[1]
Herold, K.C.; Usmani-Brown, S.; Ghazi, T.; Lebastchi, J.; Beam, C.A.; Bellin, M.D.; Ledizet, M.; Sosenko, J.M.; Krischer, J.P.; Palmer, J.P. β cell death and dysfunction during type 1 diabetes development in at-risk individuals. J. Clin. Invest., 2015, 125(3), 1163-1173.
[2]
Rabinovitch, A.; Suarez-Pinzon, W.L. Roles of cytokines in the pathogenesis and therapy of type 1 diabetes. Cell Biochem. Biophys., 2007, 48(2-3), 159-163.
[3]
Yoon, J.W.; Jun, H.S. Autoimmune destruction of pancreatic beta cells. Am. J. Ther., 2005, 12(6), 580-591.
[4]
Bradshaw, E.M.; Raddassi, K.; Elyaman, W.; Orban, T.; Gottlieb, P.A.; Kent, S.C.; Hafler, D.A. Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells. J. Immunol., 2009, 183(7), 4432-4439.
[5]
Bendtzen, K.; Mandrup-Poulsen, T.; Nerup, J.; Nielsen, J.H.; Dinarello, C.A.; Svenson, M. Cytotoxicity of human pi 7 interleukin-1 for pancreatic islets of langerhans. Science, 1986, 232(4757), 1545-1547.
[6]
Aribi, M.; Moulessehoul, S.; Kendouci-Tani, M.; Benabadji, A.B.; Hichami, A.; Khan, N.A. relationship between interleukin-1beta and lipids in type 1 diabetic patients. Med. Sci. Monit., 2007, 13(8), CR372-CR378.
[7]
Azar, S.T.; Tamim, H.; Beyhum, H.N.; Habbal, M.Z.; Almawi, W.Y. Type I (insulin-dependent) diabetes is a th1- and th2-mediated autoimmune disease. Clin. Diagn. Lab. Immunol., 1999, 6(3), 306-310.
[8]
Calabrese, L.H.; Rose-John, S. IL-6 biology: Implications for clinical targeting in rheumatic disease. Nat. Rev. Rheumatol., 2014, 10(12), 720-727.
[9]
Semnani, R.T.; Mahapatra, L.; Moore, V.; Sanprasert, V.; Nutman, T.B. Functional and phenotypic characteristics of alternative activation induced in human monocytes by interleukin-4 or the parasitic nematode brugia malayi. Infect. Immun., 2011, 79(10), 3957-3965.
[10]
Pescovitz, M.D.; Greenbaum, C.J.; Krause-Steinrauf, H.; Becker, D.J.; Gitelman, S.E.; Goland, R.; Gottlieb, P.A.; Marks, J.B.; McGee, P.F.; Moran, A.M.; Raskin, P.; Rodriguez, H. Rituximab, b-lymphocyte depletion, and preservation of beta-cell function. N. Engl. J. Med., 2009, 361(22), 2143-2152.
[11]
Johnson, P.; Glennie, M. The mechanisms of action of rituximab in the elimination of tumor cells. Semin. Oncol., 2003, 30(1), 3-8.
[12]
Carter, P. Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer, 2001, 1(2), 118-129.
[13]
Stern, M.; Herrmann, R. Overview of monoclonal antibodies in cancer therapy: Present and promise. Crit. Rev. Oncol. Hematol., 2005, 54(1), 11-29.
[14]
Uchida, J.; Hamaguchi, Y.; Oliver, J.A.; Ravetch, J.V.; Poe, J.C.; Haas, K.M.; Tedder, T.F. The innate mononuclear phagocyte network depletes b lymphocytes through fc receptor-dependent mechanisms during anti-cd20 antibody immunotherapy. J. Exp. Med., 2004, 199(12), 1659-1669.
[15]
Ravetch, J.V. Fc receptors. Curr. Opin. Immunol., 1997, 9(1), 121-125.
[16]
Richardson, A.; Fedoroff, S. Quantification of cells in culture. In: Protocols for Neural Cell Culture; Humana Press: Totowa, NJ, 1997; pp. 219-233.
[17]
Kitamura, N.; Nishinarita, S.; Takizawa, T.; Tomita, Y.; Horie, T. Cultured human monocytes secrete fibronectin in response to activation by proinflammatory cytokines. Clin. Exp. Immunol., 2000, 120(1), 66-70.
[18]
Laverny, G.; Penna, G.; Vetrano, S.; Correale, C.; Nebuloni, M.; Danese, S.; Adorini, L. Efficacy of a potent and safe vitamin d receptor agonist for the treatment of inflammatory bowel disease. Immunology Letters., 2010, 131(1), 49-58.
[19]
Beum, P.V.; Kennedy, A.D.; Williams, M.E.; Lindorfer, M.A.; Taylor, R.P. The shaving reaction: Rituximab/CD20 complexes are removed from mantle cell lymphoma and chronic lymphocytic leukemia cells by thp-1 monocytes. J. Immunol., 2006, 176(4), 2600-2609.
[20]
Rafiq, S.; Butchar, J.P.; Cheney, C.; Mo, X.; Trotta, R.; Caligiuri, M.; Jarjoura, D.; Tridandapani, S.; Muthusamy, N.; Byrd, J.C. Comparative assessment of clinically utilized cd20-directed antibodies in chronic lymphocytic leukemia cells reveals divergent nk cell, monocyte, and macrophage properties. J. Immunol., 2013, 190(6), 2702-2711.
[21]
Diem, K.; Magaret, A.; Klock, A.; Jin, L.; Zhu, J.; Corey, L. Image analysis for accurately counting cd4+ and cd8+ t cells in human tissue. J. Virol. Methods, 2015, 222, 117-121.
[22]
Safi, W.; Kuehnl, A.; Nüssler, A.; Eckstein, H.H.; Pelisek, J. differentiation of human cd14+ monocytes: An experimental investigation of the optimal culture medium and evidence of a lack of differentiation along the endothelial line. Exp. Mol. Med., 2016, 48e227
[23]
Nouari, W.; Ysmail-Dahlouk, L.; Aribi, M. Vitamin d3 enhances bactericidal activity of macrophage against Pseudomonas aeruginosa. Int. Immunopharmacol., 2016, 30, 94-101.
[24]
Aribi, M. Macrophage bactericidal assays. Methods Mol. Biol., 2018, 1784, 135-149.
[25]
Guevara, I.; Iwanejko, J.; Dembińska-Kieć, A.; Pankiewicz, J.; Wanat, A.; Anna, P.; Gołbek, I.; Bartuś, S.; Malczewska-Malec, M.; Szczudlik, A. Determination of nitrite/nitrate in human biological material by the simple griess reaction. Clinica. Chimica. Acta, 1998, 274(2), 177-188.
[26]
Rouzaut, A.; Subirá, M.L.; de Miguel, C.; Domingo-de-Miguel, E.; González, A.; Santiago, E.; López-Moratalla, N. Co-expression of inducible nitric oxide synthase and arginases in different human monocyte subsets. apoptosis regulated by endogenous NO. Biochim. Biophys. Acta, 1999, 1451(2), 319-333.
[27]
Gitelman, H.J. An improved automated procedure for the determination of calcium in biological specimens. Anal. Biochem., 1967, 18(3), 521-531.
[28]
Aebi, H. Catalase. In: Methods of Enzymatic Analysis; Elsevier, 1974; pp. 673-684.
[29]
Olsen, C.H. Statistics in infection and immunity revisited. Infect. Immun., 2014, 82(3), 916-920.
[30]
Pedersen, A.E.; Jungersen, M.B.; Pedersen, C.D. Monocytes mediate shaving of b-cell-bound anti-cd20 antibodies. Immunology, 2011, 133(2), 239-245.
[31]
Xia, C.Q.; Liu, Y.; Guan, Q. Clare- Salzler, M.J. Antibody-Based And Cellular Therapies Of Type 1 Diabetes. In: Type 1 Diabetes; Escher, A., Ed.; InTech, 2013.
[32]
Xu, X.; Shi, Y.; Cai, Y.; Zhang, Q.; Yang, F.; Chen, H.; Gu, Y.; Zhang, M.; Yu, L.; Yang, T. Inhibition of increased circulating Tfh cell by anti-cd20 monoclonal antibody in patients with type 1 diabetes. PLoS ONE, 2013, 8(11)e79858
[33]
Bour-Jordan, H.; Bluestone, J.A. B cell depletion: A novel therapy for autoimmune diabetes? J. Clin. Invest., 2007, 117(12), 3642-3645.
[34]
Xiu, Y.; Wong, C.P.; Bouaziz, J.D.; Hamaguchi, Y.; Wang, Y.; Pop, S.M.; Tisch, R.M.; Tedder, T.F. B lymphocyte depletion by cd20 monoclonal antibody prevents diabetes in nonobese diabetic mice despite isotype-specific differences in fcγr effector functions. J. IMMUNOL., 2008, 180(5), 2863-2875.
[35]
Thomas, H.E.; Darwiche, R.; Corbett, J.A.; Kay, T.W.H. Interleukin-1 plus -interferon-induced pancreatic -cell dysfunction is mediated by -cell nitric oxide production. Diabetes, 2002, 51(2), 311-316.
[36]
Reiling, N.; Ulmer, A.J.; Duchrow, M.; Ernst, M.; Flad, H.D.; Hauschildt, S. Nitric oxide synthase: MRNA expression of different isoforms in human monocytes/macrophages. Eur. J. Immunol., 1994, 24(8), 1941-1944.
[37]
Cunningham, J.M.; Mabley, J.G.; Green, I.C. Interleukin 1beta-mediated inhibition of arginase in RINm5F cells. Cytokine, 1997, 9(8), 570-576.
[38]
Elliott, T.G.; Cockcroft, J.R.; Groop, P.H.; Viberti, G.C.; Ritter, J.M. Inhibition of nitric oxide synthesis in forearm vasculature of insulin-dependent diabetic patients: Blunted vasoconstriction in patients with microalbuminuria. Clin. Sci., 1993, 85(6), 687-693.
[39]
Rath, M.; Müller, I.; Kropf, P.; Closs, E.I.; Munder, M. Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Front. Immunol., 2014, 5(532)
[40]
Zhai, Z.; Solco, A.; Wu, L.; Wurtele, E.S.; Kohut, M.L.; Murphy, P.A.; Cunnick, J.E. Echinacea increases arginase activity and has anti-inflammatory properties in raw 264.7 macrophage cells, indicative of alternative macrophage activation. J. Ethnopharmacol., 2009, 122(1), 76-85.
[41]
Sato, Y.; Hotta, N.; Sakamoto, N.; Matsuoka, S.; Ohishi, N.; Yagi, K. Lipid peroxide level in plasma of diabetic patients. Biochem. Med., 1979, 21(1), 104-107.
[42]
Giugliano, D.; Ceriello, A.; Paolisso, G. Oxidative stress and diabetic vascular complications. Diabetes Care, 1996, 19(3), 257-267.
[43]
Veal, E.A.; Day, A.M.; Morgan, B.A. Hydrogen peroxide sensing and signaling. Mol. Cell, 2007, 26(1), 1-14.
[44]
Curtsinger, J.M.; Schmidt, C.S.; Mondino, A.; Lins, D.C.; Kedl, R.M.; Jenkins, M.K.; Mescher, M.F. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J. Immunol., 1999, 162(6), 3256-3262.
[45]
Tse, H.M.; Milton, M.J.; Piganelli, J.D. Mechanistic analysis of the immunomodulatory effects of a catalytic antioxidant on antigen-presenting cells: Implication for their use in targeting oxidation-reduction reactions in innate immunity. Free Radic. Biol. Med., 2004, 36(2), 233-247.
[46]
Ysmail-Dahlouk, L.; Nouari, W.; Aribi, M. 1,25-Dihydroxyvitamin D3 down-modulates the production of proinflammatory cytokines and nitric oxide and enhances the phosphorylation of monocyte-expressed stat6 at the recent-onset type 1 diabetes. Immunol. Lett., 2016, 179, 122-130.
[47]
Benghalem, I.; Meziane, W.; Hadjidj, Z.; Ysmail-Dahlouk, L.; Belamri, A.; Mouhadjer, K.; Aribi, M. High-density lipoprotein immunomodulates the functional activities of macrophage and cytokines produced during ex vivo macrophage-CD4+ T cell crosstalk at the recent-onset human type 1 diabetes. Cytokine, 2017, 96, 59-70.
[48]
Bunbury, A.; Potolicchio, I.; Maitra, R.; Santambrogio, L. Functional analysis of monocyte mhc class ii compartments. FASEB J., 2008, 23(1), 164-171.
[49]
McLeish, K.R.; Dean, W.L.; Wellhausen, S.R.; Stelzer, G.T. Role of intracellular calcium in priming of human peripheral blood monocytes by bacterial lipopolysaccharide. Inflammation, 1989, 13(6), 681-692.
[50]
Wright, B.; Zeidman, I.; Greig, R.; Poste, G. Inhibition of macrophage activation by calcium channel blockers and calmodulin antagonists. Cell. Immunol., 1985, 95(1), 46-53.
[51]
Guest, C.B.; Deszo, E.L.; Hartman, M.E.; York, J.M.; Kelley, K.W.; Freund, G.G. Ca2+/calmodulin-dependent kinase kinase alpha is expressed by monocytic cells and regulates the activation profile. PLoS ONE, 2008, 3(2)e1606
[52]
Ainscough, J.S.; Gerberick, G.F.; Kimber, I.; Dearman, R.J. Interleukin-1β processing is dependent on a calcium-mediated interaction with calmodulin. J. Biol. Chem., 2015, 290(52), 31151-31161.
[53]
Ramadan, J.W.; Steiner, S.R.; O’Neill, C.M.; Nunemaker, C.S. The central role of calcium in the effects of cytokines on beta-cell function: Implications for type 1 and type 2 diabetes. Cell Calcium, 2011, 50(6), 481-490.
[54]
Walshe, C.A.; Beers, S.A.; French, R.R.; Chan, C.H.T.; Johnson, P.W.; Packham, G.K.; Glennie, M.J.; Cragg, M.S. Induction of cytosolic calcium flux by CD20 is dependent upon b cell antigen receptor signaling. J. Biol. Chem., 2008, 283(25), 16971-16984.
[55]
Janas, E.; Priest, R.; Wilde, J.I.; White, J.H.; Malhotra, R. Rituxan (anti-CD20 antibody)-induced translocation of CD20 into lipid rafts is crucial for calcium influx and apoptosis. Clin. Exp. Immunol., 2005, 139(3), 439-446.
[56]
Wassmann, S.; Wassmann, K.; Nickenig, G. Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension, 2004, 44(4), 381-386.
[57]
Voetman, A.A.; Roos, D. Endogenous catalase protects human blood phagocytes against oxidative damage by extracellularly generated hydrogen peroxide. Blood, 1980, 56(5), 846-852.
[58]
Zhu, H.; Jia, Z.; Zhang, L.; Yamamoto, M.; Misra, H.P.; Trush, M.A.; Li, Y. Antioxidants and phase 2 enzymes in macrophages: Regulation by NRF2 signaling and protection against oxidative and electrophilic stress. Exp. Biol. Med., 2008, 233(4), 463-474.
[60]
Gabbay, M.A.L.; Sato, M.N.; Duarte, A.J.S.; Dib, S.A. Serum titres of anti-glutamic acid decarboxylase-65 and anti-ia-2 autoantibodies are associated with different immunoregulatory milieu in newly diagnosed type 1 diabetes patients. Clin. Exp. Immunol., 2012, 168(1), 60-67.
[61]
Trinanes, J.; Salido, E.; Fernandez, J.; Rufino, M.; Gonzalez-Posada, J.M.; Torres, A.; Hernandez, D. Type 1 diabetes increases the expression of proinflammatory cytokines and adhesion molecules in the artery wall of candidate patients for kidney transplantation. Diabetes Care, 2012, 35(2), 427-433.
[62]
Sanda, S.; Bollyky, J.; Standifer, N.; Nepom, G.; Hamerman, J.A.; Greenbaum, C. Short-term IL-1beta blockade reduces monocyte CD11B integrin expression in an IL-8 dependent fashion in patients with type 1 diabetes. Clin. Immunol., 2010, 136(2), 170-173.
[63]
Rabinovitch, A.; Suarez-Pinzon, W.L. Cytokines and their roles in pancreatic islet beta-cell destruction and insulin-dependent diabetes mellitus. Biochem. Pharmacol., 1998, 55(8), 1139-1149.
[64]
Dunn, A.J. Mechanisms by which cytokines signal the brain. Int. Rev. Neurobiol., 2002, 52, 43-65.
[65]
Karlsson Faresjo, M.G.E.; Ernerudh, J.; Ludvigsson, J. Cytokine profile in children during the first 3 months after the diagnosis of type 1 diabetes. Scand. J. Immunol., 2004, 59(5), 517-526.
[66]
Atkinson, M.A.; Eisenbarth, G.S.; Michels, A.W. Type 1 diabetes. Lancet, 2014, 383(9911), 69-82.
[67]
Durinovic-Bello, I. Autoimmune diabetes: The role of t cells, mhc molecules and autoantigens. Autoimmunity, 1998, 27(3), 159-177.
[68]
Kristiansen, O.P.; Mandrup-Poulsen, T. Interleukin-6 and diabetes: The good, the bad, or the indifferent? Diabetes, 2005, 54(Suppl. 2), S114-S124.
[69]
Campbell, I.L.; Kay, T.W.; Oxbrow, L.; Harrison, L.C. Essential role for interferon-gamma and interleukin-6 in autoimmune insulin-dependent diabetes in nod/wehi mice. J. Clin. Invest., 1991, 87(2), 739-742.
[70]
Chen, Y.M.; Chen, H.H.; Lai, K.L.; Hung, W.T.; Lan, J.L.; Chen, D.Y. The effects of rituximab therapy on released interferon- levels in the quantiferon assay among ra patients with different status of mycobacterium tuberculosis infection. Rheumatology, 2013, 52(4), 697-704.
[71]
Barr, T.A.; Shen, P.; Brown, S.; Lampropoulou, V.; Roch, T.; Lawrie, S.; Fan, B.; O’Connor, R.A.; Anderton, S.M.; Bar-Or, A.; Fillatreau, S.; Gray, D. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing b cells. J. Exp. Med., 2012, 209(5), 1001-1010.
[72]
Monson, N.L.; Cravens, P.; Hussain, R.; Harp, C.T.; Cummings, M.; de Pilar Martin, M.; Ben, L.H.; Do, J.; Lyons, J.A.; Lovette-Racke, A.; Stüve, O.; Shlomchik, M.; Eagar, T.N. Rituximab therapy reduces organ-specific t cell responses and ameliorates experimental autoimmune encephalomyelitis. PLoS ONE, 2011, 6(2)e17103
[73]
Russell, M.A.; Morgan, N.G. The impact of anti-inflammatory cytokines on the pancreatic β-cell. Islets, 2014, 6(3)e950547
[74]
Xiong, X.; Barreto, G.E.; Xu, L.; Ouyang, Y.B.; Xie, X.; Giffard, R.G. Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke, 2011, 42(7), 2026-2032.
[75]
Colotta, F.; Re, F.; Muzio, M.; Bertini, R.; Polentarutti, N.; Sironi, M.; Giri, J.G.; Dower, S.K.; Sims, J.E.; Mantovani, A. Interleukin-1 type ii receptor: A decoy target for IL-1 that is regulated by IL-4. Science, 1993, 261(5120), 472-475.
[76]
Byrne, A.; Reen, D.J. Lipopolysaccharide induces rapid production of IL-10 by monocytes in the presence of apoptotic neutrophils. J. Immunol., 2002, 168(4), 1968-1977.
[77]
Oishi, S.; Takano, R.; Tamura, S.; Tani, S.; Iwaizumi, M.; Hamaya, Y.; Takagaki, K.; Nagata, T.; Seto, S.; Horii, T.; Osawa, S.; Furuta, T.; Miyajima, H.; Sugimoto, K. M2 polarization of murine peritoneal macrophages induces regulatory cytokine production and suppresses t-cell proliferation. Immunology, 2016, 149(3), 320-328.
[78]
Sabat, R.; Grütz, G.; Warszawska, K.; Kirsch, S.; Witte, E.; Wolk, K.; Geginat, J. Biology of interleukin-10. Cytokine Growth Factor Rev., 2010, 21(5), 331-344.
[79]
Cope, A.; Le Friec, G.; Cardone, J.; Kemper, C. The Th1 life cycle: molecular control of IFN-γ to IL-10 switching. Trends Immunol., 2011, 32(6), 278-286.
[80]
de Waal Malefyt, R.; Abrams, J.; Bennett, B.; Figdor, C.G.; de Vries, J.E. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: An autoregulatory role of IL-10 produced by monocytes. J. Exp. Med., 1991, 174(5), 1209-1220.
[81]
Oswald, I.P.; Wynn, T.A.; Sher, A.; James, S.L. Interleukin 10 inhibits macrophage microbicidal activity by blocking the endogenous production of tumor necrosis factor alpha required as a costimulatory factor for interferon gamma-induced activation. Proc. Natl. Acad. Sci. USA, 1992, 89(18), 8676-8680.
[82]
Shalev, I.; Schmelzle, M.; Robson, S.C.; Levy, G. Making sense of regulatory t cell suppressive function. Semin. Immunol., 2011, 23(4), 282-292.
[83]
Gallo, P.; Gonçalves, R.; Mosser, D.M. The influence of IgG density and macrophage Fc (Gamma) receptor cross-linking on phagocytosis and IL-10 production. Immunol. Lett., 2010, 133(2), 70-77.
[84]
Vogelpoel, L.T.C.; Baeten, D.L.P.; de Jong, E.C.; den Dunnen, J. Control of cytokine production by human Fc gamma receptors: Implications for pathogen defense and autoimmunity. Front. Immunol., 2015, 6, 79.
[85]
Boruchov, A.M.; Heller, G.; Veri, M.C.; Bonvini, E.; Ravetch, J.V.; Young, J.W. Activating and inhibitory IgG Fc receptors on human dcs mediate opposing functions. J. Clin. Invest., 2005, 115(10), 2914-2923.
[86]
Delamaire, M.; Maugendre, D.; Moreno, M.; Le Goff, M.C.; Allannic, H.; Genetet, B. Impaired leucocyte functions in diabetic patients. Diabet. Med., 1997, 14(1), 29-34.
[87]
Wilson, R.M.; Reeves, W.G. Neutrophil phagocytosis and killing in insulin-dependent diabetes. Clin. Exp. Immunol., 1986, 63(2), 478-484.
[88]
Geerlings, S.E.; Hoepelman, A.I. Immune dysfunction in patients with diabetes mellitus (dm). FEMS Immunol. Med. Microbiol., 1999, 26(3-4), 259-265.
[89]
Church, A.K.; VanDerMeid, K.R.; Baig, N.A.; Baran, A.M.; Witzig, T.E.; Nowakowski, G.S.; Zent, C.S. Anti-CD20 monoclonal antibody-dependent phagocytosis of chronic lymphocytic leukaemia cells by autologous macrophages. Clin. Exp. Immunol., 2016, 183(1), 90-101.
[90]
Chao, M.P.; Alizadeh, A.A.; Tang, C.; Myklebust, J.H.; Varghese, B.; Gill, S.; Jan, M.; Cha, A.C.; Chan, C.K.; Tan, B.T.; Park, C.Y.; Zhao, F.; Kohrt, H.E.; Malumbres, R.; Briones, J.; Gascoyne, R.D.; Lossos, I.S.; Levy, R.; Weissman, I.L.; Majeti, R. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-hodgkin lymphoma. Cell, 2010, 142(5), 699-713.
[91]
Burd, J.F.; Usategui-Gomez, M. A colorimetric assay for serum lactate dehydrogenase. Clin. Chim. Acta, 1973, 46(3), 223-227.
[92]
Smith, S.M.; Wunder, M.B.; Norris, D.A.; Shellman, Y.G. A simple protocol for using a ldh-based cytotoxicity assay to assess the effects of death and growth inhibition at the same time. PLoS ONE, 2011, 6(11)e26908