Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

In Silico Design, Synthesis of Hybrid Combinations: Quercetin Based MAO Inhibitors with Antioxidant Potential

Author(s): Priyanka Dhiman, Neelam Malik and Anurag Khatkar*

Volume 19, Issue 2, 2019

Page: [156 - 170] Pages: 15

DOI: 10.2174/1568026619666190212122403

Price: $65

Abstract

Background: Monoamine oxidase (MAO) is a critical target used for the cure of neuropsychological diseases.

Objective: A series of quercetin based derivatives was designed, synthesized, and evaluated as novel multifunctional agents against monoamine oxidase A and B with antioxidant potential.

Methods: Hybrid derivatives based on quercetin were synthesized and screened for hMAO inhibition along with antioxidant activity. Molecular docking was performed to explicate the rationale of the different MAO (IC50) values and to explain the presence of inhibitory activity against specificity, respectively.

Results: The results of in vitro hMAO inhibition showed that compound 8a, 6c, and 4 were found as potent hMAO-A inhibitors whereas compounds 6b, 6a, and 6d were observed as potent hMAO-B inhibitors. The DPPH radical scavenging activity showed that compounds 6b, 6a, and 4 exhibited a promising antioxidant potential with IC50 values 5.931±0.007, 6.421±0.037, and 8.516±0.098 respectively. Moreover, the compound 6b, 6a, and 4 exhibited remarkable H2O2 scavenging potential with IC50 values 05.80±0.004 µM, 06.20±0.009 µM, and 07.66±0.009 µM respectively.

Conclusion: The results of docking studies were found in good correlation with experimental MAO inhibition studies. Moreover, the mechanistic insight into the docking poses was also explored by binding interactions of quercetin based derivatives inside the dynamic site of hMAO-A and hMAO-B. It was also noticed that the potent MAO inhibitors were also acting as better antioxidants as evaluated through DPPH radical scavenging activity and H2O2 radical scavenging assay.

Keywords: Neurological disorders, Monoamine oxidase, Quercetin derivatives, Oxidative stress, Free radical scavenging, In silico design.

« Previous
Graphical Abstract

[1]
Binda, C.; Hubálek, F.; Li, M.; Edmondson, D.E.; Mattevi, A. Crystal structure of human monoamine oxidase B, A drug target enzyme monotopically inserted into the mitochondrial outer membrane. FEBS Lett., 2004, 564(3), 225-228.
[http://dx.doi.org/ 10.1016/S0014-5793(04)00209-1] [PMID: 15111100]
[2]
Youdim, M.B.; Edmondson, D.; Tipton, K.F. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci., 2006, 7(4), 295-309.
[http://dx.doi.org/10.1038/nrn1883] [PMID: 16552415]
[3]
Farias, F.M.; Passos, C.S.; Arbo, M.D.; Zuanazzi, J.A.S.; Steffen, V.M.; Henriques, A.T. Monoamine levels in rat striatum after acute intraperitoneal injection of strictosidinic acid isolated from Psychotria myriantha Mull. Arg. (Rubiaceae). Phytomedicine, 2010, 17(3-4), 289-291.
[http://dx.doi.org/10.1016/j.phymed. 2009.05. 008] [PMID: 19576739]
[4]
Larit, F.; Elokely, K.M.; Chaurasiya, N.D.; Benyahia, S.; Nael, M.A.; León, F.; Abu-Darwish, M.S.; Efferth, T.; Wang, Y.H.; Belouahem-Abed, D.; Benayache, S.; Tekwani, B.L.; Cutler, S.J. Inhibition of human monoamine oxidase A and B by flavonoids isolated from two Algerian medicinal plants. Phytomedicine, 2018, 40(5), 27-36.
[http://dx.doi.org/10.1016/j.phymed.2017.12.032] [PMID: 29496172]
[5]
Dhiman, P.; Malik, N.; Khatkar, A.; Kulharia, M. Antioxidant, xanthine oxidase and monoamine oxidase inhibitory potential of coumarins: A review. Curr. Org. Chem., 2017, 21(4), 294-304.
[http://dx.doi.org/10.2174/1385272820666161021103547]
[6]
Binda, C.; Newton-Vinson, P.; Hubálek, F.; Edmondson, D.E.; Mattevi, A. Structure of human monoamine oxidase B, A drug target for the treatment of neurological disorders. Nat. Struct. Biol., 2002, 9(1), 22-26.
[http://dx.doi.org/10.1038/nsb732] [PMID: 11753429]
[7]
Naoi, M.; Maruyama, W.; Inaba-Hasegawa, K. Type A and B monoamine oxidase in age-related neurodegenerative disorders: their distinct roles in neuronal death and survival. Curr. Top. Med. Chem., 2012, 12(20), 2177-2188.
[http://dx.doi.org/ 10.2174/156802612805219950] [PMID: 23231395]
[8]
Ramsay, R.R. Monoamine oxidases: The biochemistry of the proteins as targets in medicinal chemistry and drug discovery. Curr. Top. Med. Chem., 2012, 12(20), 2189-2209.
[http://dx.doi.org/ 10.2174/156802612805219978] [PMID: 23231396]
[9]
Dhiman, P.; Malik, N.; Khatkar, A. Docking-related survey on natural-product-based new monoamine oxidase inhibitors and their therapeutic potential. Comb. Chem. High Throughput Screen., 2017, 20(6), 474-491.
[http://dx.doi.org/10.2174/1386207320666170414102814] [PMID: 28413973]
[10]
Shoichet, B.K. Virtual screening of chemical libraries. Nature, 2004, 432(7019), 862-865.
[http://dx.doi.org/10.1038/nature03197] [PMID: 15602552]
[11]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
[12]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[13]
Secci, D.; Carradori, S.; Bolasco, A.; Bizzarri, B.; D’Ascenzio, M.; Maccioni, E. Discovery and optimization of pyrazoline derivatives as promising monoamine oxidase inhibitors. Curr. Top. Med. Chem., 2012, 12(20), 2240-2257.
[http://dx.doi.org/10.2174/156802612805220057] [PMID: 23276158]
[14]
Lee, M.H.; Lin, R.D.; Shen, L.Y.; Yang, L.L.; Yen, K.Y.; Hou, W.C. Monoamine oxidase B and free radical scavenging activities of natural flavonoids in Melastoma candidum D. Don. J. Agric. Food Chem., 2001, 49(11), 5551-5555.
[http://dx.doi.org/10.1021/jf010622j] [PMID: 11714358]
[15]
Yáñez, M.; Padín, J.F.; Arranz-Tagarro, J.A.; Camiña, M.; Laguna, R. History and therapeutic use of MAO-A inhibitors: A historical perspective of mao-a inhibitors as antidepressant drug. Curr. Top. Med. Chem., 2012, 12(20), 2275-2282.
[http://dx.doi.org/10.2174/156802612805220011] [PMID: 23231399]
[16]
Saaby, L.; Rasmussen, H.B.; Jäger, A.K. MAO-A inhibitory activity of quercetin from Calluna vulgaris (L.) Hull. J. Ethnopharmacol., 2009, 121(1), 178-181.
[http://dx.doi.org/ 10.1016/j.jep.2008.10.012] [PMID: 19013512]
[17]
Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, web of science, and Google scholar: Strengths and weaknesses. FASEB J., 2008, 22(2), 338-342.
[http://dx.doi.org/10.1096/fj.07-9492LSF] [PMID: 17884971]
[18]
de Oliveira, M.R.; Nabavi, S.M.; Braidy, N.; Setzer, W.N.; Ahmed, T.; Nabavi, S.F. Quercetin and the mitochondria: A mechanistic view. Biotechnol. Adv., 2016, 34(5), 532-549.
[http://dx.doi.org/ 10.1016/j.biotechadv.2015.12.014] [PMID: 26740171]
[19]
Bandaruk, Y.; Mukai, R.; Terao, J. Cellular uptake of quercetin and luteolin and their effects on monoamine oxidase-A in human neuroblastoma SH-SY5Y cells. Toxicol. Rep., 2014, 1(1), 639-649.
[http://dx.doi.org/10.1016/j.toxrep.2014.08.016] [PMID: 28962277]
[20]
Rendeiro, C.; Rhodes, J.S.; Spencer, J.P. The mechanisms of action of flavonoids in the brain: Direct versus indirect effects. Neurochem. Int., 2015, 89(12), 126-139.
[http://dx.doi.org/ 10.1016/j.neuint.2015.08.002] [PMID: 26260546]
[21]
Ishisaka, A.; Ichikawa, S.; Sakakibara, H.; Piskula, M.K.; Nakamura, T.; Kato, Y.; Ito, M.; Miyamoto, K.; Tsuji, A.; Kawai, Y.; Terao, J. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radic. Biol. Med., 2011, 51(7), 1329-1336.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.017] [PMID: 21741473]
[22]
Han, X.H.; Hong, S.S.; Hwang, J.S.; Lee, M.K.; Hwang, B.Y.; Ro, J.S. Monoamine oxidase inhibitory components from Cayratia japonica. Arch. Pharm. Res., 2007, 30(1), 13-17.
[http://dx.doi.org/10.1007/BF02977772] [PMID: 17328236]
[23]
Bandaruk, Y.; Mukai, R.; Kawamura, T.; Nemoto, H.; Terao, J. Evaluation of the inhibitory effects of quercetin-related flavonoids and tea catechins on the monoamine oxidase-A reaction in mouse brain mitochondria. J. Agric. Food Chem., 2012, 60(41), 10270-10277.
[http://dx.doi.org/10.1021/jf303055b] [PMID: 23009399]
[24]
Yoshino, S.; Hara, A.; Sakakibara, H.; Kawabata, K.; Tokumura, A.; Ishisaka, A.; Kawai, Y.; Terao, J. Effect of quercetin and glucuronide metabolites on the monoamine oxidase-A reaction in mouse brain mitochondria. Nutrition, 2011, 27(7-8), 847-852.
[http://dx.doi.org/10.1016/j.nut.2010.09.002] [PMID: 21371861]
[25]
Chimenti, F.; Cottiglia, F.; Bonsignore, L.; Casu, L.; Casu, M.; Floris, C.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.; Befani, O.; Turini, P.; Alcaro, S.; Ortuso, F.; Trombetta, G.; Loizzo, A.; Guarino, I. Quercetin as the active principle of Hypericum hircinum exerts a selective inhibitory activity against MAO-A: extraction, biological analysis, and computational study. J. Nat. Prod., 2006, 69(6), 945-949.
[http://dx.doi.org/10.1021/np060015w] [PMID: 16792415]
[26]
Ji, H.F.; Zhang, H.Y. Theoretical evaluation of flavonoids as multipotent agents to combat Alzheimer’s disease. J. Mol. Struc-Theochem., 2006, 767(1-3), 3-9.
[http://dx.doi.org/10.1016/j.theochem.2006.04.041]
[27]
Carradori, S.; Gidaro, M.C.; Petzer, A.; Costa, G.; Guglielmi, P.; Chimenti, P.; Alcaro, S.; Petzer, J.P. Inhibition of human monoamine oxidase: biological and molecular modeling studies on selected natural flavonoids. J. Agric. Food Chem., 2016, 64(47), 9004-9011.
[http://dx.doi.org/10.1021/acs.jafc.6b03529] [PMID: 27933876]
[28]
Dhiman, P.; Malik, N.; Khatkar, A. 3D-QSAR and in silico studies of natural products and related derivatives as monoamine oxidase inhibitors. Curr. Neuropharmacol., 2018, 16(6), 881-900.
[http://dx.doi.org/10.2174/1570159X15666171128143650] [PMID: 29189167]
[29]
Anderson, M.C.; Hasan, F.; McCrodden, J.M.; Tipton, K.F. Monoamine oxidase inhibitors and the cheese effect. Neurochem. Res., 1993, 18(11), 1145-1149.
[http://dx.doi.org/10.1007/BF00978365] [PMID: 8255365]
[30]
Son, S.Y.; Ma, J.; Kondou, Y.; Yoshimura, M.; Yamashita, E.; Tsukihara, T. Structure of human monoamine oxidase A at 2.2-A resolution: the control of opening the entry for substrates/inhibitors. Proc. Natl. Acad. Sci. USA, 2008, 105(15), 5739-5744.
[http://dx.doi.org/10.1073/pnas.0710626105] [PMID: 18391214]
[31]
Binda, C.; Wang, J.; Pisani, L.; Caccia, C.; Carotti, A.; Salvati, P.; Edmondson, D.E.; Mattevi, A. Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. J. Med. Chem., 2007, 50(23), 5848-5852.
[http://dx.doi.org/10.1021/jm070677y] [PMID: 17915852]
[32]
Dhiman, P.; Malik, N.; Verma, P.K.; Khatkar, A. Synthesis and biological evaluation of thiazolo and imidazo N-(4-nitrophenyl)-7-methyl-5-aryl-pyrimidine-6 carboxamide derivatives. Res. Chem. Intermed., 2015, 41(11), 8699-8711.
[http://dx.doi.org/ 10.1007/s11164-015-1922-8]
[33]
Wang, S.Y.; Jiao, H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J. Agric. Food Chem., 2000, 48(11), 5677-5684.
[http://dx.doi.org/10.1021/jf000766i] [PMID: 11087538]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy