[1]
DeSantis, C.E.; Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics for African Americans, 2016: Progress and opportunities in reducing racial disparities. CA Cancer J. Clin., 2016, 66(4), 7-30.
[2]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incid-ence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[3]
Huober, J.; von Minckwitz, G.; Denkert, C.; Tesch, H.; Weiss, E.; Zahm, D.M.; Belau, A.; Khandan, F.; Hauschild, M.; Thomssen, C.; Högel, B.; Darb-Esfahani, S.; Mehta, K.; Loibl, S. Effect of neoadjuvant anthracycline-taxane-based chemotherapy in different biological breast cancer phenotypes: Overall results from the Gepar-Trio study. Breast Cancer Res. Treat., 2010, 124(1), 133-140.
[4]
Yang, N.; Jia, X.; Sun, Z.; Sun, E.; Yan, H. Research progress in antitumor activity and mechanism of flavonoids. J. Chin. Med., 2015, 40(3), 373-381.
[5]
Fujimori, K.; Shibano, M. Avicularin, a plant flavonoid, suppresses lipid accumulation through repression of C/EBPα-activated GLUT4-mediated glucose uptake in 3T3-L1 cells. J. Agric. Food Chem., 2013, 61(21), 5139-5147.
[6]
Vo, V.A.; Lee, J.W.; Chang, J.E.; Kim, J.Y.; Kim, N.H.; Lee, H.J.; Kim, S.S.; Chun, W.; Kwon, Y.S. Avicularin inhibits lipopolysaccharide -induced inflammatory response by suppressing ERK phosphorylation in RAW 264.7 macrophages. Biomol. Ther. (Seoul), 2012, 20(6), 532-527.
[7]
Guo, X.F.; Liu, J.P.; Ma, S.Q.; Zhang, P.; Sun, W.D. Avicularin reversed multidrug-resistance in human gastric cancer through enhancing Bax and BOK expressions. Biomed. Pharmacother., 2018, 103, 67-74.
[8]
Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol., 2008, 4(11), 682-690.
[9]
Liu, X.; Wu, J.; Yan, M. Analysis of Sijunzi decoction based on network pharmacology. Chinese J. Experimental Formulae, 2017, 23(16), 194-202.
[10]
Liu, K.Q.; Liu, Z.P.; Hao, J.K.; Chen, L.; Zhao, X.M. Identifying dysregulated pathways in cancers from pathway interaction networks. BMC Bioinformatics, 2012, 7(13), 126-137.
[11]
Fang, J.; Li, Y.; Liu, R. Discovery of multi-target-directed ligands against Alzheimer’s disease through systematic prediction of chemical-protein interactions. J. Chem. Inf. Model., 2015, 55(1), 149-164.
[12]
Azuaje, F.J.; Zhang, L.; Devaux, Y.; Wagner, D.R. Drug-target network in myocardial infarction reveals multiple side effects of unrelated drugs. Sci. Rep., 2011, 1, 52.
[13]
Nock, D.; Yang, S. Social Network Analysis; 2nded. Shanghai People's Publishing House: Shanghai. , 2012.
[14]
Ashburner, M.; Ball, C.A.; Blake, J.A. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 2000, 25(1), 25-29.
[15]
Yang, K.M.; Kim, W.; Bae, E.; Gim, J.; Weist, B.M.; Jung, Y.; Hyun, J.S.; Hernandez, J.B.; Leem, S.H.; Park, T.; Jeong, J.; Walsh, C.M.; Kim, S.J. DRAK2 participates in a negative feedback loop to control TGF-β/Smads signaling by binding to type I TGF-β receptor. Cell Reports, 2012, 2(5), 1286-1299.
[16]
Doherty, G.A.; Byrne, S.M.; Austin, S.C.; Scully, G.M.; Sadlier, D.M.; Neilan, T.G.; Kay, E.W.; Murray, F.E.; Fitzgerald, D.J. Regulation of theapoptosis-inducing kinase DRAK2 by cyclooxygenase-2 in colorectal cancer. Br. J. Cancer, 2009, 101(3), 483-491.
[17]
Chen, Q.G.; Zhou, W.; Han, T.; Du, S.Q.; Li, Z.H.; Zhang, Z.; Shan, G.Y.; Kong, C.Z. MiR-378 suppresses prostate cancer cell growth through downregulation of MAPK1 in vitro and in vivo. Tumour Biol., 2016, 37(2), 2095-2103.
[18]
Reyes-Gibby, C.C.; Wang, J.; Silvas, M.R.; Yu, R.; Yeung, S.C.; Shete, S. MAPK1/ERK2 as novel target genes for pain in head and neck cancer patients. BMC Genet., 2016, 17, 40.
[19]
Di Giacomo, D.; La Starza, R.; Barba, G.; Pierini, V.; Baldazzi, C.; Storlazzi, C.T.; Daniele, G.; Forghieri, F.; Borlenghi, E.; Testoni, N.; Mecucci, C. 4q12 translocations with GSX2 expression identify a CD7(+) acute myeloid leukaemia subset. Br. J. Haematol., 2015, 171(1), 141-145.
[20]
Han, J.; Lee, J.D.; Tobias, P.S.; Ulevitch, R.J. Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14. J. Biol. Chem., 1993, 268(33), 25009-25014.
[21]
Zhang, N.; Ayral-Kaloustian, S.; Anderson, J.T.; Nguyen, T.; Das, S.; Venkatesan, A.M.; Brooijmans, N.; Lucas, J.; Yu, K.; Hollander, I.; Mallon, R. 5-Ureidobenzofuranone indoles as potent and efficacious inhibitors of PI3 kinase-alpha and mTOR for the treatment of breast cancer. Bioorg. Med. Chem. Lett., 2010, 20(12), 3526-3529.
[22]
Wang, S.; Li, Y.; Wang, J.; Chen, L.; Zhang, L.; Yu, H.; Hou, T. ADMET evaluation in drug discovery.12. Development of binary classification models for prediction of Herg potassium channel blockage. Mol. Pharm., 2012, 9(4), 996-1010.
[23]
Douglas, H.; Robert, A.W. Hallmarks of cancer: The next generation. Cell, 2011, 114(5), 646-674.
[24]
Tan, C.; Huang, X. Analysis of the mechanism of the treatment of kidney-yang deficiency syndrome based on protein interaction network. Chinese J. Info. Trad. Chinese Med, 2016, 23(2), 30-33.
[25]
Himes, S.R.; Sester, D.P.; Ravasi, T.; Cronau, S.L.; Sasmono, T.; Hume, D.A. The JNK are important for development and survival of macrophages. J. Immunol., 2006, 176(4), 2219-2228.
[26]
Wang, Y.; Zeigler, M.M.; Lam, G.K.; Hunter, M.G.; Eubank, T.D.; Khramtsov, V.V.; Tridandapani, S.; Sen, C.K.; Marsh, C.B. The role of the NADPH oxidase complex, p38 MAPK, and Akt in regulating human monocyte/macrophage survival. Am. J. Respir. Cell Mol. Biol., 2007, 36(1), 68-77.
[27]
Geest, C.R.; Coffer, P.J. MAPK signaling pathways in the regulation of hematopoiesis. J. Leukoc. Biol., 2009, 86(2), 237-250.
[28]
Schaeffer, H.J.; Weber, M.J. Mitogen-activated protein kinases: Specific messages from ubiquitous messengers. Mol. Cell. Biol., 1999, 19(4), 2435-2444.
[29]
Avisetti, D.R.; Babu, K.S.; Kalivendi, S.V. Activation of p38/JNK pathway is responsible for embelin induced apoptosis in lung cancer cells: transitional role of reactive oxygen species. PLoS One, 2014, 9(1), e87050.
[30]
Metelmann, H.R.; Vu, T.T.; Do, H.T.; Le, T.N.B.; Hoang, T.H.A.; Phi, T.T.T. Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: A clinical long term observation. Clin. Plasma Med., 2013, 1, 30-35.
[31]
Regan, C.P.; Li, W.; Boucher, D.M. Erk5 null mice display multi-ple extraembryonic vascular and embryonic cardiovascular defects. Proc. Natl. Acad. Sci. USA, 2002, 99(14), 9248-9253.
[32]
Weldon, C.B.; Scandurro, A.B.; Rolfe, K.W. Identification of mito-gen-activated protein kinase kinase as a chemoresistant pathway in MCF-cells by using gene expression microarray. Surgery, 2002, 132(2), 293-301.