Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

The Effect of Resveratrol on Neurodegenerative Disorders: Possible Protective Actions Against Autophagy, Apoptosis, Inflammation and Oxidative Stress

Author(s): Mohammad H. Pourhanifeh, Rana Shafabakhsh, Russel J. Reiter and Zatollah Asemi*

Volume 25, Issue 19, 2019

Page: [2178 - 2191] Pages: 14

DOI: 10.2174/1381612825666190717110932

Price: $65

Abstract

The prevalence of neurodegenerative disorders characterized by the loss of neuronal function is rapidly increasing. The pathogenesis of the majority of these diseases is not entirely clear, but current evidence has shown the possibility that autophagy, apoptosis, inflammation and oxidative stress are involved. The present review summarizes the therapeutic effects of resveratrol on neurodegenerative disorders, based on the especially molecular biology of these diseases. The PubMed, Cochrane, Web of Science and Scopus databases were searched for studies published in English until March 30th, 2019 that contained data for the role of inflammation, oxidative stress, angiogenesis and apoptosis in the neurodegenerative disorders. There are also studies documenting the role of molecular processes in the progression of central nervous system diseases. Based on current evidence, resveratrol has potential properties that may reduce cell damage due to inflammation. This polyphenol affects cellular processes, including autophagy and the apoptosis cascade under stressful conditions. Current evidence supports the beneficial effects of resveratrol on the therapy of neurodegenerative disorders.

Keywords: Resveratrol, Parkinson’s disease, autophagy, apoptosis, inflammation, oxidative stress.

[1]
Luheshi LM, Crowther DC, Dobson CM. Protein misfolding and disease: From the test tube to the organism. Curr Opin Chem Biol 2008; 12(1): 25-31.
[http://dx.doi.org/10.1016/j.cbpa.2008.02.011] [PMID: 18295611]
[2]
Xilouri M, Stefanis L. Autophagy in the central nervous system: Implications for neurodegenerative disorders. CNS Neurol Disord Drug Targets 2010; 9(6): 701-19.
[http://dx.doi.org/10.2174/187152710793237421] [PMID: 20942791]
[3]
Walker LC, LeVine H. The cerebral proteopathies: Neurodegenerative disorders of protein conformation and assembly. Mol Neurobiol 2000; 21(1-2): 83-95.
[http://dx.doi.org/10.1385/MN:21:1-2:083] [PMID: 11327151]
[4]
Nijholt DA, De Kimpe L, Elfrink HL, Hoozemans JJ, Scheper W. Removing protein aggregates: The role of proteolysis in neurodegeneration. Curr Med Chem 2011; 18(16): 2459-76.
[http://dx.doi.org/10.2174/092986711795843236] [PMID: 21568912]
[5]
Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 2005; 6(1): 79-87.
[http://dx.doi.org/10.1038/nrm1552] [PMID: 15688069]
[6]
Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 2006; 443(7113): 780-6.
[http://dx.doi.org/10.1038/nature05291] [PMID: 17051204]
[7]
Agostini M, Tucci P, Melino G. Cell death pathology: Perspective for human diseases. Biochem Biophys Res Commun 2011; 414(3): 451-5.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.081] [PMID: 21964290]
[8]
Hellwig CT, Passante E, Rehm M. The molecular machinery regulating apoptosis signal transduction and its implication in human physiology and pathophysiologies. Curr Mol Med 2011; 11(1): 31-47.
[http://dx.doi.org/10.2174/156652411794474400] [PMID: 21189119]
[9]
Ramassamy C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: A review of their intracellular targets. Eur J Pharmacol 2006; 545(1): 51-64.
[http://dx.doi.org/10.1016/j.ejphar.2006.06.025] [PMID: 16904103]
[10]
Pasinetti GM, Wang J, Ho L, Zhao W, Dubner L. Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim Biophys Acta 2015; 1852(6): 1202-8.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.006] [PMID: 25315300]
[11]
Kim J, Lee HJ, Lee KW. Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J Neurochem 2010; 112(6): 1415-30.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06562.x] [PMID: 20050972]
[12]
Anandhan A, Janakiraman U, Manivasagam T. Theaflavin ameliorates behavioral deficits, biochemical indices and monoamine transporters expression against subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson’s disease. Neuroscience 2012; 218: 257-67.
[http://dx.doi.org/10.1016/j.neuroscience.2012.05.039] [PMID: 22634505]
[13]
Chu KO, Chan SO, Pang CP, Wang CC. Pro-oxidative and antioxidative controls and signaling modification of polyphenolic phytochemicals: Contribution to health promotion and disease prevention? J Agric Food Chem 2014; 62(18): 4026-38.
[http://dx.doi.org/10.1021/jf500080z] [PMID: 24779775]
[14]
Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000; 1(2): 120-9.
[http://dx.doi.org/10.1038/35040009] [PMID: 11253364]
[15]
Helmer C, Peuchant E, Letenneur L, et al. Association between antioxidant nutritional indicators and the incidence of dementia: Results from the PAQUID prospective cohort study. Eur J Clin Nutr 2003; 57(12): 1555-61.
[http://dx.doi.org/10.1038/sj.ejcn.1601724] [PMID: 14647220]
[16]
Bournival J, Quessy P, Martinoli MG. Protective effects of resveratrol and quercetin against MPP+ -induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell Mol Neurobiol 2009; 29(8): 1169-80.
[http://dx.doi.org/10.1007/s10571-009-9411-5] [PMID: 19466539]
[17]
Kulkarni SS, Cantó C. The molecular targets of resveratrol. Biochim Biophys Acta 2015; 1852(6): 1114-23.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.005] [PMID: 25315298]
[18]
Yang T, Wang L, Zhu M, Zhang L, Yan L. Properties and molecular mechanisms of resveratrol: A review. Pharmazie 2015; 70(8): 501-6.
[PMID: 26380517]
[19]
Song YM, Ha YM, Kim JA, et al. Synthesis of novel azo-resveratrol, azo-oxyresveratrol and their derivatives as potent tyrosinase inhibitors. Bioorg Med Chem Lett 2012; 22(24): 7451-5.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.050] [PMID: 23142612]
[20]
Regev-Shoshani G, Shoseyov O, Bilkis I, Kerem Z. Glycosylation of resveratrol protects it from enzymic oxidation. Biochem J 2003; 374(Pt 1): 157-63.
[http://dx.doi.org/10.1042/bj20030141] [PMID: 12697026]
[21]
Keylor MH, Matsuura BS, Stephenson CR. Chemistry and biology of resveratrol-derived natural products. Chem Rev 2015; 115(17): 8976-9027.
[http://dx.doi.org/10.1021/cr500689b] [PMID: 25835567]
[22]
Vastano BC, Chen Y, Zhu N, Ho C-T, Zhou Z, Rosen RT. Isolation and identification of stilbenes in two varieties of Polygonum cuspidatum. J Agric Food Chem 2000; 48(2): 253-6.
[http://dx.doi.org/10.1021/jf9909196] [PMID: 10691624]
[23]
Albani D, Polito L, Signorini A, Forloni G. Neuroprotective properties of resveratrol in different neurodegenerative disorders. Biofactors 2010; 36(5): 370-6.
[http://dx.doi.org/10.1002/biof.118] [PMID: 20848560]
[24]
Vang O, Ahmad N, Baile CA, et al. What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS One 2011; 6(6)e19881
[http://dx.doi.org/10.1371/journal.pone.0019881] [PMID: 21698226]
[25]
Singh N, Agrawal M, Doré S. Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models. ACS Chem Neurosci 2013; 4(8): 1151-62.
[http://dx.doi.org/10.1021/cn400094w] [PMID: 23758534]
[26]
Wu Y, Li X, Zhu JX, et al. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 2011; 19(3): 163-74.
[http://dx.doi.org/10.1159/000328516] [PMID: 21778691]
[27]
Chen ZJ, Yang YF, Zhang YT, Yang DH. Dietary total prenylflavonoids from the fruits of psoralea corylifolia l. prevents age-related cognitive deficits and down-regulates Alzheimer’s markers in SAMP8 mice. Molecules 2018; 23(1)
[http://dx.doi.org/10.3390/molecules23010196] [http://dx.doi.org/10.1007/s11357-012-9489-4] [PMID: 23129026]
[28]
Liu C, Shi Z, Fan L, Zhang C, Wang K, Wang B. Resveratrol improves neuron protection and functional recovery in rat model of spinal cord injury. Brain Res 2011; 1374: 100-9.
[http://dx.doi.org/10.1016/j.brainres.2010.11.061] [PMID: 21111721]
[29]
Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 2006; 16(3): 296-300.
[http://dx.doi.org/10.1016/j.cub.2005.12.038] [PMID: 16461283]
[30]
Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003; 425(6954): 191-6.
[http://dx.doi.org/10.1038/nature01960] [PMID: 12939617]
[31]
Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev 2007; 128(10): 546-52.
[http://dx.doi.org/10.1016/j.mad.2007.07.007] [PMID: 17875315]
[32]
Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006; 444(7117): 337-42.
[http://dx.doi.org/10.1038/nature05354] [PMID: 17086191]
[33]
Porquet D, Casadesús G, Bayod S, et al. Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age (Dordr) 2013; 35(5): 1851-65.
[http://dx.doi.org/10.1007/s11357-012-9489-4] [PMID: 23129026]
[34]
Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases. (Review) Mol Med Rep 2016; 13(4): 3391-6.
[http://dx.doi.org/[http://dx.doi.org/10.3892/mmr.2016.4948] [PMID: 26935478]
[35]
McManus RM, Heneka MT. Role of neuroinflammation in neurodegeneration: New insights. Alzheimers Res Ther 2017; 9(1): 14.
[http://dx.doi.org/10.1186/s13195-017-0241-2] [PMID: 28259169]
[36]
Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science 2016; 353(6301): 777-83.
[http://dx.doi.org/10.1126/science.aag2590] [PMID: 27540165]
[37]
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140(6): 918-34.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[38]
Esiri MM. The interplay between inflammation and neurodegeneration in CNS disease. J Neuroimmunol 2007; 184(1-2): 4-16.
[http://dx.doi.org/10.1016/j.jneuroim.2006.11.013] [PMID: 17187866]
[39]
Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362(6415): 59-62.
[http://dx.doi.org/10.1038/362059a0] [PMID: 8446170]
[40]
Abe K, Pan LH, Watanabe M, Kato T, Itoyama Y. Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neurosci Lett 1995; 199(2): 152-4.
[http://dx.doi.org/10.1016/0304-3940(95)12039-7] [PMID: 8584246]
[41]
Fitzmaurice PS, Shaw IC, Kleiner HE, et al. Evidence for DNA damage in amyotrophic lateral sclerosis. Muscle Nerve 1996; 19(6): 797-8.
[PMID: 8609941]
[42]
Shaw PJ, Ince PG, Falkous G, Mantle D. Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol 1995; 38(4): 691-5.
[http://dx.doi.org/10.1002/ana.410380424] [PMID: 7574472]
[43]
Miura M. Apoptotic and non-apoptotic caspase functions in neural development. Neurochem Res 2011; 36(7): 1253-60.
[http://dx.doi.org/10.1007/s11064-010-0341-x] [PMID: 21136153]
[44]
Tendi EA, Cunsolo R, Bellia D, et al. Drug target identification for neuronal apoptosis through a genome scale screening. Curr Med Chem 2010; 17(26): 2906-20.
[http://dx.doi.org/10.2174/092986710792065081] [PMID: 20858172]
[45]
Yakovlev AG, Ota K, Wang G, et al. Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J Neurosci 2001; 21(19): 7439-46.
[http://dx.doi.org/10.1523/JNEUROSCI.21-19-07439.2001] [PMID: 11567033]
[46]
Motoyama N, Wang F, Roth KA, et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 1995; 267(5203): 1506-10.
[http://dx.doi.org/10.1126/science.7878471] [PMID: 7878471]
[47]
Ghavami S, Shojaei S, Yeganeh B, et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 2014; 112: 24-49.
[http://dx.doi.org/10.1016/j.pneurobio.2013.10.004] [PMID: 24211851]
[48]
Johnson MD, Kinoshita Y, Xiang H, Ghatan S, Morrison RS. Contribution of p53-dependent caspase activation to neuronal cell death declines with neuronal maturation. J Neurosci 1999; 19(8): 2996-3006.
[http://dx.doi.org/10.1523/JNEUROSCI.19-08-02996.1999] [PMID: 10191317]
[49]
Cho YS, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 2009; 137(6): 1112-23.
[http://dx.doi.org/10.1016/j.cell.2009.05.037] [PMID: 19524513]
[50]
Mughal W, Dhingra R, Kirshenbaum LA. Striking a balance: Autophagy, apoptosis, and necrosis in a normal and failing heart. Curr Hypertens Rep 2012; 14(6): 540-7.
[http://dx.doi.org/10.1007/s11906-012-0304-5] [PMID: 23001875]
[51]
He LQ, Lu JH, Yue ZY. Autophagy in ageing and ageing-associated diseases. Acta Pharmacol Sin 2013; 34(5): 605-11.
[http://dx.doi.org/10.1038/aps.2012.188] [PMID: 23416930]
[52]
Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008; 457(7128): 1069-75.
[53]
Lee J-A. Autophagy in neurodegeneration: Two sides of the same coin. BMB Rep 2009; 42(6): 324-30.
[http://dx.doi.org/10.5483/BMBRep.2009.42.6.324] [PMID: 19558789]
[54]
Kesidou E, Lagoudaki R, Touloumi O, Poulatsidou K-N, Simeonidou C. Autophagy and neurodegenerative disorders. Neural Regen Res 2013; 8(24): 2275-83.
[PMID: 25206537]
[55]
Lee J-A. Neuronal autophagy: A housekeeper or a fighter in neuronal cell survival? Exp Neurobiol 2012; 21(1): 1-8.
[http://dx.doi.org/10.5607/en.2012.21.1.1] [PMID: 22438673]
[56]
Del Roso A, Vittorini S, Cavallini G, et al. Ageing-related changes in the in vivo function of rat liver macroautophagy and proteolysis. Exp Gerontol 2003; 38(5): 519-27.
[http://dx.doi.org/10.1016/S0531-5565(03)00002-0] [PMID: 12742529]
[57]
Cataldo AM, Hamilton DJ, Barnett JL, Paskevich PA, Nixon RA. Properties of the endosomal-lysosomal system in the human central nervous system: Disturbances mark most neurons in populations at risk to degenerate in Alzheimer’s disease. J Neurosci 1996; 16(1): 186-99.
[http://dx.doi.org/10.1523/JNEUROSCI.16-01-00186.1996] [PMID: 8613784]
[58]
Kegel KB, Kim M, Sapp E, et al. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci 2000; 20(19): 7268-78.
[http://dx.doi.org/10.1523/JNEUROSCI.20-19-07268.2000] [PMID: 11007884]
[59]
Anglade P, Vyas S, Javoy-Agid F, et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 1997; 12(1): 25-31.
[PMID: 9046040]
[60]
Liberski PP, Sikorska B, Bratosiewicz-Wasik J, Gajdusek DC, Brown P. Neuronal cell death in transmissible spongiform encephalopathies (prion diseases) revisited: From apoptosis to autophagy. Int J Biochem Cell Biol 2004; 36(12): 2473-90.
[http://dx.doi.org/10.1016/j.biocel.2004.04.016] [PMID: 15325586]
[61]
Lees AJ, Hardy J, Revesz T. Parkinson’s disease. Lancet 2009; 373(9680): 2055-66.
[http://dx.doi.org/10.1016/S0140-6736(09)60492-X] [PMID: 19524782]
[62]
Ibanez L, Dube U, Saef B, et al. Parkinson disease polygenic risk score is associated with Parkinson disease status and age at onset but not with alpha-synuclein cerebrospinal fluid levels. BMC Neurol 2017; 17(1): 198.
[http://dx.doi.org/10.1186/s12883-017-0978-z] [PMID: 29141588]
[63]
Hetz C, Mollereau B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 2014; 15(4): 233-49.
[http://dx.doi.org/10.1038/nrn3689] [PMID: 24619348]
[64]
Hu ZY, Chen B, Zhang JP, Ma YY. Up-regulation of autophagy-related gene 5 (ATG5) protects dopaminergic neurons in a zebrafish model of Parkinson’s disease. J Biol Chem 2017; 292(44): 18062-74.
[http://dx.doi.org/10.1074/jbc.M116.764795] [PMID: 28928221]
[65]
Sheng YL, Chen X, Hou XO, et al. Urate promotes SNCA/α-synuclein clearance via regulating mTOR-dependent macroautophagy. Exp Neurol 2017; 297: 138-47.
[http://dx.doi.org/10.1016/j.expneurol.2017.08.007] [PMID: 28821398]
[66]
Xu CY, Kang WY, Chen YM, et al. DJ-1 Inhibits α-Synuclein aggregation by regulating chaperone-mediated autophagy. Front Aging Neurosci 2017; 9: 308.
[http://dx.doi.org/10.3389/fnagi.2017.00308] [PMID: 29021755]
[67]
Liu J, Wang X, Lu Y, et al. Pink1 interacts with α-synuclein and abrogates α-synuclein-induced neurotoxicity by activating autophagy. Cell Death Dis 2017; 8(9)e3056
[http://dx.doi.org/10.1038/cddis.2017.427] [PMID: 28933786]
[68]
Li W, Zhu J, Dou J, et al. Phosphorylation of LAMP2A by p38 MAPK couples ER stress to chaperone-mediated autophagy. Nat Commun 2017; 8(1): 1763.
[http://dx.doi.org/10.1038/s41467-017-01609-x] [PMID: 29176575]
[69]
Cai Y, Arikkath J, Yang L, Guo ML, Periyasamy P, Buch S. Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy 2016; 12(2): 225-44.
[http://dx.doi.org/10.1080/15548627.2015.1121360] [PMID: 26902584]
[70]
Vingtdeux V, Giliberto L, Zhao H, et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem 2010; 285(12): 9100-13.
[http://dx.doi.org/10.1074/jbc.M109.060061] [PMID: 20080969]
[71]
Lin TK, Chen SD, Chuang YC, et al. Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy. Int J Mol Sci 2014; 15(1): 1625-46.
[http://dx.doi.org/10.3390/ijms15011625] [PMID: 24451142]
[72]
Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 2010; 5(2)e9199
[http://dx.doi.org/10.1371/journal.pone.0009199] [PMID: 20169165]
[73]
Franco-Iborra S, Vila M, Perier C. The parkinson disease mitochondrial hypothesis: Where are we at? Neuroscientist 2016; 22(3): 266-77.
[http://dx.doi.org/10.1177/1073858415574600] [PMID: 25761946]
[74]
Perier C, Bove J, Vila M. Mitochondria and programmed cell death in Parkinson’s disease: Apoptosis and beyond. Antioxid Redox Signal 2012; 16: 883-95.
[http://dx.doi.org/10.1089/ars.2011.4074]
[75]
Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 2011; 12(1): 9-14.
[http://dx.doi.org/10.1038/nrm3028] [PMID: 21179058]
[76]
Green DR, Llambi F. Cell Death Signaling. Cold Spring Harb Perspect Biol 2015; 7(12): 7.
[http://dx.doi.org/10.1101/cshperspect.a006080] [PMID: 26626938]
[77]
Ebrahimi-Fakhari D, McLean PJ, Unni VK. Alpha-synuclein’s degradation in vivo: Opening a new (cranial) window on the roles of degradation pathways in Parkinson disease. Autophagy 2012; 8(2): 281-3.
[http://dx.doi.org/10.4161/auto.8.2.18938] [PMID: 22301995]
[78]
Kim DK, Lim HS, Kawasaki I, et al. Anti-aging treatments slow propagation of synucleinopathy by restoring lysosomal function. Autophagy 2016; 12(10): 1849-63.
[http://dx.doi.org/10.1080/15548627.2016.1207014] [PMID: 27485532]
[79]
Chen L, Xie Z, Turkson S, Zhuang X. A53T human α-synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. J Neurosci 2015; 35(3): 890-905.
[http://dx.doi.org/10.1523/JNEUROSCI.0089-14.2015] [PMID: 25609609]
[80]
Venderova K, Park DS. Programmed cell death in Parkinson’s disease. Cold Spring Harb Perspect Med 2012; 2(8): 2.
[http://dx.doi.org/10.1101/cshperspect.a009365] [PMID: 22908196]
[81]
Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat Rev Mol Cell Biol 2014; 15(1): 49-63.
[http://dx.doi.org/10.1038/nrm3722] [PMID: 24355989]
[82]
Chittenden T, Harrington EA, O’Connor R, et al. Induction of apoptosis by the Bcl-2 homologue Bak. Nature 1995; 374(6524): 733-6.
[http://dx.doi.org/10.1038/374733a0] [PMID: 7715730]
[83]
Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74(4): 609-19.
[http://dx.doi.org/10.1016/0092-8674(93)90509-O] [PMID: 8358790]
[84]
Dai H, Ding H, Meng XW, Lee SH, Schneider PA, Kaufmann SH. Contribution of Bcl-2 phosphorylation to Bak binding and drug resistance. Cancer Res 2013; 73(23): 6998-7008.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0940] [PMID: 24097825]
[85]
Deng X, Gao F, Flagg T, May WS Jr. Mono- and multisite phosphorylation enhances Bcl2's antiapoptotic function and inhibition of cell cycle entry functions. Proc Natl Acad Sci USA 2004; 101(1): 153-8.
[http://dx.doi.org/10.1073/pnas.2533920100] [PMID: 14660795]
[86]
Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 2008; 30(6): 678-88.
[http://dx.doi.org/10.1016/j.molcel.2008.06.001] [PMID: 18570871]
[87]
Yee AG, Freestone PS, Bai JZ, Lipski J. Paradoxical lower sensitivity of Locus Coeruleus than Substantia Nigra pars compacta neurons to acute actions of rotenone. Exp Neurol 2017; 287(Pt 1): 34-43.
[http://dx.doi.org/10.1016/j.expneurol.2016.10.010] [PMID: 27771354]
[88]
Narasimhan KK, Paul L, Sathyamoorthy YK, et al. Amelioration of apoptotic events in the skeletal muscle of intra-nigrally rotenone-infused Parkinsonian rats by Morinda citrifolia--up-regulation of Bcl-2 and blockage of cytochrome c release. Food Funct 2016; 7(2): 922-37.
[http://dx.doi.org/10.1039/C5FO00505A] [PMID: 26697948]
[89]
Brennan-Minnella AM, Arron ST, Chou KM, Cunningham E, Cleaver JE. Sources and consequences of oxidative damage from mitochondria and neurotransmitter signaling. Environ Mol Mutagen 2016; 57(5): 322-30.
[http://dx.doi.org/10.1002/em.21995] [PMID: 27311994]
[90]
Khan MM, Ahmad A, Ishrat T, et al. Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Res 2010; 1328: 139-51.
[http://dx.doi.org/10.1016/j.brainres.2010.02.031] [PMID: 20167206]
[91]
Wang ZH, Zhang JL, Duan YL, Zhang QS, Li GF, Zheng DL. MicroRNA-214 participates in the neuroprotective effect of Resveratrol via inhibiting alpha-synuclein expression in MPTP-induced Parkinson’s disease mouse. Biomed Pharmacother 2015; 74: 252-6.
[92]
Gaballah HH, Zakaria SS, Elbatsh MM, Tahoon NM. Modulatory effects of resveratrol on endoplasmic reticulum stress-associated apoptosis and oxido-inflammatory markers in a rat model of rotenone-induced Parkinson’s disease. Chem Biol Interact 2016; 251: 10-6.
[http://dx.doi.org/10.1016/j.cbi.2016.03.023] [PMID: 27016191]
[93]
Wang H, Dong X, Liu Z, et al. Resveratrol suppresses rotenoneinduced neurotoxicity through activation of SIRT1/Akt1 signaling pathway. Anatomical record (Hoboken, NJ : 2007) 2018; 301: 1115-25.
[94]
Anandhan A, Tamilselvam K, Vijayraja D, Ashokkumar N, Rajasankar S, Manivasagam T. Resveratrol attenuates oxidative stress and improves behaviour in 1 -methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) challenged mice. Ann Neurosci 2010; 17(3): 113-9.
[http://dx.doi.org/10.5214/ans.0972-7531.1017304] [PMID: 25205886]
[95]
Ojha S, Javed H, Azimullah S, Abul Khair SB, Haque ME. Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease. Drug Des Devel Ther 2015; 9: 5499-510.
[PMID: 26504373]
[96]
Zhang F, Wang H, Wu Q, et al. Resveratrol protects cortical neurons against microglia-mediated neuroinflammation. Phytother Res 2013; 27(3): 344-9.
[http://dx.doi.org/10.1002/ptr.4734] [PMID: 22585561]
[97]
Joshi G, Johnson JA. The Nrf2-ARE pathway: A valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Patents CNS Drug Discov 2012; 7(3): 218-29.
[http://dx.doi.org/10.2174/157488912803252023] [PMID: 22742419]
[98]
Sin TK, Tam BT, Yu AP, et al. Acute treatment of resveratrol alleviates doxorubicin-induced myotoxicity in aged skeletal muscle through SIRT1-Dependent mechanisms. J Gerontol A Biol Sci Med Sci 2016; 71(6): 730-9.
[http://dx.doi.org/10.1093/gerona/glv175] [PMID: 26450947]
[99]
Jin F, Wu Q, Lu YF, Gong QH, Shi JS. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. Eur J Pharmacol 2008; 600(1-3): 78-82.
[http://dx.doi.org/10.1016/j.ejphar.2008.10.005] [PMID: 18940189]
[100]
Martin LJ. Mitochondrial pathobiology in ALS. J Bioenerg Biomembr 2011; 43(6): 569-79.
[http://dx.doi.org/10.1007/s10863-011-9395-y] [PMID: 22083126]
[101]
Blackhall LJ. Amyotrophic lateral sclerosis and palliative care: Where we are, and the road ahead. Muscle Nerve 2012; 45(3): 311-8.
[http://dx.doi.org/10.1002/mus.22305] [PMID: 22334165]
[102]
Carrì MT, Cozzolino M. SOD1 and mitochondria in ALS: A dangerous liaison. J Bioenerg Biomembr 2011; 43(6): 593-9.
[http://dx.doi.org/10.1007/s10863-011-9394-z] [PMID: 22081209]
[103]
Sreedharan J, Blair IP, Tripathi VB, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008; 319(5870): 1668-72.
[http://dx.doi.org/10.1126/science.1154584] [PMID: 18309045]
[104]
Vance C, Rogelj B, Hortobágyi T, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 2009; 323(5918): 1208-11.
[http://dx.doi.org/10.1126/science.1165942] [PMID: 19251628]
[105]
Vadakkadath Meethal S, Atwood CS. Lactate dyscrasia: A novel explanation for amyotrophic lateral sclerosis. Neurobiol Aging 2012; 33(3): 569-81.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.04.012] [PMID: 20541840]
[106]
Shaw PJ. Molecular and cellular pathways of neurodegeneration in motor neurone disease. J Neurol Neurosurg Psychiatry 2005; 76(8): 1046-57.
[http://dx.doi.org/10.1136/jnnp.2004.048652] [PMID: 16024877]
[107]
Mantovani S, Garbelli S, Pasini A, et al. Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process. J Neuroimmunol 2009; 210(1-2): 73-9.
[http://dx.doi.org/10.1016/j.jneuroim.2009.02.012] [PMID: 19307024]
[108]
Rowland LP. Riluzole for the treatment of amyotrophic lateral sclerosis--too soon to tell? N Engl J Med 1994; 330: 636-7.
[http://dx.doi.org/10.1056/NEJM199403033300911]
[109]
Wang J, Zhang Y, Tang L, Zhang N, Fan D. Protective effects of resveratrol through the up-regulation of SIRT1 expression in the mutant hSOD1-G93A-bearing motor neuron-like cell culture model of amyotrophic lateral sclerosis. Neurosci Lett 2011; 503(3): 250-5.
[http://dx.doi.org/10.1016/j.neulet.2011.08.047] [PMID: 21896316]
[110]
Kim D, Nguyen MD, Dobbin MM, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 2007; 26(13): 3169-79.
[http://dx.doi.org/10.1038/sj.emboj.7601758] [PMID: 17581637]
[111]
Lev N, Ickowicz D, Barhum Y, Melamed E, Offen D. DJ-1 changes in G93A-SOD1 transgenic mice: Implications for oxidative stress in ALS. J Mol Neurosci 2009; 38(2): 94-102.
[http://dx.doi.org/10.1007/s12031-008-9138-7] [PMID: 18712292]
[112]
Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006; 127(6): 1109-22.
[http://dx.doi.org/10.1016/j.cell.2006.11.013] [PMID: 17112576]
[113]
Amat R, Planavila A, Chen SL, Iglesias R, Giralt M, Villarroya F. SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-γ Co-activator-1α (PGC-1α) gene in skeletal muscle through the PGC-1α autoregulatory loop and interaction with MyoD. J Biol Chem 2009; 284(33): 21872-80.
[http://dx.doi.org/10.1074/jbc.M109.022749] [PMID: 19553684]
[114]
Higashida K, Kim SH, Jung SR, Asaka M, Holloszy JO, Han D-H. Effects of resveratrol and SIRT1 on PGC-1α activity and mitochondrial biogenesis: A reevaluation. PLoS Biol 2013; 11(7)e1001603
[http://dx.doi.org/10.1371/journal.pbio.1001603] [PMID: 23874150]
[115]
Zhao W, Varghese M, Yemul S, et al. Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1α) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener 2011; 6(1): 51.
[http://dx.doi.org/10.1186/1750-1326-6-51] [PMID: 21771318]
[116]
St-Pierre J, Drori S, Uldry M, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006; 127(2): 397-408.
[http://dx.doi.org/10.1016/j.cell.2006.09.024] [PMID: 17055439]
[117]
Lira VA, Benton CR, Yan Z, Bonen A. PGC-1α regulation by exercise training and its influences on muscle function and insulin sensitivity. Am J Physiol Endocrinol Metab 2010; 299(2): E145-61.
[http://dx.doi.org/10.1152/ajpendo.00755.2009] [PMID: 20371735]
[118]
Irrcher I, Ljubicic V, Hood DA. Interactions between ROS and AMP kinase activity in the regulation of PGC-1α transcription in skeletal muscle cells. Am J Physiol Cell Physiol 2009; 296(1): C116-23.
[http://dx.doi.org/10.1152/ajpcell.00267.2007] [PMID: 19005163]
[119]
Song L, Chen L, Zhang X, Li J, Le W. Resveratrol ameliorates motor neuron degeneration and improves survival in SOD1G93A mouse model of amyotrophic lateral sclerosis. BioMed Res Int 2014; 2014483501
[120]
McGeer PL, McGeer EG. Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 2002; 26(4): 459-70.
[http://dx.doi.org/10.1002/mus.10191] [PMID: 12362410]
[121]
Zhang F, Liu J, Shi J-S. Anti-inflammatory activities of resveratrol in the brain: Role of resveratrol in microglial activation. Eur J Pharmacol 2010; 636(1-3): 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2010.03.043] [PMID: 20361959]
[122]
Bi XL, Yang JY, Dong YX, et al. Resveratrol inhibits nitric oxide and TNF-α production by lipopolysaccharide-activated microglia. Int Immunopharmacol 2005; 5(1): 185-93.
[http://dx.doi.org/10.1016/j.intimp.2004.08.008] [PMID: 15589480]
[123]
Candelario-Jalil E, de Oliveira AC, Gräf S, et al. Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia. J Neuroinflammation 2007; 4: 25.
[http://dx.doi.org/10.1186/1742-2094-4-25] [PMID: 17927823]
[124]
Heynekamp JJ, Weber WM, Hunsaker LA, et al. Substituted trans-stilbenes, including analogues of the natural product resveratrol, inhibit the human tumor necrosis factor alpha-induced activation of transcription factor nuclear factor kappaB. J Med Chem 2006; 49(24): 7182-9.
[http://dx.doi.org/10.1021/jm060630x] [PMID: 17125270]
[125]
Meng XL, Yang JY, Chen GL, et al. Effects of resveratrol and its derivatives on lipopolysaccharide-induced microglial activation and their structure-activity relationships. Chem Biol Interact 2008; 174(1): 51-9.
[http://dx.doi.org/10.1016/j.cbi.2008.04.015] [PMID: 18513711]
[126]
Mancuso R, del Valle J, Modol L, et al. Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics 2014; 11(2): 419-32.
[PMID: 24414863]
[127]
Song CY, Guo JF, Liu Y, Tang BS. Autophagy and its comprehensive impact on ALS. Int J Neurosci 2012; 122(12): 695-703.
[http://dx.doi.org/10.3109/00207454.2012.714430] [PMID: 22827270]
[128]
Li J, Huang KX, Le WD. Establishing a novel C. elegans model to investigate the role of autophagy in amyotrophic lateral sclerosis. Acta Pharmacol Sin 2013; 34(5): 644-50.
[http://dx.doi.org/10.1038/aps.2012.190] [PMID: 23503474]
[129]
Lee IH, Cao L, Mostoslavsky R, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 2008; 105(9): 3374-9.
[http://dx.doi.org/10.1073/pnas.0712145105] [PMID: 18296641]
[130]
Barrasa JI, Santiago-Gómez A, Olmo N, Lizarbe MA, Turnay J. Resistance to butyrate impairs bile acid-induced apoptosis in human colon adenocarcinoma cells via up-regulation of Bcl-2 and inactivation of Bax. Biochim Biophys Acta 2012; 1823(12): 2201-9.
[http://dx.doi.org/10.1016/j.bbamcr.2012.08.008] [PMID: 22917577]
[131]
Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: Insights from genetics. Nat Rev Neurosci 2006; 7(9): 710-23.
[http://dx.doi.org/10.1038/nrn1971] [PMID: 16924260]
[132]
Zhang X, Chen S, Li L, Wang Q, Le W. Decreased level of 5-methyltetrahydrofolate: A potential biomarker for pre-symptomatic amyotrophic lateral sclerosis. J Neurol Sci 2010; 293(1-2): 102-5.
[http://dx.doi.org/10.1016/j.jns.2010.02.024] [PMID: 20334883]
[133]
Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003; 11(3): 577-90.
[http://dx.doi.org/10.1016/S1097-2765(03)00050-9] [PMID: 12667443]
[134]
Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 2004; 306(5704): 2105-8.
[http://dx.doi.org/10.1126/science.1101731] [PMID: 15604409]
[135]
Song L, Chen L, Zhang X, Li J, Le W. Resveratrol ameliorates motor neuron degeneration and improves survival in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. BioMed Res Int 2014; 2014483501
[http://dx.doi.org/10.1155/2014/483501] [PMID: 25057490]
[136]
Phillips SN, Benedict JW, Weimer JM, Pearce DA. CLN3, the protein associated with batten disease: Structure, function and localization. J Neurosci Res 2005; 79(5): 573-83.
[http://dx.doi.org/10.1002/jnr.20367] [PMID: 15657902]
[137]
Wei H, Kim SJ, Zhang Z, Tsai PC, Wisniewski KE, Mukherjee AB. ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum Mol Genet 2008; 17(4): 469-77.
[http://dx.doi.org/10.1093/hmg/ddm324] [PMID: 17989065]
[138]
Kim SJ, Zhang Z, Sarkar C, et al. Palmitoyl protein thioesterase-1 deficiency impairs synaptic vesicle recycling at nerve terminals, contributing to neuropathology in humans and mice. J Clin Invest 2008; 118(9): 3075-86.
[http://dx.doi.org/10.1172/JCI33482] [PMID: 18704195]
[139]
Seehafer SS, Pearce DA. Spectral properties and mechanisms that underlie autofluorescent accumulations in Batten disease. Biochem Biophys Res Commun 2009; 382(2): 247-51.
[http://dx.doi.org/10.1016/j.bbrc.2009.02.099] [PMID: 19248764]
[140]
Tuxworth RI, Chen H, Vivancos V, Carvajal N, Huang X, Tear G. The Batten disease gene CLN3 is required for the response to oxidative stress. Hum Mol Genet 2011; 20(10): 2037-47.
[http://dx.doi.org/10.1093/hmg/ddr088] [PMID: 21372148]
[141]
Wei H, Zhang Z, Saha A, et al. Disruption of adaptive energy metabolism and elevated ribosomal p-S6K1 levels contribute to INCL pathogenesis: Partial rescue by resveratrol. Hum Mol Genet 2011; 20(6): 1111-21.
[http://dx.doi.org/10.1093/hmg/ddq555] [PMID: 21224254]
[142]
Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 2004; 3(3): 205-14.
[http://dx.doi.org/10.1038/nrd1330] [PMID: 15031734]
[143]
Yoon DH, Kwon OY, Mang JY, et al. Protective potential of resveratrol against oxidative stress and apoptosis in Batten disease lymphoblast cells. Biochem Biophys Res Commun 2011; 414(1): 49-52.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.019] [PMID: 21945436]
[144]
Bible E, Gupta P, Hofmann SL, Cooper JD. Regional and cellular neuropathology in the palmitoyl protein thioesterase-1 null mutant mouse model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis 2004; 16(2): 346-59.
[http://dx.doi.org/10.1016/j.nbd.2004.02.010] [PMID: 15193291]
[145]
Kim SJ, Zhang Z, Hitomi E, Lee YC, Mukherjee AB. Endoplasmic reticulum stress-induced caspase-4 activation mediates apoptosis and neurodegeneration in INCL. Hum Mol Genet 2006; 15(11): 1826-34.
[http://dx.doi.org/10.1093/hmg/ddl105] [PMID: 16644870]
[146]
Brady RO, Kanfer JN, Bradley RM, Shapiro D. Demonstration of a deficiency of glucocerebroside-cleaving enzyme in Gaucher’s disease. J Clin Invest 1966; 45(7): 1112-5.
[http://dx.doi.org/10.1172/JCI105417] [PMID: 5338605]
[147]
Tabata Y, Takano K, Ito T, et al. Vaticanol B, a resveratrol tetramer, regulates endoplasmic reticulum stress and inflammation. Am J Physiol Cell Physiol 2007; 293(1): C411-8.
[http://dx.doi.org/10.1152/ajpcell.00095.2007] [PMID: 17475668]
[148]
Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 2010; 1802(4): 396-405.
[http://dx.doi.org/10.1016/j.bbadis.2009.12.009] [PMID: 20079433]
[149]
Turner RS, Thomas RG, Craft S, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2015; 85(16): 1383-91.
[http://dx.doi.org/10.1212/WNL.0000000000002035] [PMID: 26362286]
[150]
Solberg NO, Chamberlin R, Vigil JR, et al. Optical and SPION-enhanced MR imaging shows that trans-stilbene inhibitors of NF-κB concomitantly lower Alzheimer’s disease plaque formation and microglial activation in AβPP/PS-1 transgenic mouse brain. J Alzheimers Dis 2014; 40(1): 191-212.
[http://dx.doi.org/10.3233/JAD-131031] [PMID: 24413613]
[151]
Moussa C, Hebron M, Huang X, et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation 2017; 14(1): 1.
[http://dx.doi.org/10.1186/s12974-016-0779-0] [PMID: 28086917]
[152]
Tang YW, Shi CJ, Yang HL, et al. Synthesis and evaluation of isoprenylation-resveratrol dimer derivatives against Alzheimer’s disease. Eur J Med Chem 2019; 163: 307-19.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.040] [PMID: 30529634]
[153]
Cevenini E, Monti D, Franceschi C. Inflamm-ageing. Curr Opin Clin Nutr Metab Care 2013; 16(1): 14-20.
[http://dx.doi.org/10.1097/MCO.0b013e32835ada13] [PMID: 23132168]
[154]
Patel P, Lockey RF, Kolliputi N. Can inflammation regulate systemic aging? Exp Gerontol 2015; 67: 1-2.
[http://dx.doi.org/10.1016/j.exger.2015.04.011] [PMID: 25914111]
[155]
Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K. Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 2007; 55(4): 412-24.
[http://dx.doi.org/10.1002/glia.20468] [PMID: 17203473]
[156]
Darley-Usmar V, Wiseman H, Halliwell B. Nitric oxide and oxygen radicals: A question of balance. FEBS Lett 1995; 369(2-3): 131-5.
[http://dx.doi.org/10.1016/0014-5793(95)00764-Z] [PMID: 7649244]
[157]
Chen S, Frederickson RC, Brunden KR. Neuroglial-mediated immunoinflammatory responses in Alzheimer’s disease: Complement activation and therapeutic approaches. Neurobiol Aging 1996; 17(5): 781-7.
[http://dx.doi.org/10.1016/0197-4580(96)00103-0] [PMID: 8892352]
[158]
Luterman JD, Haroutunian V, Yemul S, et al. Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia. Arch Neurol 2000; 57(8): 1153-60.
[http://dx.doi.org/10.1001/archneur.57.8.1153] [PMID: 10927795]
[159]
Tarkowski E, Liljeroth A-M, Minthon L, Tarkowski A, Wallin A, Blennow K. Cerebral pattern of pro- and anti-inflammatory cytokines in dementias. Brain Res Bull 2003; 61(3): 255-60.
[http://dx.doi.org/10.1016/S0361-9230(03)00088-1] [PMID: 12909295]
[160]
Rogers J, Webster S, Lue LF, et al. Inflammation and Alzheimer’s disease pathogenesis. Neurobiol Aging 1996; 17(5): 681-6.
[http://dx.doi.org/10.1016/0197-4580(96)00115-7] [PMID: 8892340]
[161]
Mrak RE, Griffin WST. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 2005; 26(3): 349-54.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.05.010] [PMID: 15639313]
[162]
Del Bo R, Angeretti N, Lucca E, De Simoni MG, Forloni G. Reciprocal control of inflammatory cytokines, IL-1 and IL-6, and β-amyloid production in cultures. Neurosci Lett 1995; 188(1): 70-4.
[http://dx.doi.org/10.1016/0304-3940(95)11384-9] [PMID: 7783982]
[163]
Forloni G, Demicheli F, Giorgi S, Bendotti C, Angeretti N. Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: Modulation by interleukin-1. Brain Res Mol Brain Res 1992; 16(1-2): 128-34.
[http://dx.doi.org/10.1016/0169-328X(92)90202-M] [PMID: 1334190]
[164]
Gitter BD, Cox LM, Rydel RE, May PC. Amyloid beta peptide potentiates cytokine secretion by interleukin-1 beta-activated human astrocytoma cells. Proc Natl Acad Sci USA 1995; 92(23): 10738-41.
[http://dx.doi.org/10.1073/pnas.92.23.10738] [PMID: 7479875]
[165]
Tuppo EE, Arias HR. The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 2005; 37(2): 289-305.
[http://dx.doi.org/10.1016/j.biocel.2004.07.009] [PMID: 15474976]
[166]
McGeer PL, McGeer EG. Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci 2004; 1035: 104-16.
[http://dx.doi.org/10.1196/annals.1332.007] [PMID: 15681803]
[167]
Floyd RA, Hensley K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 2002; 23(5): 795-807.
[http://dx.doi.org/10.1016/S0197-4580(02)00019-2] [PMID: 12392783]
[168]
Grimble RF. Inflammatory response in the elderly. Curr Opin Clin Nutr Metab Care 2003; 6(1): 21-9.
[http://dx.doi.org/10.1097/00075197-200301000-00005] [PMID: 12496677]
[169]
Emerit J, Edeas M, Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 2004; 58(1): 39-46.
[http://dx.doi.org/10.1016/j.biopha.2003.11.004] [PMID: 14739060]
[170]
Marcus DL, Thomas C, Rodriguez C, et al. Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol 1998; 150(1): 40-4.
[http://dx.doi.org/10.1006/exnr.1997.6750] [PMID: 9514828]
[171]
Lovell MA, Ehmann WD, Butler SM, Markesbery WR. Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 1995; 45(8): 1594-601.
[http://dx.doi.org/10.1212/WNL.45.8.1594] [PMID: 7644059]
[172]
Durany N, Münch G, Michel T, Riederer P. Investigations on oxidative stress and therapeutical implications in dementia. Eur Arch Psychiatry Clin Neurosci 1999; 249(Suppl. 3): 68-73.
[http://dx.doi.org/10.1007/PL00014177] [PMID: 10654103]
[173]
Münch G, Schinzel R, Loske C, et al. Alzheimer’s disease--synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J Neural Transm (Vienna) 1998; 105(4-5): 439-61.
[http://dx.doi.org/10.1007/s007020050069] [PMID: 9720973]
[174]
Lane N. A unifying view of ageing and disease: The double-agent theory. J Theor Biol 2003; 225(4): 531-40.
[http://dx.doi.org/10.1016/S0022-5193(03)00304-7] [PMID: 14615212]
[175]
Joseph JA, Denisova N, Fisher D, Bickford P, Prior R, Cao G. Age-related neurodegeneration and oxidative stress: Putative nutritional intervention. Neurol Clin 1998; 16(3): 747-55.
[http://dx.doi.org/10.1016/S0733-8619(05)70092-X] [PMID: 9666048]
[176]
Joseph JA, Denisova N, Fisher D, et al. Membrane and receptor modifications of oxidative stress vulnerability in aging. Nutritional considerations. Ann N Y Acad Sci 1998; 854: 268-76.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb09908.x] [PMID: 9928436]
[177]
Bartus RT. Drugs to treat age-related neurodegenerative problems. The final frontier of medical science? J Am Geriatr Soc 1990; 38(6): 680-95.
[http://dx.doi.org/10.1111/j.1532-5415.1990.tb01430.x] [PMID: 1972712]
[178]
Kluger A, Gianutsos JG, Golomb J, et al. Patterns of motor impairement in normal aging, mild cognitive decline, and early Alzheimer’s disease. J Gerontol B Psychol Sci Soc Sci 1997; 52B(1): 28-39.
[http://dx.doi.org/10.1093/geronb/52B.1.P28] [PMID: 9008673]
[179]
Forster MJ, Dubey A, Dawson KM, Stutts WA, Lal H, Sohal RS. Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci USA 1996; 93(10): 4765-9.
[http://dx.doi.org/10.1073/pnas.93.10.4765] [PMID: 8643477]
[180]
Joseph JA, Erat S, Rabin BM. CNS effects of heavy particle irradiation in space: Behavioral implications. Adv Space Res 1998; 22: 209-16.
[http://dx.doi.org/10.1016/S0273-1177(98)80012-4]
[181]
Shukitt-Hale B, Casadesus G, McEwen JJ, Rabin BM, Joseph JA. Spatial learning and memory deficits induced by exposure to iron-56-particle radiation. Radiat Res 2000; 154(1): 28-33.
[http://dx.doi.org/10.1667/0033-7587(2000)154[0028:SLAMDI]2.0.CO;2] [PMID: 10856962]
[182]
Porquet D, Griñán-Ferré C, Ferrer I, et al. Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J Alzheimers Dis 2014; 42(4): 1209-20.
[http://dx.doi.org/10.3233/JAD-140444] [PMID: 25024312]
[183]
Albani D, Polito L, Forloni G. Sirtuins as novel targets for Alzheimer’s disease and other neurodegenerative disorders: Experimental and genetic evidence. J Alzheimers Dis 2010; 19(1): 11-26.
[http://dx.doi.org/10.3233/JAD-2010-1215] [PMID: 20061622]
[184]
Gräff J, Kahn M, Samiei A, et al. A dietary regimen of caloric restriction or pharmacological activation of SIRT1 to delay the onset of neurodegeneration. J Neurosci 2013; 33(21): 8951-60.
[http://dx.doi.org/10.1523/JNEUROSCI.5657-12.2013] [PMID: 23699506]
[185]
Anekonda TS. Resveratrol--a boon for treating Alzheimer’s disease? Brain Res Brain Res Rev 2006; 52(2): 316-26.
[http://dx.doi.org/10.1016/j.brainresrev.2006.04.004] [PMID: 16766037]
[186]
Tung BT, Rodríguez-Bies E, Ballesteros-Simarro M, Motilva V, Navas P, López-Lluch G. Modulation of endogenous antioxidant activity by resveratrol and exercise in mouse liver is age dependent. J Gerontol A Biol Sci Med Sci 2014; 69(4): 398-409.
[http://dx.doi.org/10.1093/gerona/glt102] [PMID: 23861386]
[187]
Wang H, Jiang T, Li W, Gao N, Zhang T. Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease. Toxicol Lett 2018; 282: 100-8.
[http://dx.doi.org/10.1016/j.toxlet.2017.10.021] [PMID: 29097221]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy