[1]
Are C, Rajaram S, Are M, Raj H, Anderson BO, Chaluvarya SR, et al. A review of global cancer burden: trends, challenges, strategies and a role for surgeons. J Surg Oncol 2013; 107(2): 221-6.
[2]
Desantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 2014; 64(4): 252-71.
[3]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[4]
Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 2016; 66(4): 271-89.
[5]
Mccormack VA, Boffetta P. Today’s lifestyles, tomorrow’s cancers: Trends in lifestyle risk factors for cancer in low- and middle-income countries. Ann Oncol 2011; 22(11): 2349-57.
[6]
Esmaelbeigi F, Hadji M, Harirchi I, Omranipour R, Rajabpour MV, Zendehdel K. Factors affecting professional delay in diagnosis and treatment of oral cancer in Iran. Arch Iran Med 2014; 17(4): 253-7.
[7]
Bhatia A, Burtness B. Novel molecular targets for chemoprevention in malignancies of the head and neck. Cancers (Basel) 2017; 9(12)E113
[8]
Genden EM, Ferlito A, Silver CE, Takes RP, Suárez C, Owen RP, et al. Contemporary management of cancer of the oral cavity. Eur Arch Otorhinolaryngol 2010; 267(7): 1001-17.
[10]
Parkin DM, Bray F. The burden of HPV-related cancers. Vaccine 2006; 24: S11-25.
[11]
Rousseau A, Badoual C. Head and neck: Squamous cell carcinoma: An overview. Atlas Genet Cytogenet Oncol Haematol 2012; 16(2): 145-55.
[12]
Bagan J, Sarrion G, Jimenez Y. Oral cancer: Clinical features. Oral Oncol 2010; 46(6): 414-7.
[13]
Jones KR, Lodge-Rigal RD, Reddick RL, Tudor GE, Shockley WW. Prognostic factors in the recurrence of stage I and II squamous cell cancer of the oral cavity. Arch Otolaryngol Head Neck Surg 1992; 118(5): 483-5.
[14]
Behura SS, Singh DK, Masthan K, Aravindha BN, Sah S. Chemoprevention of oral cancer: A promising venture. Int J Oral Care Res 2015; 3(2): 80-7.
[15]
Tanaka T, Tanaka M, Tanaka T. Oral carcinogenesis and oral cancer chemoprevention: A review. Pathol Res Int 2011; 2011431246
[16]
Bodhade AS, Dive AM. Chemoprevention of premalignant and malignant lesions of oral cavity: recent trends. Eur J Dent 2013; 7(2): 246-50.
[17]
Jordon VC. Estrogen, selective estrogen receptor modulation and coronary heart disease: Something or nothing. J Natl Cancer Inst 2001; 93(1): 2-4.
[18]
Brown KS, Kane MA. Chemoprevention of squamous cell carcinoma of the oral cavity. Otolaryngol Clin North Am 2006; 39(2): 349-63.
[19]
Day TA, Chi A, Neville B, Hebert JR. Prevention of head and neck cancer. Curr Oncol Rep 2005; 7(2): 145-53.
[20]
Sharma V, Giri S. Cancer control in India- A sorry state. Indian J Cancer 2009; 46(4): 340.
[21]
Tsao AS, Kim ES, Hong WK. Chemoprevention of cancer. CA Cancer J Clin 2004; 54(3): 150-80.
[22]
Queiroz AB, Focchi G, Dobo C, Gomes TS, Ribeiro DA, Oshima CTF. Expression of p27, p21(WAF/Cip1) and p16(INK4a) in normal oral epithelium, oral squamous papilloma and oral squamous cell carcinoma. Anticancer Res 2010; 30(7): 2799-803.
[23]
Kolltveit K, Schreurs O, Østrem J, Søland TM, Khuu C, Berge T, et al. Expression of the T-cell-specificadapter protein in oral epithelium. Eur J Oral Sci 2010; 118(2): 159-67.
[24]
Squier CA, Kremer MJ. Biology of oral mucosa and esophagus. J Natl Cancer Inst Monogr 2001; 29: 7-15.
[25]
Kullaa AM, Asikainen P, Herrala M, Ukkonen H, Mikkonen JJW. Microstructure of oral epithelial cells as an underlying basis for salivary mucosal pellicle. Ultrastruct Pathol 2014; 38(6): 382-6.
[26]
Singh J. Histopathology of oral squamous cell carcinoma-A review. TMU J Dent 2014; 1(4): 141-4.
[27]
Nylander K, Dabelsteen E, Hall PA. The p53 molecule and its prognostic role in squamous cell carcinomas of the head and neck. J Oral Pathol Med 2000; 29(9): 413-25.
[28]
Fronie A, Bunget A, Afrem E, Lucia Preoţescu L, Corlan PD, Streba L, et al. Squamous cell carcinoma of the oral cavity: Clinical and pathological aspects. Rom J Morphol Embryol 2013; 54(2): 343-8.
[29]
Russo FB, Pignatari GC, Fernandes IR, Dias JLRM, Beltrão-Braga PCB. Epithelial cells from oral mucosa: How to cultivate them? Cytotechnology 2016; 68(5): 2105-14.
[30]
Laffargue F, Bourthoumieu S, Bellanné-Chantelot C, Guigonis V, Yardin C. Could fish on buccal smears become a new method of screening in children suspect of HNF1B anomaly? Eur J Med Genet 2013; 56(2): 93-7.
[31]
Nagpal R, Nagpal N, Mehendiratta M, Marya CM, Rekhi A. Usage of betel quid, areca nut, tobacco, alcohol and level of awareness towards their adverse effects on health in a north Indian rural population. Oral Health Dent Manag 2014; 13(1): 81-6.
[32]
Conway DI, Petticrew M, Marlborough H, Berthiller J, Hashibe M, Macpherson LMD. Socioeconomic inequalities and oral cancer risk: A systematic review and meta-analysis of case-control studies. Int J Cancer 2008; 122(12): 2811-9.
[33]
Gandini S, Botteri E, Iodice S, Boniol M, Lowenfels AB, Maisonneuve P, et al. Tobacco smoking and cancer: A meta-analysis. Int J Cancer 2008; 122(1): 155-64.
[34]
Rivera C. Essentials of oral cancer. Int J Clin Exp Pathol 2015; 8(9): 11884-94.
[35]
Norell SE, Bio A, Rutqvist LE. Smoking tobacco, oral snuff and alcohol in the etiology of squamous cell carcinoma of the head and neck. Cancer 1998; 82(7): 1367-75.
[36]
Ram H, Sarkar J, Kumar H, Konwar R, Bhatt MLB, Mohammad S. Oral cancer: Risk factors and molecular pathogenesis. J Maxillofac Oral Surg 2011; 10(2): 132-7.
[37]
Manoharan S, Karthikeyan S, Essa M, Manimaran A, Selvasundram R. An overview of oral carcinogenesis. Int J Nutr Pharmacol Neurol Dis 2016; 6(2): 51-62.
[38]
Reidy J, McHugh E, Stassen LFA. A review of the relationship between alcohol and oral cancer. Surgeon 2011; 9(5): 278-83.
[39]
Marttila E, Uittamo J, Rusanen P, Lindqvist C, Salaspuro M, Rautemaa R. Acetaldehyde production and microbial colonization in oral squamous cell carcinoma and oral lichenoid disease. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116(1): 61-8.
[40]
Ferreira AJL, Toporcov TN, Biazevic MGH, Boing AF, Scully C, Petti S. Joint and independent effects of alcohol drinking and tobacco smoking on oral cancer: A large case-control study. PLoS One 2013; 8(7)e68132
[41]
Guha N, Warnakulasuriya S, Vlaanderen J, Straif K. Betel quid chewing and the risk of oral and oropharyngeal cancers: A meta-analysis with implications for cancer control. Int J Cancer 2014; 135(6): 1433-43.
[42]
Trivedy CR, Craig G, Warnakulasuriya S. The oral health consequences of chewing areca nut. Addict Biol 2002; 7(1): 115-25.
[43]
Nair U, Bartsch H, Nair J. Alert for an epidemic of oral cancer due to use of the betel quid substitutes gutkha and pan masala: A review of agents and causative mechanisms. Mutagenesis 2004; 19: 251-62.
[44]
Wen CP, Tsai MK, Chung WSI, Hsu HL, Chang YC, Chan HT, et al. Cancer risks from betel quid chewing beyond oral cancer: A multiple-site carcinogen when acting with smoking. Cancer Causes Control 2010; 21(9): 1427-35.
[45]
Li YC, Chang JT, Chiu C, Lu YC, Li YL, Chiang CH, et al. Areca nut contributes to oral malignancy through facilitating the conversion of cancer stem cells. Mol Carcinog 2016; 55(5): 1012-23.
[46]
Deng Z, Uehara T, Maeda H, Hasegawa M, Matayoshi S, Kiyuna A, et al. Epstein-Barr virus and human papillomavirus infections and genotype distribution in head and neck cancers. PLoS One 2014; 9(11): 1-11.
[47]
Braakhuis BJM, Snijders PJF, Keune WJH, Meijer CJLM, Ruijter-Schippers HJ, Leemans CR, et al. Genetic patterns in head and neck cancers that contain or lack transcriptionally active human papillomavirus. J Natl Cancer Inst 2004; 96(13): 998-1006.
[48]
Ang KKP, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-tân PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 2011; 363(1): 24-35.
[49]
Meurman JH, Uittamo J. Oral micro-organisms in the etiology of cancer. Acta Odontol Scand 2008; 66(6): 321-6.
[50]
Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 2000; 92(9): 709-20.
[51]
Johnson NW, Warnakulasuriya S, Gupta PC, Dimba E, Chindia M, Otoh EC, et al. Global oral health inequalities in incidence and outcomes for oral cancer: Causes and solutions. Adv Dent Res 2011; 23(2): 237-46.
[52]
Glenn JD. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World J Stem Cells 2014; 6(5): 526.
[53]
Jewett A, Head C, Cacalano NA. Emerging mechanisms of immunosuppression in oral cancers. J Dent Res 2006; 85(12): 1061-73.
[54]
D’souza S, Addepalli V. Preventive measures in oral cancer: An overview. Biomed Pharmacother 2018; 107: 72-80.
[55]
Fotedar V, Fotedar S, Seam R, Gupta M. Oral cancer and chemoprevention. Ijpsi Org 2013; 2(2): 16-20.
[56]
Kelloff GJ, Boone CW, Steele VE, Crowell JA, Lubet R, Sigman CC. Progress in cancer chemoprevention: Perspectives on agent selection and short-term clinical intervention trials. Cancer Res 1994; 54(2): 2015s-24s.
[57]
Klaassen I, Braakhuis BJM. Anticancer activity and mechanism of action of retinoids in oral and pharyngeal cancer. Oral Oncol 2002; 38(6): 532-42.
[58]
Soprano KJ, Soprano DR. Symposium: Diet, growth factors and
cancer retinoic acid receptors and cancer. Am Soc Nutr Sci 2002:
3809s-13s.
[59]
Soprano DR, Qin P, Soprano KJ. Retinoic acid receptors and cancers. Annu Rev Nutr 2004; 24(1): 201-21.
[60]
Mangalath U, Mikacha MK, Abdul KAH, Aslam S, Francis P, Kalathingal J. Recent trends in prevention of oral cancer. J Int Soc Prev Community Dent 2014; 4(6): S131-8.
[61]
Chhaparwal Y, Pai K, Vineetha R. Chemoprevention of oral cancer. J Indian Acad Oral Med Radiol 2012; 24(1): 39-44.
[62]
Giammanco M, Di Majo D, La Guardia M, Aiello S, Crescimannno M, Flandina C, et al. Vitamin D in cancer chemoprevention. Pharm Biol 2015; 53(10): 1399-434.
[63]
Guraya SY. Chemopreventive role of vitamin D in colorectal carcinoma. J Microsc Ultrastruct 2014; 2(1): 1-6.
[64]
Rouphael C, Kamal A, Sanaka MR, Thota PN. Vitamin D in esophageal cancer: Is there a role for chemoprevention? World J Gastrointest Oncol 2018; 10(1): 23-30.
[65]
Hari S, Vasudevan V, Kasibhotla S, Reddy D, Venkatappa M, Devaiah D. Anti‐inflammatory dietary supplements in the chemoprevention of oral cancer. Cancer Res Front 2016; 2(3): 380-95.
[66]
Madiyal A, Ajila V, Babu SG, Hedge S, Keshavaiah H, Alva PM. Role of phytochemicals in oral potentially malignant disorders: A review. Nitte Univ J Heal Sci 2014; 4(4): 120-5.
[67]
Kumar A, Bagewadi A, Keluskar V, Singh M. Efficacy of lycopene in the management of oral submucous fibrosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 103(2): 207-13.
[68]
Livny O, Kaplan I, Reifen R, Polak-Charcon S, Madar Z, Schwartz B. Lycopene inhibits proliferation and enhances gap-junction communication of κβ-1 human oral tumor cells. J Nutr 2002; 132(12): 3754-9.
[69]
Giovannucci E. Tomatoes, tomato-based products, lycopene and cancer: review of the epidemiologic literature. J Natl Cancer Inst 1999; 91(4): 317-31.
[70]
Giovannucci E. A review of epidemiologic studies of tomatoes, lycopene and prostate cancer. Exp Biol Med (Maywood) 2002; 227(10): 852-9.
[71]
Ding Y, Yao H, Yao Y, Fai LY, Zhang Z. Protection of dietary polyphenols against oral cancer. Nutrients 2013; 5(6): 2173-91.
[72]
Scalbert A, Williamson G. Chocolate: Modern science investigates an ancient medicine dietary intake and bioavailability of polyphenols. J Nutr 2000; 130(8S): 2073-85.
[73]
Tanaka T, Nishikawa A, Mori Y, Morishita Y, Mori H. Inhibitory effects of non-steroidal anti-inflammatory drugs, piroxicam and indomethacin on 4-nitroquinoline 1-oxide-induced tongue carcinogenesis in male ACI N rats. Cancer Lett 1989; 48(3): 177-82.
[74]
Arts IC, Hollman PC. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 2005; 81(1): 317S-25S.
[75]
Lambert JD, Hong J, Yang GY, Liao J, Yang CS. Inhibition of carcinogenesis by polyphenols: Evidence from laboratory investigations. Am J Clin Nutr 2005; 81(1): 284-91.
[76]
Baldasquin-Caceres B, Gomez-Garcia FJ, López-Jornet P, Castillo-Sanchez J, Vicente-Ortega V. Chemopreventive potential of phenolic compounds in oral carcinogenesis. Arch Oral Biol 2014; 59(10): 1101-7.
[77]
Yallapu MM, Nagesh PKB, Jaggi M, Chauhan SC. Therapeutic applications of curcumin nanoformulations. AAPS J 2015; 17(6): 1341-56.
[78]
Dudás J, Fullár A, Romani A, Pritz C, Kovalszky I, Hans Schartinger V, et al. Curcumin targets fibroblast-tumor cell interactions in oral squamous cell carcinoma. Exp Cell Res 2013; 319(6): 800-9.
[79]
Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 2001; 21(48): 2895-900.
[80]
Lin C, Lin J. Curcumin: A potential cancer chemopreventive agent through suppressing NF-kappa B signaling. J Cancer Mol 2008; 4(1): 11-6.
[81]
Goel A, Boland CR, Chauhan DP. Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett 2001; 172(2): 111-8.
[82]
Kang HJ, Lee SH, Price JE, Kim LS. Curcumin suppresses the paclitaxel-induced nuclear factor kappa B in breast cancer cells and potentiates the growth inhibitory effect of paclitaxel in breast cancer nude mice model. Breast J 2009; 15(8): 223-9.
[83]
Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 2011; 10(1): 12.
[84]
Weir NM, Selvendiran K, Kutala VK, Tong L, Vishwanath S, Rajaram M, et al. Curcumin induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by modulating akt and p38 mAPK. Cancer Biol Ther 2007; 6(2): 178-84.
[85]
Chung HF, Lai KC, Hsu SC, Lin HJ, Yang MD, Chen YL, et al. Curcumin induces apoptosis through FAS and FADD, in caspase-3-dependent and -independent pathways in the N18 mouse-rat hybrid retina ganglion cells. Oncol Rep 2009; 22(1): 97-104.
[86]
Bush JA, Cheung KJJ, Li G. Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase- 8 pathway independent of p53. Exp Cell Res 2001; 271(2): 305-14.
[87]
Freudlsperger C, Greten J, Schumacher U. Curcumin induces
apoptosis in human neuroblastoma cells via inhibition of NF kappa
B. Anticancer Res 2008; 28(1 A): 209-14.
[88]
Lin SS, Huang HP, Yang JS, Wu JY, Hsai TC, Lin CC, et al. DNA damage and endoplasmic reticulum stress mediated curcumin-induced cell cycle arrest and apoptosis in human lung carcinoma A-549 cells through the activation caspases cascade and mitochondrial-dependent pathway. Cancer Lett 2008; 272(1): 77-90.
[89]
Iwase M, Watanabe H, Kondo G, Ohashi M, Nagumo M. Enhanced susceptibility of oral squamous cell carcinoma cell lines to Fas-mediated apoptosis by cisplatin and 5-fluorouracil. Int J Cancer 2003; 106(4): 619-25.
[90]
Masloub SM, Elmalahy MH, Sabry D, Mohamed WS, Ahmed SH. Comparative evaluation of PLGA nanoparticle delivery system for 5-fluorouracil and curcumin on squamous cell carcinoma. Arch Oral Biol 2016; 64: 1-10.
[91]
Sharma RA, McLelland HR, Hill KA, Ireson CR, Euden SA, Manson MM, et al. Phase I clinical trial of oral curcumin: Biomarkers of systemic activity and compliance. Clin Cancer Res 2004; 10(20): 6847-54.
[92]
Ramshankar V, Krishnamurthy A. Chemoprevention of oral cancer: Green tea experience. J Nat Sci Biol Med 2014; 5(1): 3-7.
[93]
Mukhtar H, Ahmad N. Tea polyphenols: Prevention of cancer and optimizing health. Am J Clin Nutr 2000; 71(1): 1698S-702S.
[94]
Hastak K, Gupta S, Ahmad N, Agarwal MK, Agarwal ML, Mukhtar H. Role of p53 and NF-κB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene 2003; 22(31): 4851-9.
[95]
Leong H, Mathur PS, Greene GL. Green tea catechins inhibit angiogenesis through suppression of STAT3 activation. Breast Cancer Res Treat 2009; 117(3): 505-15.
[96]
Sartippour MR, Heber D, Ma J, Lu Q, Liang Go V, Nguyen M. Green tea and its catechins inhibit breast cancer xenografts. Nutr Cancer 2001; 40(2): 149-56.
[97]
Gao F, Li M, Liu WB, Zhou ZS, Zhang R, Li JL, et al. Epigallocatechin gallate inhibits human tongue carcinoma cells via HK2-mediated glycolysis. Oncol Rep 2015; 1(28): 1533-9.
[98]
Schwartz JL, Baker V, Larios E, Chung FL. Molecular and cellular effects of green tea on oral cells of smokers: A pilot study. Mol Nutr Food Res 2005; 49(1): 43-51.
[99]
Iriti M, Varoni EM. Chemopreventive potential of flavonoids in oral squamous cell carcinoma in human studies. Nutrients 2013; 5(7): 2564-76.
[100]
Mujtaba T, Dou QP. Black tea polyphenols inhibit tumor proteasome activity. In Vivo 2012; 26(2): 197-202.
[101]
Lee UL, Choi SW. The chemopreventive properties and therapeutic modulation of green tea polyphenols in oral squamous cell carcinoma. Int Sch Res Netw ISRN Oncol 2011; 2011403707
[102]
Schuck AG, Ausubel MB, Zuckerbraun HL, Babich H. Theaflavin-3,3′-digallate, a component of black tea: An inducer of oxidative stress and apoptosis. Toxicol Vitr 2008; 22(3): 598-609.
[103]
Bode AM, Dong Z. Chemopreventive effects of licorice and its components. Curr Pharmacol Rep 2015; 1(1): 60-71.
[104]
Bishayee A. Cancer prevention and treatment with resveratrol: From rodent studies to clinical trials. Cancer Prev Res 2009; 2(5): 409-18.
[105]
Shrotriya S, Agarwal R, Sclafani RA. A perspective on chemoprevention by resveratrol in head and neck squamous cell carcinoma. Adv Exp Med Biol 2015; 815: 333-48.
[106]
Kotecha R, Takami A, Espinoza JL. Dietary phytochemicals and cancer chemoprevention: A review of the clinical evidence. Oncotarget 2016; 7(32): 52517-29.
[107]
Bisen PS, Bundela SS, Sharma A. Ellagic acid - Chemopreventive role in oral cancer. J Cancer Sci Ther 2012; 4(2): 23-30.
[108]
Masamune A, Satoh M, Kikuta K, Suzuki N, Satoh K, Shimosegawa T. Ellagic acid blocks activation of pancreatic stellate cells. Biochem Pharmacol 2005; 70(6): 69-78.
[109]
Romier B, Van De Walle J, During A, Larondelle Y, Schneider YJ. Modulation of signalling nuclear factor-kappa β activation pathway by polyphenols in human intestinal caco-2 cells. Br J Nutr 2008; 100(3): 542-51.
[110]
Edderkaoui M, Odinokova I, Ohno I, Gukovsky I, Go VLW, Pandol SJ, et al. Ellagic acid induces apoptosis through inhibition of nuclear factor kappa β in pancreatic cancer cells. World J Gastroenterol 2008; 14(23): 3672-80.
[111]
Faust RA, Tawfic S, Davis AT, Bubash LA, Ahmed K. Antisense oligonucleotides against protein kinase CK2-alpha inhibit growth of squamous cell carcinoma of the head and neck in vitro. Head Neck 2000; 22(4): 341-6.
[112]
Brown MS, Diallo OT, Hu M, Ehsanian R, Yang X, Arun P, et al. CK 2 modulation of NF-κB, TP53 and the malignant phenotype in head and neck cancer by anti-CK 2 oligonucleotides in vitro or in vivo via sub-50-nm nanocapsules. Clin Cancer Res 2010; 16(8): 2295-307.
[113]
Chao WW, Lin BF. Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin Med 2010; 5(1): 1-17.
[114]
Chen S, Hu H, Miao S, Zheng J, Xie Z, Zhao H. Anti-tumor effect of cisplatin in human oral squamous cell carcinoma was enhanced by andrographolide via upregulation of phospho-p53 in vitro and in vivo. Tumour Biol 2017; 39(5): 1-9.
[115]
Liu YP, Lee JJ, Lai TC, Lee CH, Hsiao YW, Chen PS, et al. Suppressive function of low-dose deguelin on the invasion of oral cancer cells by downregulating tumor necrosis factor alpha-induced nuclear factor-kappa β signaling. Head Neck 2016; 38(S1): E524-34.
[116]
Saleem M, Afaq F, Adhami VM, Mukhtar H. Lupeol modulates NF-κB and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice. Oncogene 2004; 23(30): 5203-14.
[117]
Goodin S, Shiff SJ. NSAIDs for the chemoprevention of oral cancer: Promise or pessimism? Clin Cancer Res 2004; 10(5): 1561-4.
[118]
Marnett LJ. Generation of mutagens during arachidonic acid metabolism. Cancer Metastasis Rev 1994; 13(3-4): 303-8.
[119]
Leahy KM, Koki AT, Masferrer JL. Role of cyclooxygenases in angiogenesis. Curr Med Chem 2000; 7(11): 1163-70.
[120]
Chan G, Boyle JO, Yang EK, Zhang F, Sacks PG, Shah JP, et al. Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Res 1999; 59(5): 991-4.
[121]
Thun MJ, Namboodiri MM, Calle EE, Flanders WD, Heath CW. Aspirin use and risk of fatal cancer. Cancer Res 1993; 53(6): 1322-7.
[122]
Wang Z, Fuentes CF, Shapshay SM. Antiangiogenic and chemopreventive activities of celecoxib in oral carcinoma cell. Laryngoscope 2002; 112(5): 839-43.
[123]
Shiotani H, Denda A, Yamamoto K, Kitayama W, Endoh T, Sasaki Y, et al. Increased expression of cyclooxygenase-2 protein in 4-nitroquinoline-1-oxide-induced rat tongue carcinomas and chemopreventive efficacy of a specific inhibitor, nimesulide. Cancer Res 2001; 61(4): 1451-6.
[124]
Tsujii M, DuBois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 1995; 83(3): 493-501.
[125]
Loro LL, Johannessen AC, Vintermyr OK. Decreased expression of bcl-2 in moderate and severe oral epithelia dysplasias. Oral Oncol 2002; 38(7): 691-8.
[126]
Subbaramaiah K, Altorkil N, Chung WJ, Mestre JR, Sampat A, Dannenberg AJ. Inhibition of cyclooxygenase-2 gene expression by p53. J Biol Chem 1999; 274(16): 10911-5.
[127]
Shiff SJ, Qiao L, Tsai LL, Rigas B. Sulindac sulfide, an aspirin-like compound, inhibits proliferation, causes cell cycle quiescence, and induces apoptosis in HT-29 colon adenocarcinoma cells. J Clin Invest 1995; 96(1): 491-503.
[128]
Shiff SJ, Shivaprasad P, Santini DL. Cyclooxygenase inhibitors: Drugs for cancer prevention. Curr Opin Pharmacol 2003; 3(4): 352-61.
[129]
Mahendra A, Shreedhar B, Kamboj M, Singh A, Singh A, Agrawal A, et al. Epidermal growth factor receptor protein: A biological marker for oral precancer and cancer. J Dent Surg 2014; 2014: 1-8.
[130]
Wong DT, Todd R, Tsuji T, Donoff RB. Molecular biology of human oral cancer. Crit Rev Oral Biol Med 1996; 7(4): 319-28.
[131]
Gallo O, Franchi A, Magnelli L, Sardi I, Vannacci A, Boddi V, et al. Cyclooxygenase-2 pathway correlates with VEGF expression in head and neck cancer. Implications for tumor angiogenesis and metastasis. Neoplasia 2001; 3(1): 53-61.
[132]
Jaeckel EC, Raja S, Tan J, Das SK, Dey SK, Girod DA, et al. Correlation of expression of cyclooxygenase-2, vascular endothelial growth factor, and peroxisome proliferator-activated receptor delta with head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 2001; 127(10): 1253-9.
[133]
Chen YJ, Jin YT, Shieh DB, Tsai ST, Wu LW. Molecular characterization of angiogenic properties of human oral squamous cell carcinoma cells. Oral Oncol 2002; 38(7): 699-705.
[134]
Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 1998; 93(5): 705-16.
[135]
Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci 1997; 94(7): 3336-40.
[136]
Tomozawa S, Nagawa H, Tsuno N, Hatano K, Osada T, Kitayama J, et al. Inhibition of haematogenous metastasis of colon cancer in mice by a selective COX-2 inhibitor, JTE-522. Br J Cancer 1999; 81(8): 1274-9.
[137]
Sarkis SA, Abdullah BH, Abdul MBA, Talabani NG. Immunohistochemical expression of epidermal growth factor receptor (EGFR) in oral squamous cell carcinoma in relation to proliferation, apoptosis, angiogenesis and lymphangiogenesis. Head Neck Oncol 2010; 2(1): 13.
[138]
Human C, Squamous O, Cells C, Mestre JR, Subbaramaiah K, Sacks PG, et al. Retinoids suppress epidermal growth factor-induced transcription of COX-2. Cancer Res 1997; 57(14): 2890-5.
[139]
Soh JW, Weinstein IB. Role of COX-independent targets of NSAIDs and related compounds in cancer prevention and treatment. Prog Exp Tumor Res 2003; 37: 261-85.
[140]
Kurihara Y, Hatori M, Ando Y, Ito D, Toyoshima T, Tanaka M, et al. Inhibition of cyclooxygenase-2 suppresses the invasiveness of oral squamous cell carcinoma cell lines via down-regulation of matrix metalloproteinase-2 production and activation. Clin Exp Metastasis 2009; 26(5): 425-32.
[141]
Park W, Oh YT, Han JH, Pyo H. Antitumor enhancement of celecoxib, a selective cyclooxygenase-2 inhibitor, in a Lewis lung carcinoma expressing cyclooxygenase-2. J Exp Clin Cancer Res 2008; 27(1): 1-9.
[142]
Kim JY, Alam F, Chung W, Park J, Jeon OC, Kim SY, et al. Combinational chemoprevention effect of celecoxib and an oral antiangiogenic LHD4 on colorectal carcinogenesis in mice. Anticancer Drugs 2014; 25(9): 1061-71.
[143]
Katoumas K, Nikitakis N, Perrea D, Dontas I, Sklavounou A. In vivo antineoplastic effects of the NSAID sulindac in an oral carcinogenesis model. Cancer Prev Res 2015; 8(7): 642-9.
[144]
Smalley W, Ray WA, Daugherty J, Griffin MR. Use of nonsteroidal anti-inflammatory drugs and incidence of colorectal cancer. Arch Intern Med 1999; 159(2): 161-6.
[145]
Arber N, Eagle CJ, Spicak J, Rácz I, Dite P, Hajer J, et al. Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med 2006; 355(9): 885-95.
[146]
Fischer SM, Hawk ET, Lubet RA. Non-steroidal anti-inflammatory drugs and coxibs in chemoprevention: a commentary based primarily on animal studies. Cancer Prev Res (Phila) 2011; 4(11): 1728-35.
[147]
Bertagnolli MM, Eagle CJ, Zauber AG, Redston M, Solomon SD, Kim K, et al. Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med 2006; 355(9): 873-84.
[148]
Thun MJ, Henley SJ, Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic and clinical issues. J Natl Cancer Inst 2002; 94(4): 252-66.
[149]
Walia C, Roy S. Retinoids in oral diseases: An enigmatic role in chemoprevention. J Dent Oral Disord Ther 2016; 4(2): 1-8.
[150]
Chowdhury A, Sarkar J, Chakraborti T, Pramanik PK, Chakraborti S. Protective role of epigallocatechin-3-gallate in health and disease: A perspective. Biomed Pharmacother 2016; 78: 50-9.
[151]
Lee MF, Chan CY, Hung HC, Chou IT, Yee AS, Huang CY. N-acetylcysteine (NAC) inhibits cell growth by mediating the EGFR/Akt/HMG box-containing protein 1 (HBP1) signaling pathway in invasive oral cancer. Oral Oncol 2013; 49(2): 129-35.
[152]
Boyanapalli SSS, Kong ANT. Curcumin, the King of Spices & quot: epigenetic regulatory mechanisms in the prevention of cancer, neurological and inflammatory diseases. Curr Pharmacol Rep 2015; 1(2): 129-39.
[153]
Vallianou NG, Evangelopoulos A, Schizas N, Kazazis C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res 2015; 35(2): 645-51.
[154]
Pratheeshkumar P, Sreekala C, Zhang Z, Budhraja A, Ding S, Son YO, et al. Cancer prevention with promising natural products: Mechanisms of action and molecular targets. Anticancer Agents Med Chem 2012; 12(10): 1159-84.
[155]
Kanagaraj P, Vijayababu MR, Ravisankar B, Anbalagan J, Aruldhas MM, Arunakaran J. Effect of lycopene on insulin-like growth factor-I, IGF binding protein-3 and IGF type-I receptor in prostate cancer cells. J Cancer Res Clin Oncol 2007; 133(6): 351-9.
[156]
Goo YA, Li Z, Pajkovic N, Shaffer S, Taylor G, Chen J, et al. Systematic investigation of lycopene effects in LNCaP cells by use of novel large-scale proteomic analysis software. Proteomics Clin Appl 2007; 1(5): 513-23.
[157]
Ziech D, Anestopoulos I, Hanafi R, Voulgaridou GP, Franco R, Georgakilas AG, et al. Pleiotrophic effects of natural products in ROS-induced carcinogenesis: The role of plant-derived natural products in oral cancer chemoprevention. Cancer Lett 2012; 327(1-2): 16-25.
[158]
Sakai H, Shirakami Y, Kubota M. Dietary phytochemicals as cancer preventive agents: Efficacy and mechanisms. J Bioanal Biomed 2015; 7(2): 40-9.
[159]
Thomasset SC, Berry DP, Garcea G, Marczylo T, Steward WP, Gescher AJ. Dietary polyphenolic phytochemicals - promising cancer chemopreventive agents in humans? A review of their clinical properties. Int J Cancer 2007; 120(3): 51-8.
[160]
Ferrari D, Codecà C, Fiore J, Moneghini L, Bosari S, Foa P. Biomolecular markers in cancer of the tongue. J Oncol 2009; 2009: 1-11.
[161]
Seoane LJ, Diz DP. Diagnostic clinical aids in oral cancer. Oral Oncol 2010; 46(6): 418-22.
[162]
Sinevici N, O’sullivan J. Oral cancer: Deregulated molecular events and their use as biomarkers. Oral Oncol 2016; 61: 12-8.
[163]
Santosh AR, Jones T, Harvey J. A review on oral cancer biomarkers: Understanding the past and learning from the present. J Cancer Res Ther 2016; 12(2): 486-92.
[164]
Gualtero DF, Suarez CA. Biomarkers in saliva for the detection of oral squamous cell carcinoma and their potential use for early diagnosis: A systematic review. Acta Odontol Scand 2016; 74(3): 170-7.
[165]
Radhika T, Jeddy N, Nithya S, Muthumeenakshi RM. Salivary biomarkers in oral squamous cell carcinoma - An insight. J Oral Biol Craniofac Res 2016; 6(S1): 51-4.
[166]
Tanaka T, Watanabe N. Oral Oncogenesis and chemoprevention. Integr Cancer Biol Res 2017; 1(1): 1-4.
[167]
Devaraj SD. Salivary biomarkers-a review. J Pharm Sci Res 2013; 5(10): 210-2.
[168]
Shashikala R, Indira AP, Manjunath GS, Rao KA, Akshatha BK. Role of micronucleus in oral exfoliative cytology. J Pharm Bioallied Sci 2015; 7(S2): S409-13.
[169]
Mallery S, Desai KG, Holpuch A, Schwendeman S. Optimizing therapeutic efficacy of chemopreventive agents: A critical review of delivery strategies in oral cancer chemoprevention clinical trials. J Carcinog 2011; 10(1): 23.
[170]
Holpuch AS, Phelps MP, Desai KGH, Chen W, Koutras GM, Han BB, et al. Evaluation of a mucoadhesive fenretinide patch for local intraoral delivery: A strategy to reintroduce fenretinide for oral cancer chemoprevention. Carcinogenesis 2012; 33(5): 1098-105.
[171]
Mallery SR, Tong M, Shumway BS, Curran AE, Larsen PE, Ness GM, et al. Topical application of a mucoadhesive freeze-dried black raspberry gel induces clinical and histologic regression and reduces loss of heterozygosity events in premalignant oral intraepithelial lesions: Results from a multicentered, placebo-controlled clin. Clin Cancer Res 2014; 20(7): 1910-24.
[172]
Desai KGH. Polymeric drug delivery systems for intraoral site-specific chemoprevention of oral cancer. J Biomed Mater Res - Part B Appl Biomater 2018; 106(3): 1383-413.
[173]
Hearnden V, Sankar V, Hull K, Juras DV, Greenberg M, Kerr AR, et al. New developments and opportunities in oral mucosal drug delivery for local and systemic disease. Adv Drug Deliv Rev 2012; 64(1): 16-28.
[174]
Patel VF, Liu F, Brown MB. Advances in oral transmucosal drug delivery. J Control Release 2011; 153(2): 106-16.
[175]
Şenel S, Hincal AA. Drug permeation enhancement via buccal route: Possibilities and limitations. J Control Release 2001; 72(1-3): 133-44.
[176]
Dhiman MK, Dhiman A, Sawant KK. Transbuccal delivery of 5-fluorouracil: Permeation enhancement and pharmacokinetic study. AAPS PharmSciTech 2009; 10(1): 258-65.
[177]
Rathbone MJ, Tucker IG. Mechanisms, barriers and pathways of oral mucosal drug permeation. Adv Drug Deliv Rev 1993; 12(1-2): 41-60.
[178]
Sohi H, Ahuja A, Ahmad FJ, Khar RK. Critical evaluation of permeation enhancers for oral mucosal drug delivery. Drug Dev Ind Pharm 2010; 36(3): 254-82.
[179]
Desai KGH, Mallery SR, Holpuch AS, Schwendeman SP. Development and in vitro in vivo evaluation of fenretinide-loaded oral mucoadhesive patches for site-specific chemoprevention of oral cancer. Pharm Res 2011; 28(10): 2599-609.
[180]
Wu X, Desai KGH, Mallery SR, Holpuch AS, Phelps MP, Schwendeman SP. Mucoadhesive fenretinide patches for site-specific chemoprevention of oral cancer: Enhancement of oral mucosal permeation of fenretinide by coincorporation of propylene glycol and menthol. Mol Pharm 2012; 9(4): 937-45.
[181]
Mallery SR, Stoner GD, Larsen PE, Fields HW, Rodrigo KA, Schwartz SJ, et al. Formulation and in-vitro and in-vivo evaluation of a mucoadhesive gel containing freeze dried black raspberries: Implications for oral cancer chemoprevention. Pharm Res 2007; 24(4): 728-37.
[182]
Mahalingam R, Ravivarapu H, Redkar S, Li X, Jasti BR. Transbuccal delivery of 5-Aza-2′-deoxycytidine: Effects of drug concentration, buffer solution and bile salts on permeation. AAPS PharmSciTech 2007; 8(3): E28-33.
[183]
Cid YP, Pedrazzi V, de Sousa VP, Pierre MBR. In vitro characterization of chitosan gels for buccal delivery of celecoxib: Influence of a penetration enhancer. AAPS PharmSciTech 2012; 13(1): 101-11.
[184]
Desai KG, Kumar TM. Preparation and evaluation of a novel buccal adhesive system. AAPS PharmSciTech 2004; 5(3)e35
[185]
Giannola LI, de Caro V, Giandalia G, Siragusa MG, Paderni C, Campisi G, et al. 5-fluorouracil buccal tablets for locoregional chemotherapy of oral squamous cell carcinoma: formulation, drug release and histological effects on reconstituted human oral epithelium and porcine buccal mucosa. Curr Drug Deliv 2010; 7(2): 109-17.
[186]
Bayrak Z, Tas C, Tasdemir U, Erol H, Ozkan CK, Savaser A, et al. Formulation of zolmitriptan sublingual tablets prepared by direct compression with different polymers: In vitro and in vivo evaluation. Eur J Pharm Biopharm 2011; 78(3): 499-505.
[187]
Andreadis C, Vahtsevanos K, Sidiras T, Thomaidis I, Antoniadis K, Mouratidou D. 5-Fluorouracil and cisplatin in the treatment of advanced oral cancer. Oral Oncol 2003; 39(4): 380-5.
[188]
Campisi G, Italo GL, Fucarino A, Marino GA, Pitruzzella A, Marciano V, et al. Medium-term culture of primary oral squamous cell carcinoma in a three- dimensional model: Effects on cell survival following topical 5-fluororacile delivery by drug-loaded matrix tablets. Curr Pharm Des 2012; 18(34): 5411-20.
[189]
Wang Z, Polavaram R, Shapshay SM. Topical inhibition of oral carcinoma cell with polymer delivered celecoxib. Cancer Lett 2003; 198(1): 53-8.
[190]
Wang Z, Polavaram R, Fuentes CF, Shapshay SM. Topical chemoprevention of oral cancer with tretinoin “biofilm.”. Arch Otolaryngol Head Neck Surg 2003; 129(8): 869-73.
[191]
Wang Z, Polavaram R, Gooey J, Davis LH, Shapshay SM. Laser assisted topical “biofilm” chemoprevention of oral cancer. Cancer Lett 2004; 215(1): 29-34.
[192]
Costa IDSM, Abranches RP, Garcia MTJ, Pierre MBR. Chitosan-based mucoadhesive films containing 5-aminolevulinic acid for buccal cancer’s treatment. J Photochem Photobiol B Biol 2014; 140: 266-75.
[193]
Kokate A, Li X, Jasti B. Transport of a novel anti-cancer agent, fenretinide across caco-2 monolayers. Invest New Drugs 2007; 25(3): 197-203.
[194]
Okuda T, Kawakami S, Higuchi Y, Satoh T, Oka Y, Yokoyama M, et al. Enhanced in vivo antitumor efficacy of fenretinide encapsulated in polymeric micelles. Int J Pharm 2009; 373(1-2): 100-6.
[195]
William WN, Papadimitrakopoulou V, Lee JJ, Mao L, Cohen EEW, Lin HY, et al. Erlotinib and the risk of oral cancer the Erlotinib Prevention of oral Cancer (EPOC) randomized clinical trial. JAMA Oncol 2016; 2(2): 209-16.
[196]
Wischke C, Zhang Y, Mittal S, Schwendeman SP. Development of PLGA-based injectable delivery systems for hydrophobic fenretinide. Pharm Res 2010; 27(10): 2063-74.
[197]
Choi Y, Kim SY, Kim SH, Park TG, Moon HT, Byun Y. In vivo biocompatibility studies of poly(D,L-lactide)/poly(ethylene glycol)-poly(L-lactide) microspheres containing all-trans-retinoic acid. J Biomater Sci Polym Ed 2002; 13(3): 301-22.
[198]
Mallery SR, Shenderova A, Pei P, Begum S, Ciminieri JR, Wilson RF, et al. Effects of 10-hydroxycamptothecin, delivered from locally injectable poly(lactide-co-glycolide) microspheres, in a murine human oral squamous cell carcinoma regression model. Anticancer Res 2001; 21(21B): 1713-22.
[199]
Hernán de la POD, Lorente M, Gil-Alegre ME, Torres S, García-
Taboada E, Aberturas MR, et al. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme. PLoS One 2013; 8(1): 2-9.
[200]
Choi Y, Kim SY, Kim SH, Lee KS, Kim C, Byun Y. Long-term delivery of all-trans-retinoic acid using biodegradable PLLA/PEG-PLLA blended microspheres. Int J Pharm 2001; 215(1-2): 67-81.
[201]
Desai KGH, Mallery SR, Schwendeman SP. Formulation and characterization of injectable poly(DL-lactide-co- glycolide) implants loaded with N-acetylcysteine, a MMP inhibitor. Pharm Res 2008; 25(3): 586-97.
[202]
Desai KGH, Mallery SR, Schwendeman SP. Effect of formulation parameters on 2-methoxyestradiol release from injectable cylindrical poly(dl-lactide-co-glycolide) implants. Eur J Pharm Biopharm 2008; 70(1): 187-98.
[203]
Desai KGH, Olsen KF, Mallery SR, Stoner GD, Schwendeman SP. Formulation and in vitro-in vivo evaluation of black raspberry extract-loaded PLGA/PLA injectable millicylindrical implants for sustained delivery of chemopreventive anthocyanins. Pharm Res 2010; 27(4): 628-43.
[204]
Noguez MNA, Quirino BCT, Vega AF, Miranda CJE, Urioste CG, Palomec XC, et al. Design and development of pharmaceutical
microprocesses in the production of nanomedicine. In: Ecaterina
Andronescu and Alexandru Mihai Grumezesc, editor.
Nanostructures Oral Med., Elsevier 2017: 669-97.
[205]
Jeong YI, Song JG, Kang SS, Ryu HH, Lee YH, Choi C, et al. Preparation of poly(DL-lactide-co-glycolide) microspheres encapsulating all-trans retinoic acid. Int J Pharm 2003; 259(1-2): 79-91.
[206]
Choi Y, Kim SY, Kim SH, Yang J, Park K, Byun Y. Inhibition of tumor growth by biodegradable microspheres containing all-trans-retinoic acid in a human head-and-neck cancer xenograft. Int J Cancer 2003; 107(1): 145-8.
[207]
Wright JC, Sekar M, Van OW, Su HC, Miksztal AR. In situ
forming systems (depots). In: Jeremy C. Wright, Diane J. Burgess,
editors. Long Act Inject Implant, Boston, MA: Springer US 2012:
153-66.
[208]
Packhaeuser CB, Schnieders J, Oster CG, Kissel T. In situ forming parenteral drug delivery systems: An overview. Eur J Pharm Biopharm 2004; 58(2): 445-55.
[209]
Gad HA, El-Nabarawi MA, Abd El-Hady SS. Formulation and evaluation of PLA and PLGA in situ implants containing secnidazole and/or doxycycline for treatment of periodontitis. AAPS PharmSciTech 2008; 9(3): 878-84.
[210]
Astaneh R, Erfan M, Moghimi H, Mobedi H. Changes in morphology of in situ forming PLGA implant prepared by different polymer molecular weight and its effect on release behavior. J Pharm Sci 2009; 98(1): 135-45.
[211]
Phukan K, Nandy M, Sharma RB, Sharma HK. Nanosized drug delivery systems for direct nose to brain targeting: A review. Recent Pat Drug Deliv Formul 2016; 10(2): 156-64.
[212]
De JWH, Borm PJA. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[213]
Sharma HK. Risk assessment of nanoformulations. Recent Pat Drug Deliv Formul 2015; 9(2): 106.
[214]
Krishnaswamy K, Orsat V. Sustainable delivery systems through
green nanotechnology. In: Alexandru Mihai Grumezescu, editor.
Nano- Microscale Drug Deliv. Syst Des Fabr, Elsevier 2017: 17-
32.
[215]
Sulfikkarali N, Krishnakumar N, Manoharan S, Nirmal RM. Chemopreventive efficacy of naringenin-loaded nanoparticles in 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis. Pathol Oncol Res 2013; 19(2): 287-96.
[216]
Mazzarino L, Loch-Neckel G, Bubniak LDS, Mazzucco S, Santos-Silva MC, Borsali R, et al. Curcumin-loaded chitosan-coated nanoparticles as a new approach for the local treatment of oral cavity cancer. J Nanosci Nanotechnol 2015; 15(1): 781-91.
[217]
Satapathy SR, Siddharth S, Das D, Nayak A, Kundu CN. Enhancement of cytotoxicity and inhibition of angiogenesis in oral cancer stem cells by a hybrid nanoparticle of bioactive quinacrine and silver: Implication of base excision repair cascade. Mol Pharm 2015; 12(11): 4011-25.
[218]
Arulmozhi V, Pandian K, Mirunalini S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf B Biointerfaces 2013; 110: 313-20.
[219]
Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 2014; 185(1): 12-21.
[220]
Singh H, Sharma R, Joshi M, Garg T, Goyal AK, Rath G. Transmucosal delivery of docetaxel by mucoadhesive polymeric nanofibers. Artif Cells Nanomed Biotechnol 2015; 43(4): 263-9.
[221]
Yang J, Hu J, He B, Cheng Y. Transdermal delivery of therapeutic agents using dendrimers (US20140018435A1): A patent evaluation. Expert Opin Ther Pat 2015; 25(10): 209-14.
[222]
Hong S, Chatterton R, Khan S, Lee O, Yang Y. Transdermal
delivery of therapeutic agents using poly (amidoamine) dendrimers.
US20140018435A1 (2014).
[223]
Kohli K, Chopra S, Arora S, Khar RK, Pillai KK. Self
emulsifying drug delivery system for a curcuminoid based
composition. US8835509B2 (2014).
[224]
da Fonseca CP, da Fonseca TQ, da Gloria M, Brown GA. Monoterpene as a chemopreventive agent for regression of
mammalian nervous system cell tumors, use of monoterpene for
causing regression and inhibition of nervous system cell tumors
and method for administration of monoterpene perillyl alcohol.
US20040087651A1 (2014).
[225]
Balunas MJ, Su B, Brueggemeier RW, Kinghorn AD. Compositions from garcinia as aromatase inhibitors for breast
cancer chemoprevention and chemotherapy. US20090181110A1
(2009).
[226]
Jong L, Chao WR. Analogs of indole-3-carbinol metabolites as
chemotherapeutic and chemopreventive agents. WO2004/018475
(2004).
[227]
Azuma A, Miura Y. Cancer chemopreventive agent. US
2017/0224667A1 (2017).
[228]
Lee HY. Deguelin as a chemopreventive agent for lung cancer.
WO/2004/032876 (2004).
[229]
Mumper RJ, Dai J, Gallicchio VS. Berry preparation and
extracts. USOO8367126B2 (2013).
[230]
Jong L, Chang CT, Park J. MAP4K4 (HGK) inhibitors.
US10000451 (2018).
[231]
Chhabra G, Singh CK, Ndiaye MA, Fedorowicz S, Molot A, Ahmad N. Prostate cancer chemoprevention by natural agents: Clinical evidence and potential implications. Cancer Lett 2018; 422: 9-18.
[232]
Siddiqui IA, Adhami VM, Bharali DJ, Hafeez BB, Asim M, Khwaja SI, et al. Introducing nanochemoprevention as a novel approach for cancer control: Proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res 2009; 69(5): 1712-6.
[233]
Steward WP, Brown K. Cancer chemoprevention: A rapidly evolving field. Br J Cancer 2013; 109(1): 1-7.
[234]
Meyskens FL, McLaren CE, Pelot D, Fujikawa BS, Carpenter PM, Hawk E, et al. Difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: A randomized placebo-controlled, double-blind trial. Cancer Prev Res 2008; 1(1): 32-8.
[235]
Jankowski JAZ, de Caestecker J, Love SB, Reilly G, Watson P, Sanders S, et al. Esomeprazole and aspirin in barrett’s oesophagus (AspECT): A randomised factorial trial. Lancet (London, England) 2018; 392: 400-8.
[236]
Cohen PA. Assessing supplement safety - The FDA’s controversial proposal. N Engl J Med 2012; 366(5): 389-91.