[1]
Stafstrom, C.E.; Lionel, C. Seizures and Epilepsy: An Overview for Neuroscientists. Cold Spring Harb. Perspect. Med., 2015, 5, 1-18.
[2]
Falco-Waltera, J.J. Schefferb, I.E.; Fishera R.S. The new definition and classification of seizures and epilepsy. Epilepsy Res., 2018, 139, 73-79.
[3]
Johnston, G.A.R. GABAA Receptor Channel Pharmacology. Curr. Pharm. Des., 2005, 11, 1867-1885.
[4]
Rogawski, M.A.; Loscher, W. The neurobiology of antiepileptic drugs. Nat. Rev. Neurosci., 2004, 5, 553-564.
[5]
Pollard, J.R.; French, J. Antiepileptic drugs in development. Lancet Neurol., 2006, 5, 1064-1067.
[6]
Kalueff, A.; Nutt, D.J. Role of gaba in memory and anxiety. Depress. Anxiety, 1996/1997, 4, 100-110.
[7]
El Far, O.; Betz, H. G-protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes. Biochem. J., 2002, 365, 329-336.
[8]
Wang, D.D.; Kriegstein, A.R. Defining the role of GABA in cortical development. J. Physiol., 2009, 587, 1873-1879.
[9]
Nutt, D. GABAA Receptors: Subtypes, Regional Distribution, and Function. J. Clin. Sleep Med., 2006, 2, S7-S11.
[10]
Ibrahim, M.K.; El-Adl, K.; Al-Karmalawy, A.A. Design, synthesis, molecular docking and anticonvulsant evaluation of novel 6-iodo- 2-phenyl- 3-substituted-quinazolin-4(3H)-ones. B-FOPCU, 2015, 53, 101-116.
[11]
El-Hiti, G.A. Synthesis of substituted quinazolin-4(3H)-ones and quinazolines via directed lithiation. Heterocycles, 2000, 53, 1839-1868.
[12]
El-Hiti, G.A.; Abdel-Megeed, M.F. Synthesis of glycosides containing quinazolin-4(3H)-one ring system. Heterocycles, 2005, 65, 3007-3041.
[13]
Alafeefy, A.M. Kadi, A.A.; A.Al-Deeb, O.; El-Tahir, K.E.H.; A.Al-jaber, N. Synthesis, analgesic and anti-inflammatory evaluation of some novel quinazoline derivatives. Eur. J. Med. Chem., 2010, 45, 4947-4952.
[14]
Alagarsamy, V.; Raja Solomon, V.; Parthiban, P.; Dhanabal, K.; Murugesan, S. Saravanan, G.; Anjana, G. Synthesis and pharmacological investigation of novel 4-(4-ethyl phenyl)-1 substituted-4H-[1,2,4] triazolo [4,3-a]-quinazolin-5- ones as new class of H1-antihistaminic agents. J. Heterocycl. Chem., 2008, 45, 709-715.
[15]
Ugale, V.G.; Bari, S.B. Quinazolines: New horizons in anticonvulsant therapy. Eur. J. Med. Chem., 2014, 80, 447-501.
[16]
Zayed, M.F.; Ahmed, H.E.A.; Ihmaid, S.; Omar, A-S.M.; Abdelrahim, A.S. Synthesis and screening of some new fluorinated quinazolinone-sulphonamide hybrids as anticancer agents. J. Taibah Uni. Med. Sci., 2015, 10, 333-339.
[17]
Rosenberg, J.; Gustafsson, F.; Galatius, S.; Hildebrandt, P.R. Combination therapy with metolazone and loop diuretics in outpatients with refractory heart failure: an observational study and review of the literature. Cardiovasc. Drugs Ther., 2005, 19, 301-306.
[18]
Jafari, E.; Khajouei, M.R.; Hassanzadeh, F.; Hakimelahi, G.H.; Khodarahmi, A.K. Quinazolinone and quinazoline derivatives: recent structures with potent antimicrobial and cytotoxic activities. Res. Pharm. Sci., 2016, 11, 1-14.
[19]
Javaid, K.; Saad, S.M.; Rasheed, S.; Moin, S.T.; Syed, N.; Fatima, I.; Salar, U.; Khan, K.M.; Perveen, S.; Choudhary, M.I. 2- Arylquinazolin-4(3H)-ones: A new class of α-glucosidase inhibitors. Bioorg. Med. Chem., 2015, 23, 7417-7421.
[20]
Jain, N.; Jaiswal, J.; Pathak, A. Singour, P.K. Synthesis, Molecular Docking and Evaluation of3-4-[2-amino-4- (substitutedphenyl)-2H-[1, 3] oxazin/thiazin-6-yl 2-phenyl-3H-quinazolin- 4-one Derivatives for their Anticonvulsant Activity. Cent. Nerv. Syst. Agents Med. Chem., 2018, 18, 63-73.
[21]
Wolfe, J.F.; Rathman, T.L.; Sleevi, M.C.; Campbell, J.A.; Greenwood, T.D. Synthesis and anticonvulsant activity of some new 2-substituted 3-aryl-4(3H)-quinazolinones. J. Med. Chem., 1990, 33, 161-166.
[22]
Ugale, V.G.; Patel, H.M.; Wadodkar, S.G.; Bari, S.B.; Shirkhedkar, A.A.; Surana, S.J. Quinazolino-benzothiazoles: fused pharmacophores as anticonvulsant agents. Eur. J. Med. Chem., 2012, 53, 107-113.
[23]
Alavijeh, M.S.; Chishty, M.; Qaiser, M.Z.; Palmer, A.M. Drug Metabolism and Pharmacokinetics, the Blood-Brain Barrier, and Central Nervous System Drug Discovery. NeuroRx, 2005, 2, 554-571.
[24]
Saravanan, G.; Alagarsamy, V.; Prakash, C.R. Design, synthesis and anticonvulsant activities of novel 1-(substituted/unsubstituted benzylidene)-4-(4-(6,8-dibromo-2-(methyl/phenyl)-4-oxoquinazolin- 3(4H)-yl)phenyl) semicarbazide derivatives. Bioorg. Med. Chem. Lett., 2012, 22, 3072-3078.
[25]
Kumar, P.; Shrivastava, B.; Pandeya, S.N.; Stables, J.P. Design, synthesis and potential 6 Hz psychomotor seizure test activity of some novel 2-(substituted)-3 [substituted]aminoquinazolin- 4(3H)-one. Eur. J. Med. Chem., 2011, 46, 1006-1018.
[26]
Asker, F.W.; Nsaif, L.H. Synthesis and antimicrobial activity of novel of 2, 3-disubstituted quinazolin 4(3H) - one derivatives. Chem. Mat. Res., 2014, 6, 10-16.
[27]
Castel-Branco, M.M.; Alves, G.L.; Figueiredo, I.V.; Falcao, A.C.; Caramona, M.M. The Maximal Electroshock Seizure (Mes) model In The preclinical assessment of potential new antiepileptic drugs. Methods Find. Exp. Clin. Pharmacol., 2009, 31, 101-106.
[28]
Racine, R.J. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroenceph. Clin. Neurophysiol., 1972, 32, 281-294.
[29]
Orlof, M.J.; Williams, H.L.; Pfeiffer, C.C. Timed intravenous infusion of metrazol and strychnine for testing anticonvulsant drugs. Proc. Soc. Exp. Biol. Med., 1949, 70, 254-257.
[30]
Dunham, N.W.; Miya, T.S. A note on a simple apparatus for detecting neurological deficit in rats and mice. J. Am. Pharm. Assoc., 1957, 46, 208-209.
[31]
Conagin, A.; Barbin, D.; Demétrio, C.G.B. Modified dunnett’s test for a randomized complete block design. Rev. Bras. Biom., 2011, 29, 599-610.
[32]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[33]
Luger, D.; Poli, G.; Wieder, M.; Stadler, M.; Kel, S.; Ernst, M.; Hohaus, A.; Linder, T.; Seidel, T.; Langer, T.; Khom, S.; Hering, S. Identification of the putative binding pocket of valerenic acid on GABAA receptors using docking studies and site-directed mutagenesis. Br. J. Pharmacol., 2015, 172, 5403-5413.
[34]
Harrington, E.C. The desirability function. Ind Qual Control., 1965, 21, 494-498.
[35]
Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem., 2012, 4, 90-98.
[36]
Kupferberg, H.J. Antiepileptic drug development program: a cooperative effort of government and industry. Epilepsia, 1989, 30, S51-S56.