biochem., 2006, 70(3), 718-721.
[31]
Wang, T.; Ding, J.; Li, H.; Xiang, J.; Wen, P.; Zhang, Q. Antihypertensive activity of polysaccharide from Crassostrea gigas. Int. J. Biol. Macromol., 2016, 83, 195-197.
[32]
Ronchi, S.N.; Brasil, G.A.; do Nascimento, A.M. de Lima. E.M.; Scherer, R.; Costa, H.B. Phytochemical and in vitro and in vivo biological investigation on the antihypertensive activity of mango leaves (Mangifera indica L.). Ther. Adv. Cardiovasc. Dis., 2015, 9(5), 244-256.
[33]
Mao, L.M.; Qi, X.W.; Hao, J.H.; Liu, H.F.; Xu, Q.H.; Bu, P.L. In vitro, ex vivo and in vivo anti-hypertensive activity of Chrysophyllum cainito L. extract. Int. J. Clin. Exp. Med., 2015, 8(10), 17912-17921.
[34]
Cifuentes, F.; Paredes, A.; Palacios, J.; Munoz, F.; Carvajal, L.; Nwokocha, C.R. Hypotensive and antihypertensive effects of a hydroalcoholic extract from Senecio nutans Sch. Bip. (Compositae) in mice: Chronotropic and negative inotropic effect, a nifedipine-like action. J. Ethnopharmacol., 2016, 179, 367-374.
[35]
Ademiluyi, A.O.; Oboh, G.; Ogunsuyi, O.B.; Oloruntoba, F.M. A comparative study on antihypertensive and antioxidant properties of phenolic extracts from fruit and leaf of some guava (Psidium guajava L.) varieties. Comp. Clin. Pathol., 2016, 25(2), 363-374.
[36]
Alexander, R.W. Hypertension and the pathogenesis of atherosclerosis oxidative stress and the mediation of arterial inflammatory response: A new perspective. Hypertension, 1995, 25(2), 155-161.
[37]
Dikalov, S.I.; Dikalova, A.E. Contribution of mitochondrial oxidative stress to hypertension. Curr. Opin. Nephrol. Hypertens., 2016, 25(2), 73-80.
[38]
Vaziri, N.D.; Wang, X.Q.; Oveisi, F.; Rad, B. Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension, 2000, 36(1), 142-146.
[39]
Ganafa, A.A.; Socci, R.R.; Eatman, D.; Silvestrov, N.; Abukhalaf, I.K.; Bayorh, M.A. Effect of palm oil on oxidative stress-induced hypertension in Sprague-Dawley rats. Am. J. Hypertens., 2002, 15(8), 725-731.
[40]
Ganafa, A.A.; Socci, R.R.; Eatman, D.; Silvestrova, N.; Abukhalaf, I.K.; Bayorh, M.A. Acute inhibition of glutathione biosynthesis alters endothelial function and blood pressure in rats. Eur. J. Pharmacol., 2002, 454(2), 217-223.
[41]
Bayorh, M.A.; Ganafa, A.A.; Socci, R.R.; Eatman, D.; Silvestrov, N.; Abukhalaf, I.K. Effect of losartan on oxidative stress-induced hypertension in Sprague-Dawley rats. Am. J. Hypertens., 2003, 16(5), 387-392.
[42]
Rodriguez-Gomez, I.; Baca, Y.; Moreno, J.M.; Wangensteen, R.; Perez-Abud, R.; Paya, J.A. Role of sympathetic tone in BSO-induced hypertension in mice. Am. J. Hypertens., 2010, 23(8), 882-888.
[43]
Allam, F.; Dao, A.T.; Chugh, G.; Bohat, R.; Jafri, F.; Patki, G. Grape powder supplementation prevents oxidative stress-induced anxiety-like behavior, memory impairment, and high blood pressure in rats. J. Nutr., 2013, 143(6), 835-842.
[44]
Banday, A.A.; Muhammad, A.B.; Fazili, F.R.; Lokhandwala, M. Mechanisms of oxidative stress-induced increase in salt sensitivity and development of hypertension in Sprague-Dawley rats. Hypertension, 2007, 49(3), 664-671.
[45]
Manning, R.D., Jr; Tian, N.; Meng, S. Oxidative stress and antioxidant treatment in hypertension and the associated renal damage. Am. J. Nephrol., 2005, 25(4), 311-317.
[46]
Bharani, A.; Ganguly, A.; Bhargava, K.D. Salutary effect of Terminalia arjuna in patients with severe refractory heart failure. Int. J. Cardiol., 1995, 49(3), 191-199.
[47]
Chaudhari, M.; Mengi, S. Evaluation of phytoconstituents of Terminalia arjuna for wound healing activity in rats. Phytother. Res., 2006, 20(9), 799-805.
[48]
Dwivedi, S. Terminalia arjuna Wight & Arn.- A useful drug for cardiovascular disorders. J. Ethnopharmacol., 2007, 114(2), 114-129.
[49]
Halder, S.; Bharal, N.; Mediratta, P.K.; Kaur, I.; Sharma, K.K. Anti-inflammatory, immunomodulatory and antinociceptive activity of Terminalia arjuna Roxb bark powder in mice and rats. Indian J. Exp. Biol., 2009, 47(7), 577-582.
[50]
Jain, S.; Yadav, P.; Gill, V.; Vasudeva, N.; Singla, N. Terminalia arjuna a sacred medicinal plant: Phytochemical and pharmacological profile. Phytochem. Rev., 2009, 8(2), 491-502.
[51]
Singh, G.; Singh, A.T.; Abraham, A.; Bhat, B.; Mukherjee, A.; Verma, R. Protective effects of Terminalia arjuna against doxorubicin-induced cardiotoxicity. J. Ethnopharmacol., 2008, 117(1), 123-129.
[52]
Colabawalla, H.M. An evaluation of the cardiotonic and other properties of Terminalia arjuna. Indian Heart J., 1951, 3, 205-230.
[53]
Verma, S.K. Bordia, A. Effect of Terminalia arjuna bark (Arjunchhal) in patients of congestive heart failure and hypertension. J. Res. Educ. Indian Med., 1988, 7, 31-36.
[54]
Dwivedi, S.; Chopra, D. Revisiting Terminalia arjuna - an ancient cardiovascular drug. J. Trad. Comp. Med, 2014, 4(4), 224-231.
[55]
Yegnanarayan, R.; Sangle, S.A.; Sirsikar, S.S.; Mitra, D.K. Regression of cardiac hypertrophy in hypertensive patients - comparison of Abana with propranolol. Phytother. Res., 1997, 11(3), 257-259.
[56]
Takahashi, S.; Tanaka, H.; Hano, Y.; Ito, K.; Nomura, T.; Shigenobu, K. Hypotensive effects in rats of hydrophyllic extract from Terminalia arjuna containing tannin-related compounds. Phytother. Res., 1997, 1, 424-427.
[57]
Dwivedi, S.; Udupa, N. Terminalia arjuna: Pharmacognosy, phytochemistry, pharmacology and clinical use. A review. Fitoterapia, 1989, 60(5), 413-420.
[58]
Nammi, S.; Gudavalli, R.; Babu, B.S.; Lodagala, D.S.; Boini, K.M. Possible mechanisms of hypotension produced 70% alcoholic extract of Terminalia arjuna (L.) in anaesthetized dogs. BMC Comp. Alt. Med., 2003, 3(1), 1-4.
[59]
Sultana, B.; Anwar, F.; Przybylski, R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chem., 2007, 104(3), 1106-1114.
[60]
Elsherbiny, N.M.; Eladl, M.A.; Al-Gayyar, M.M. Renal protective effects of arjunolic acid in a cisplatin-induced nephrotoxicity model. Cytokine, 2016, 77, 26-34.
[61]
Manna, P.; Sinha, M.; Sil, P.C. Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid. Arch. Toxicol., 2008, 82(3), 137-149.
[62]
Sun, F.Y.; Chen, X.P.; Wang, J.H.; Qin, H.L.; Yang, S.R.; Du, G.H. Arjunic acid, a strong free radical scavenger from Terminalia arjuna. Am. J. Chin. Med., 2008, 36(01), 197-207.
[63]
Sumitra, M.; Manikandan, P.; Kumar, D.A.; Arutselvan, N.; Balakrishna, K.; Manohar, B.M. Experimental myocardial necrosis in rats: role of arjunolic acid on platelet aggregation, coagulation and antioxidant status. Mol. Cell. Biochem., 2001, 224(12), 135-142.
[64]
Kalola, J.; Rajani, M. Extraction and TLC desitometric determination of triterpenoid acids (Arjungenin, Arjunolic Acid) from Terminalia arjuna stem bark without interference of tannins. Chromagraphia, 2013, 63, 475-481.
[65]
Farah, K.; Adila, P.; Singh, S.; Eijaz Hussain, M.; Fahim, M. Terminalia arjuna improves cardiovascular autonomic neuropathy in streptozotocin-induced diabetic rats. Cardiovasc. Toxicol., 2013, 13, 68-76.
[66]
Karami, Z.; Emam-Djomeh, Z.; Mirzaee, H.A.; Khomeiri, M.; Mahoonak, A.S.; Aydani, E. Optimization of microwave assisted extraction (MAE) and soxhlet extraction of phenolic compound from licorice root. J. Food Sci. Technol., 2015, 52(6), 3242-3253.
[67]
Pharmacopoeia of India, Herbs and Herbal Monographs. (2010). Indian Pharmacopoeial Commission, Ministry of Health and Family Welfare. Govt. of India. New Delhi: 8-9.
[68]
Bondet, V.; Brand-Williams, W.; Berset, C. Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. LT-Food. Sci. Tech., 1997, 30(6), 609-615.
[69]
Novilla Arina Sugihartina, G.; Nawawi, A.; Widowati, W. Antioxidative and antibacterial activities of Indonesian Propolis extracts against methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Cukurova Med. J., 2014, 39(2), 224-233.
[70]
Mohan, M.; Khanam, S.; Shivananda, B.G. Optimization of microwave assisted extraction of andrographolide from Andrographis paniculata and its comparison with refluxation extraction method. J. Pharmacog. Phytochem., 2013, 2(1), 21-29.
[71]
Suleiman, M.M.; Oyelowo, B.B.; Abubakar, A.; Mamman, M.; Bello, K.T. A controlled study to investigate anti-diarrhoeal effect of the stem-bark fractions of Terminalia avicennioides in laboratory animal models. Int. J. Vet. Sci. Med., 2017, 5(1), 14-22.
[72]
Bhat, O.; Kumar, P.U.; Rao, K.R.; Ahmad, A.; Dhawan, V. Terminalia arjuna prevents Interleukin-18-induced atherosclerosis via modulation of NF-κB/PPAR-γ-mediated pathway in Apo E-/- mice. Inflammopharmacology, 2018, 26(2), 583-598.
[73]
Mittal, V.; Nanda, A. Intensification of marrubiin concentration by optimization of microwave-assisted (low CO2yielding) extraction process for Marrubium vulgare using central composite design and antioxidant evaluation. Pharm. Biol., 2017, 55(1), 1337-1347.
[74]
Khatkar, S.; Nanda, A.; Ansari, S.H. Microwave assisted extraction, optimization using central composite design, quantitative estimation of arjunic acid and arjunolic acid using HPTLC and evaluation of radical scavenging potential of stem bark of Terminalia arjuna. Nat. Prod. Sci., 2017, 23(2), 75-83.
[75]
Khatkar, S.; Nanda, A.; Ansari, S.H. Extraction, HPTLC estimation, in silico and in vitro evaluation of α- amylase inhibition potential of stem bark of Terminalia arjuna. Curr. Biomark., 2016, 6(1), 47-53.
[76]
Jyothi, K.S.N.; Hemalatha, P.; Avanthi, A.; Challa, S. A comparative analysis on the alpha amylase inhibitory potential of six ornamental medicinal plants. J. Nat. Prod. Plant Res., 2013, 3(3), 1-6.
[77]
Delazar, A.; Nahar, L.; Hamedeyazdan, S.; Sarker, S.D. Microwave-assisted extraction in natural products isolation. Methods Mol. Biol., 2012, 864, 89-115.
[78]
Hamed, A.; Rouhollah, H.; Hajmiresmail, S.J.; Shahrzad, L.; Hamidreza, P.T.; Omid, A. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J. Mater. Chem. B., 2017, 48, 1-58.
[79]
Amani, H.; Ajami, M.; Maleki, S.N.; Toroudi, H.P.; Daglia, M.; Sokeng, A.J.T.; Lorenzo, A.D.; Nabavi, S.F.; Devi, K.P.; Nabavi, S.M. Targeting signal transducers and activators of transcription (STAT) in human cancer by dietary polyphenolic antioxidants. Biochemie, 2017, 142, 63-79.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy