[1]
Bell, R.P. The use of the terms “acid” and “base”. Q. Rev. Chem. Soc., 1947, 1, 113-125.
[2]
Bell, R.P. The Proton in Chemistry, 2nd ed; Chapman and Hall: London, 1973, p. Chp. 2 p. 4.
[3]
(a) Brönsted, J.N. Einige Bemerkungen über den Begriff der Säuren und Basen. Recl. Trav. Chim. Pays Bas, 1923, 42, 718-728.
(b) Lowry, T.M. The uniqueness of hydrogen. J. Soc. Chem. Ind., 1923, 42, 43-47.
[4]
Lewis, G.N. Valence and the Structure of Atoms and Molecules; American Chemical Society Monograph Series Vol. 14,The Chemical Catalog Company, Inc., 1923.
[5]
Yamamoto, H.; Ishihara, K. Acid Catalysis in Modern Organic Synthesis; Wiley-VCH: Weinheim, 2008.
[6]
Török, B.; Dransfield, T. Green Chemistry: An inclusive approach; Elsevier: Oxford, 2018.
[7]
a)Molnár, Á. Acids and Acid Catalysis – Homogeneous. In: Encyclopedia of Catalysis; Horvath, I.T., Ed.; 2003, Wiley: New York, Vol. 1, pp.. 40-86.
(b) Bag, S.; Dasgupta, S.; Török, B. Microwave-assisted heterogeneous catalysis: An environmentally benign tool for contemporary organic synthesis. Curr. Org. Synth., 2011, 8, 237-261.
[8]
(a) Clark, J.H. Solid acids for green chemistry. Acc. Chem. Res., 2002, 35, 791-797.
(b)Gates, B.C. Catalysis by Solid Acids. In: Encyclopedia of Catalysis; Horvath, I.T., Ed.; Wiley: New York, 2003; Vol. 2, pp. 104-142.
(c) Gupta, P.; Mahajan, A. Green chemistry approaches as sustainable alternatives to conventional strategies in the pharmaceutical industry. RSC Adv, 2015, 5, 26686-26705.
(d) Gupta, P.; Paul, S. Solid acids: Green alternatives for acid catalysis. Catal. Today, 2014, 236, 153-170.
[9]
Kokel, A.; Schäfer, C.; Török, B. Application of microwave-assisted hetero-geneous catalysis in sustainable synthesis design. Green Chem., 2017, 19, 3729-3751.
[10]
Cho, H.; Schäfer, C.; Török, B. Microwave-assisted solid acid catalysis. In: Microwaves in Catalysis – Fundamental Research and Scale-up Technology; Horikoshi, S.; Serpone, N., Eds.; Wiley, 2015; pp. 193-213.
[11]
Daştan, A.; Kulkarni, A.; Török, B. Environmentally benign synthesis of heterocyclic compounds by combined microwave-assisted heterogeneous catalytic approaches. Green Chem., 2012, 14, 17-37.
[12]
(a) Wachs, I.E.; Briand, L.E.; Jehng, J-M. Molecular structure and reactivity of the group V metal oxides. Catal. Today, 2000, 57, 323-330.
(b) Ushikubo, T. Recent topics of research and development of catalysis by niobium and tantalum oxides. Catal. Today, 2000, 57, 331-338.
(c)Hutchings, G.J.; Bartley, J.K.; Rhodes, C.; Taylor, S.H.; Wells, R.P.K.; Willock, D.J. Metal Oxides. In: Encyclopedia of Catalysis; Horvath, I.T., Ed.; Wiley: New York, 2003; Vol. 4, pp. 602-694.
[13]
Gawande, M.B.; Pandey, R.K.; Jayaram, R.V. Role of mixed metal oxides in catalysis science—versatile applications in organic synthesis. Catal. Sci. Technol., 2012, 2, 1113-1125.
[14]
Venkatesh, K.R.; Hu, J.; Dogan, C.; Tierney, J.W.; Wender, I. Sulfated metal oxides and related solid acids: Comparison of protonic acid strengths. Energy Fuels, 1995, 9, 888-893.
[15]
Arata, K. Organic syntheses catalyzed by superacidic metal oxides: Sulfated zirconia and related compounds. Green Chem., 2009, 11, 1719-1728.
[16]
Vaccari, A. Clays and catalysis: a promising future. Appl. Clay Sci., 1999, 14, 161-198.
[17]
(a)Balogh, M.; Laszlo, P. Organic Chemistry Using Clays; Springer-Verlag: Berlin, 1993.
(b) Nikalje, M.D.; Phukan, P.; Sudalai, A. Recent advances in clay-catalyzed organic transformations. Org. Prep. Proced. Int., 2000, 32, 1-40; (d) Varma, R.S. Clay and clay-supported reagents in organic synthesis. Tetrahedron, 2002, 58, 1235-1255.
[18]
Dasgupta, S.; Török, B. Application of clay catalysts in organic synthesis. A review. Org. Prep. Proced. Int., 2008, 40, 1-65.
[19]
Cseri, T.; Békássy, S.; Figueras, F.; Cseke, E.; de Menorval, L-C.; Dutartre, R. Characterization of clay-based K catalysts and their application in Friedel-Crafts alkylation of aromatics. Appl. Catal. A Gen., 1995, 132, 141-155.
[20]
Nagendrappa, G. Organic synthesis using clay and clay-supported catalysts. Appl. Clay Sci., 2011, 53, 106-138.
[21]
Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Biomedical applications of cationic clay minerals. RSC Adv, 2015, 5, 29467-29481.
[22]
Kumar, B.S.; Dhakshinamoorthy, A.; Pitchumani, K. K10 montmorillonite clays as environmentally benign catalysts for organic reactions. Catal. Sci. Tech., 2014, 4, 2378-2396.
[23]
(a)Janssens, B.; Catry, P.; Claessens, R.; Baron, G.; Jacobs, P.A. Progress in Zeolite and Microporous Materials, Studies in Surface Science and Catalysis, Chon, H.; Ihm, S.-K; Uh, Y.S., Ed.; Elsevier: Amsterdam, 1997, Vol. 105, p. 1211.
(b)Csicsery, S.M.; Kiricsi, I. Shape-Selective Catalysis. In: Encyclopedia of Catalysis; Horvath, I.T., Ed.; Wiley: New York, 2003; Vol. 6, pp. 307-338.
[24]
Tsapatsis, M.; Fan, W. A new, yet familiar, lamellar zeolite. ChemCatChem, 2010, 2, 246-248.
[25]
Paillaud, J.; Harbuzaru, B.; Patarin, J.; Bats, N. Extra-large-pore zeolites with two-dimensional channels formed by 14 and 12 rings. Science, 2004, 304, 990-992.
[26]
Busca, G. Acidity and basicity of zeolites: A fundamental approach. Micropor Mesopor Mater., 2017, 254, 3-16.
[27]
Corma, A. State of the art and future challenges of zeolites as catalysts. J. Catal., 2003, 216, 298-312.
[28]
(a) Olah, G.A.; Iyer, P.S.; Prakash, G.K.S. Perfluorinated resinsulphonic acid (Nafion-H) catalysis in synthesis. Synthesis, 1986, 513-531.
(b) Prakash, G.K.S.; Olah, G.A. in Acid-Base Catalysis, Tanabe, K.; Hattori, H.;
Yamaguchi, T.; Tanaka T. Eds.; Kodansha: Tokyo,. 1989, p 59.
(c) Molnár, Á. Nafion-silica nanocomposites: A new generation of water-tolerant solid acids of high efficiency. Curr. Org. Chem., 2008, 12, 159-181.
[29]
Xu, Y.; Gu, W.; Gin, D. Heterogeneous catalysis using a nanostructured solid acid resin based on lyotropic liquid crystals. J. Am. Chem. Soc., 2004, 126, 1616-1617.
[30]
Kidwai, M.; Chauhan, R.; Bhatnagar, S. Nafion-H (R): A versatile catalyst for organic synthesis. Curr. Org. Chem., 2015, 19, 72-98.
[31]
(a) Harmer, M.A.; Farneth, W.E.; Sun, Q. High surface area nafion resin/silica nanocomposites: A new class of solid acid catalyst. J. Am. Chem. Soc., 1996, 118, 7708-7715.
(b) Török, B.; Kiricsi, I.; Molnár, Á.; Olah, G.A. Acidity and catalytic activity of nafion-H/silica nanocomposite catalyst and a comparison with silica-supported perfluorinated acids. J. Catal., 2000, 193, 132-138.
[32]
(a) Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature, 1999, 402, 276-279.
(b) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O.M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002, 295, 469-472.
[33]
Zhou, H.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev., 2014, 43, 5415-5418.
[34]
Liang, W.; D’Alessandro, D.M. Microwave-assisted solvothermal synthesis of zirconium oxide based metal-organic frameworks. Chem. Commun., 2013, 49, 3706-3708.
[35]
Corma, A.; Garcia, H.; Llabres i Xamena, F.X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev., 2010, 110, 4606-4655.
[36]
Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev., 2012, 112, 1196-1231.
[37]
Liu, J.; Lukose, B.; Shekhah, O.; Arslan, H.K.; Weidler, P.; Gliemann, H.; Braese, S.; Grosjean, S.; Godt, A.; Feng, X.; Muellen, K.; Magdau, I.; Heine, T.; Woell, C. A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy. Sci. Reports., 2012, 2, 921-936.
[38]
Hara, M.; Yoshida, T.; Takagaki, A.; Takata, T.; Kondo, J.N.; Domen, K.; Hayashi, S.A. A carbon material as a strong protonic acid. Angew. Chem. Int. Ed., 2004, 43, 2955-2958.
[39]
Suganuma, S.; Nakajima, K.; Kitano, M.; Yamaguchi, D.; Kato, H.; Hayashi, S.; Hara, M. Synthesis and acid catalysis of cellulose derived carbon-based solid acid. Solid State Sci., 2010, 12, 1029-1034.
[40]
Jamwal, N.; Sodhi, R.K.; Gupta, P.; Paul, S. Nano Pd(0) supported on cellulose: A highly efficient and recyclable heterogeneous catalyst for the Suzuki coupling and aerobic oxidation of benzyl alcohols under liquid phase catalysis. Int. J. Biol. Macromol., 2011, 49, 930-935.
[41]
(a) Chrobok, A.; Baj, S.; Pudło, W.; Jarzebski, A. Supported hydrogensulfate ionic liquid catalysis in Baeyer–Villiger reaction. Appl. Catal. A Gen., 2009, 366, 22-28.
(b) Sugimura, R.; Qiao, K.; Tomida, D.; Yokoyama, C. Immobilization of acidic ionic liquids by copolymerization with styrene and their catalytic use for acetal formation. Catal. Commun., 2007, 8, 770-772.
(c) Amarasekara, A.S.; Owereh, O.S. Synthesis of a sulfonic acid functionalized acidic ionic liquid modified silica catalyst and applications in the hydrolysis of cellulose. Catal. Commun., 2010, 11, 1072-1075.
[42]
Gupta, P.; Kour, M.; Paul, S.; Clark, J.H. Ionic liquid coated sulfonated carbon/silica composites: novel heterogeneous catalysts for organic syntheses in water. RSC Adv, 2014, 4, 7461-7470.
[43]
(a) Nakajima, K.; Okamura, M.; Kondo, J.N.; Domen, K.; Tatsumi, T.; Hayashi, S.; Hara, M. Amorphous carbon bearing sulfonic acid groups in mesoporous silica as a selective catalyst. Chem. Mater., 2009, 21, 186-193.
(b) Vyver, S.V.De Peng, L.; Geboers, J.; Schepers, H.; Clippel, F. de.; Gommes, C.J.; Goderis, B.; Jacobs, P.A.; Sels, B.F. Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chem., 2010, 12, 1560-1563.
[44]
Gupta, P.; Paul, S. Sulfonated carbon/silica composites: highly efficient heterogeneous catalysts for the one-pot synthesis of hantzsch 1,4-dihydropyridines, 2,4,5-trisubstituted imidazoles and 2-arylbenzimidazoles. Curr. Catal., 2014, 3, 53-64.
[46]
Gupta, P.; Paul, S. Sulfonated carbon/silica composite functionalized Lewis acids for one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles, 3,4-dihydropyrimidin-2(1H)-ones and for Michael addition of indole to α,β-unsaturated ketones. J. Mol. Catal.A: Chem., 2012, 352, 75-80.
[47]
Gupta, P.; Paul, S. Amorphous carbon-silica composites bearing sulfonic acid as solid acid catalysts for the chemoselective protection of aldehydes as 1,1-diacetates and for N-, O- and S-acylations. Green Chem., 2011, 13, 2365-2372.
[48]
Chen, Z.; Zhong, W.; Tang, D.; Zhang, G. Preparation of organic nanoacid catalyst for urethane formation. Chinese. J. Chem. Phys., 2017, 30, 339-342.
[49]
Liu, T.; Imber, B.; Diemann, E.; Liu, G.; Cokleski, K.; Li, H.; Chen, Z.; Müller, A. Deprotonations and charges of well-defined Mo72Fe30 nanoacids simply stepwise tuned by pH allow control/ variation of related self-assembly processes. J. Am. Chem. Soc., 2006, 128, 15914-15920.
[50]
(a)Kozhevnikov, I.V. Catalysis by Polyoxometalates; Wiley: Chichester, 2002.
(b) Kozhevnikov, I.V. Friedel–Crafts acylation and related reactions catalysed by heteropoly acids. Appl. Catal. A Gen., 2003, 256, 3-18.
(c)Misono, M. Heteropoly Acids. In: Encyclopedia of Catalysis; Horvath, I.T., Ed.; Wiley: New York, 2003; Vol. 3, pp. 433-447.
[51]
Contreras Coronel, N.; da Silva, M.J. Lacunar keggin heteropolyacid salts: soluble, solid and solid-supported catalysts. J. Cluster Sci., 2018, 29, 195-205.
[52]
Heravi, M.M.; Sadjadi, S.; Oskooie, H.A.; Shoar, R.H.; Bamoharram, F.F. Heteropolyacids as heterogeneous and recyclable catalysts for the synthesis of benzimidazoles. Catal. A Commun., 2008, 9, 504-507.
[53]
Micek-Ilnicka, A. The role of water in the catalysis on solid heteropolyacids. J. Mol. Catal. Chem., 2009, 308, 1-14.
[54]
Sathicq, A.G.; Romanelli, G.P.; Palermo, V.; Vazquez, P.G.; Thomas, H.J. Heterocyclic amine salts of Keggin heteropolyacids used as catalyst for the selective oxidation of sulfides to sulfoxides. Tetrahedron Lett., 2008, 49, 1441-1444.
[55]
Pope, M.T. Heteropoly and Isopoly Oxometalates; Springer, 1983.
[56]
(a) Vila-Nadal, L.; Cronin, L. Design and synthesis of polyoxometalate-framework materials from cluster precursors. Nat. Rev. Mater., 2017, 2, Article number: 17054.
(b) Gumerova, N.I.; Rompel, A. Synthesis, structures and applications of electron-rich polyoxometalates. Nat. Rev. Chem., 2018, 2, Article number: 0112.
[57]
Kobayashi, S. Rare earth metal trifluoromethanesulfonates as water-tolerant lewis acid catalysts in organic synthesis. Synlett,1994, 689-701; (b) Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W.W.-L. Rare-earth metal triflates in organic synthesis. Chem. Rev., 2002, 102, 2227-2302.
[58]
Manabe, K.; Kobayashi, S. Catalytic asymmetric carbon–carbon bond‐forming reactions in aqueous media. Chem. Eur. J., 2002, 8, 4094-4101; (b) Shen, K.; Liu, X.; Lin, L.; Feng, X. Recent progress in enantioselective synthesis of C3-functionalized oxindoles: Rare earth metals take action. Chem. Sci., 2012, 3, 327-334.
[59]
Mishra, A.K.; Biswas, S. Brønsted acid catalyzed functionalization of aromatic alcohols through nucleophilic substitution of hydroxyl group. J. Org. Chem., 2016, 81, 2355-2363; (b) Bovonsombat, P.; Ali, R.; Khan, C.; Leykajarakul, J.; Pla-on, K.; Aphimanchindakul, S.; Pungcharoenpong, N.; Timsuea, N.; Arunrat, A.; Punpongjareorn, N. Facile p-toluenesulfonic acid-promoted para-selective monobromination and chlorination of phenol and analogues. Tetrahedron, 2010, 66, 6928-6935.
[60]
a) Goldberg, S.I.; Miller, N.C. Asymmetric selection during dehydration of achiral alcohols in the presence of (+)-camphorsulfonic acid. J. Chem. Soc. Chem. Commun., 1969, 1409-1410.
b) Liu, C.; Lu, Y. Primary amine/(+)-CSA salt-promoted organocatalytic conjugate addition of nitro esters to enones. Org. Lett., 2010, 12, 2278-2281.
[61]
(a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed., 2004, 43, 1566-1568.
(b) Uraguchi, D.; Terada, M. Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc., 2004, 126, 5356-5357.
[62]
(a) Cheng, X.; Goddard, R.; Buth, G.; List, B. Direct catalytic asymmetric three-component Kabachnik-Fields reaction. Angew. Chem. Int. Ed., 2008, 47, 5079-5081.
(b) Seayad, J.; Seayad, A.M.; List, B. Catalytic asymmetric Pictet-Spengler reaction. J. Am. Chem. Soc., 2006, 128, 1086-1087.
(c) Terada, M.; Sorimachi, K. Enantioselective Friedel-Crafts reaction of electron-rich alkenes catalyzed by chiral Brønsted acid. J. Am. Chem. Soc., 2007, 129, 292-293.
(d) Chen, X-H.; Xu, X-Y.; Liu, H.; Cun, L-F.; Gong, L-Z. Highly enantioselective organocatalytic Biginelli reaction. J. Am. Chem. Soc., 2006, 128, 14802-14803.
[63]
(a)Olah, G.A. Friedel-Crafts and Related Reactions; Wiley: New York, 1964.
(b)Olah, G.A. Friedel-Crafts Chemistry; Wiley-Interscience: New York, 1973.
[64]
Dasgupta, S.; Török, B. Environmentally benign contemporary friedel-crafts chemistry by solid acids. Curr. Org. Synth., 2008, 5, 321-342.
[65]
El-Hiti, G.A.; Smith, K.; Hegazy, A.S. Catalytic, green and regioselective friedel-crafts acylation of simple aromatics and heterocycles over zeolites. Curr. Org. Chem., 2015, 19, 585-598.
[66]
Bernardon, C.; Ben Osman, M.; Laugel, G.; Louis, B.; Pale, P. Acidity versus metal-induced Lewis acidity in zeolites for Friedel-Crafts acylation. Compt. Rend. Chim., 2017, 20, 20-29.
[67]
Khder, A.R.S.; Hassan, H.M.A.; El-Shall, M.S. Metal-organic frameworks with high tungstophosphoric acid loading as heterogeneous acid catalysts. Applied. Catal. A Gen., 2014, 487, 110-118.
[68]
Yadav, G.D. Kamble, S.B. Atom efficient Friedel-Crafts acylation of toluene with propionic anhydride over solid mesoporous superacid UDCaT-5. Applied. Catal. A Gen., 2012, 433-434, 265-274.
[69]
Kulkarni, A.; Quang, P.; Török, B. Microwave-assisted solid acid-catalyzed Friedel-Crafts alkylation and electrohylic annulation of indoles using alcohols as alkylating agents. Synthesis, 2009, 4010-4014.
[70]
Cirujano, F.G.; Stalpaert, M.; De Vos, D.E. Ionic liquids vs. microporous solids as reusable reaction media for the catalytic C-H functionalization of indoles with alcohols. Green Chem., 2018, 20, 2481-2485.
[71]
Wen, J.; Qi, H.; Kong, X.; Chen, L.; Yan, X. Hydroarylation of styrenes with electron-rich arenes over acidic ion-exchange resins. Synth. Commun., 2014, 44, 1893-1903.
[72]
Prakash, S.G.K.; Fogassy, G.; Olah, G.A. Microwave-assisted nafion-h catalyzed friedel-crafts type reaction of aromatic aldehydes with arenes: Synthesis of triarylmethanes. Catal. Lett., 2010, 138, 155-159.
[73]
Zhang, D.W.; Zhang, Y.M.; Zhang, Y.L.; Zhao, T.Q.; Liu, H.W.; Gan, Y.M.; Gu, Q. Efficient solvent-free synthesis of bis(indolyl)methanes on SiO2 solid support under microwave irradiation. Chem. Papers., 2015, 69, 470-478.
[74]
An, L.; Zhang, L.; Zou, J.; Zhang, G. Montmorillonite K10: Catalyst for friedel-crafts alkylation of indoles and pyrrole with nitroalkenes under solventless conditions. Synth. Commun., 2010, 40, 1978-1984.
[75]
Hechelski, M.; Ghinet, A.; Louvel, B.; Dufrenoy, P.; Rigo, B.; Daich, A.; Waterlot, C. From conventional lewis acids to heterogeneous montmorillonite K10: Eco-friendly plant-based catalysts used as green lewis acids. ChemSusChem, 2018, 11, 1249-1277.
[76]
Losfeld, G.; Escande, V.; de La Blache, P.V.; L’Huillier, L.; Grison, C. Design and performance of supported Lewis acid catalysts derived from metal contaminated biomass for Friedel-Crafts alkylation and acylation. Catal. Today, 2012, 189, 111-116.
[77]
Zhu, C.; Mao, Q.; Li, D.; Li, C.; Zhou, Y.; Wu, X.; Luo, Y.; Li, Y. A readily available urea based MOF that act as a highly active heterogeneous catalyst for Friedel-Crafts reaction of indoles and nitrostryenes. Catal. Commun., 2018, 104, 123-127.
[78]
Rao, P.C.; Mandal, S. Friedel-Crafts alkylation of indoles with nitroalkenes through hydrogen-bond-donating metal-organic framework. ChemCatChem, 2017, 9, 1172-1176.
[79]
Abid, M.; Török, B. Synthesis of N-heteroaryl-trifluoromethyl-hydroxyl alkanoic acid esters by highly efficient solid acid catalyzed hydroxyalkylation of indoles and pyrroles with activated trifluoromethyl ketones. Adv. Synth. Catal., 2005, 347, 1797-1803.
[80]
(a) Török, M.; Abid, M.; Mhadgut, S.C.; Török, B. Organofluorine inhibitors of amyloid fibrillogenesis. Biochemistry, 2006, 45, 5377-5383.
(b) Török, B.; Sood, A.; Bag, S.; Kulkarni, A.; Borkin, D.; Lawler, E.; Dasgupta, S.; Landge, S.M.; Abid, M.; Zhou, W.; Foster, M.; LeVine, III , H.; Török, M. Structure-activity relationship of organofluorine inhibitors of amyloid-beta self-assembly. ChemMedChem, 2012, 7, 910-919.
[81]
Smith, K.; El-Hiti, G.A. Use of zeolites for greener and more para-selective electrophilic aromatic substitution reactions. Green Chem., 2011, 11, 1579-1608.
[82]
Mohan, R.B.; Reddy, N.C.G. Regioselective α-bromination of aralkyl ketones using N-bromosuccinimide in the presence of montmorillonite K-10 clay: a simple and efficient method. Synth. Commun., 2013, 43, 2603-2614.
[83]
Kumar, M.S.; Sriram, Y.H.; Venkateswarlu, M.; Rajanna, K.C.; Sudhakar, M.S.; Venkana, P.; Saiprakash, P.K. Silica-supported perchloric acid and potassium bisulfate as reusable green catalysts for nitration of aromatics under solvent-free microwave conditions. Synth. Commun., 2017, 48, 59-67.
[84]
Mackie, R.K.; Smith, D.M.; Aitken, R.A. Guidebook to Organic Synthesis.chp. 5; , 1999. (Pearson, Harlow)p. 69.
[85]
Abid, M.; Savolainen, M.; Landge, S.; Hu, J.; Prakash, G.K.S.; Olah, G.A.; Török, B. Synthesis of trifluoromethyl-imines by solid acid/superacid catalyzed microwave assisted approach. J. Fluorine. Chem., 2007, 128, 587-594.
[86]
Dasgupta, S.; Morzhina, E.; Schäfer, C.; Mhadgut, S.C.; Prakash, G.K.S.; Török, B. Synthesis of chiral trifluoromethyl benzylamines by heterogeneous catalytic reductive amination. Top. Catal., 2016, 59, 1207-1213.
[87]
Brun, E.; Safer, A.; Carreaux, F.; Bourahla, K.; L’helgoua’ch, J.M.; Bazureau, J.P.; Villalgordo, J.M. Microwave-assisted condensation reactions of acetophenone derivatives and activated methylene compounds with aldehydes catalyzed by boric acid under solvent-free conditions. Molecules, 2015, 20, 11617-11631.
[88]
Rocchi, D.; González, J.F.; Menéndez, J.C. Montmorillonite clay-promoted, solvent-free cross-aldol condensations under focused microwave irradiation. Molecules, 2014, 19, 7317-7326.
[89]
Varghese, A.; Nizam, A.; Kulkarni, R.; George, L. Amberlite IR‐120H: An improved reusable solid phase catalyst for the synthesis of nitriles under solvent free microwave irradiation. Eur. J. Chem., 2012, 3, 247-251.
[90]
Biggs-Houck, J.E.; Younai, A.; Shaw, J.T. Recent advances in multicomponent reactions for diversity oriented synthesis. Curr. Opin. Chem. Biol., 2010, 14, 371-382.
[91]
De Paolis, O.; Baffoe, J.; Landge, S.M.; Török, B. Multicomponent domino cyclization-oxidative aromatization on a bifunctional Pd/C/K-10 catalyst: An environmentally benign approach toward the synthesis of pyridines. Synthesis, 2008, 3423-3428.
[92]
Kulkarni, A.; Török, B. Microwave-assisted multicomponent domino cyclization-aromatization: An efficient approach for the synthesis of substituted quinolines. Green Chem., 2010, 12, 875-878.
[93]
Shinde, V.V.; Lee, S.D.; Jeong, Y.S.; Jeong, Y.T. p-Toluenesulfonic acid doped polystyrene (PS-PTSA): solvent-free microwave assisted cross-coupling-cyclization–oxidation to build one-pot diversely functionalized pyrrole from aldehyde, amine, active methylene, and nitroalkane. Tetrahedron Lett., 2015, 56, 859-865.
[94]
Heck, R.F. Acylation, methylation, and carboxyalkylation of olefins by Group VIII metal derivatives. J. Am. Chem. Soc., 1968, 90, 5518-5526.
[95]
Molnár, Á. Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments; Wiley-VCH: Weinheim, 2013.
[97]
Pandey, G.; Török, B. K-10 montmorillonite-catalyzed solid phase diazotizations: environmentally benign coupling of diazonium salts with aromatic hydrocarbons to biaryls. Green Chem., 2017, 19, 2515-2519.
[98]
Prakash, G.K.S.; Glinton, K.E.; Panja, C.; Gurung, L.; Battamack, P.T.; Török, B.; Mathew, T.; Olah, G.A. Thermocontrolled benzylimine–benzaldimine rearrangement over Nafion-H catalysts for efficient entry into α-trifluoromethylbenzylamines. Tetrahedron Lett., 2012, 53, 607-611.
[99]
Mackie, R.K. Smith, D.M., Aitken, R.A. Guidebook to Organic Synthesis.Chp. 7; Pearson: Harlow, 1999, p. 120.
[100]
Landge, S.M.; Schmidt, A.; Outerbridge, V.; Török, B. Synthesis of pyrazoles by a one-pot tandem cyclization-dehydrogenation approach on Pd/C/K-10 catalyst. Synlett, 2007, 1600-1604.
[101]
Landge, S.M.; Berryman, M.; Török, B. Microwave-assisted solid acid-catalyzed one-pot synthesis of isobenzofuran-1(3H)-ones. Tetrahedron Lett., 2008, 49, 4505-4508.
[102]
Outerbridge, V.M.; Landge, S.M.; Tamaki, H.; Török, B. Microwave-promoted solid-acid-catalyzed one pot synthesis of phthalazinones. Synthesis, 2009, 2009, 1801-1806.
[103]
Abid, M.; De Paolis, O.; Török, B. A novel one-pot synthesis of N-acylindoles from primary aromatic amides. Synlett, 2008, 2008, 410-413.
[104]
Abid, M.; Landge, S.M.; Török, B. An efficient and rapid synthesis of N-pyrroles by microwave-assisted solid acid catalysis. Org. Prep. Proced. Int., 2006, 38, 495-500.
[105]
Rudnitskaya, A.; Borkin, D.A.; Huynh, K.; Török, B.; Stieglitz, K. Rational design, synthesis and potency of N-substituted indoles, pyrroles and triarylpyrazoles as potential fructose 1,6-biphosphatase inhibitors. ChemMedChem, 2010, 5, 384-389.
[106]
Landge, S.M.; Török, B. Synthesis of condensed benzo[N,N]-heterocycles by microwave-assisted solid acid catalysis. Catal. Lett., 2008, 122, 338-343.
[107]
Kulkarni, A.; Abid, M.; Török, B.; Huang, X. A direct synthesis of β-carbolines via a three-step one-pot domino approach with a bifunctional Pd/C/K-10 catalyst. Tetrahedron Lett., 2009, 50, 1791-1794.
[108]
Horton, W.; Sood, A.; Peerannawar, S.; Kugyela, N.; Kulkarni, A.; Tulsan, R.; Tran, C.D.; Soule, J.; LeVine, III, H.; Török, B.; Török, M. Synthesis and application of β-carbolines as novel multi-functional anti- Alzheimer’s disease agents. Bioorg. Med. Chem. Lett., 2017, 27, 232-236.
[109]
De Paolis, O.; Teixeira, L.; Török, B. Synthesis of quinolines by a solid acid-catalyzed microwave-assisted domino cyclization-aromatization approach. Tetrahedron Lett., 2009, 50, 2939-2942.
[110]
Kokel, A.; Török, B. Microwave-assisted solid phase diazotation: a method for the environmentally benign synthesis of benzotriazoles. Green Chem., 2017, 19, 5390-5395.
[111]
Borkin, D.A.; Puscau, M.; Carlson, A.; Solan, A.; Wheeler, K.A.; Török, B.; Dembinski, R. Synthesis of diversely 1,3,5-trisubstituted pyrazoles via 5-exo-dig cyclization. Org. Biomol. Chem., 2012, 10, 4505-4508.
[112]
Cho, H.; Török, F.; Török, B. Energy efficiency of heterogeneous catalytic microwave-assisted organic reactions. Green Chem., 2014, 16, 3623-3634.
[113]
Yadav, A.; Biswas, S.; Mobin, S.M.; Samanta, S. Efficient Cu(OTf)2-catalyzed and microwave-assisted rapid synthesis of 3,4-fused chromenopyridinones under neat conditions. Tetrahedron Lett., 2017, 58, 3634-3639.
[114]
Ghodke, S.; Chudasama, U. Solvent free synthesis of coumarins using environment friendly solid acid catalysts. Appl. Catal. A Gen., 2013, 453, 219-226.
[115]
Chavan, O.S.; Shioorkar, M.G.; Jadhav, S.A.; Sakhare, M.A.; Pawar, Y.M.; Shivaji, B.; Chavan, S.B.; Baseer, M.A. Envirocat EPZ-10: An efficient catalyst for synthesis of coumarins by Pechmann reactin under solvent free microwave irradiation method. Heterocyclic Lett., 2017, 7, 377-380.
[116]
Babu, M.; Pitchumani, K.; Ramesh, P. An expeditious synthesis of flavonols promoted by montmorillonite KSF clay and assisted by microwave irradiation under solvent-free conditions. Helv. Chim. Acta, 2013, 96, 1269-1272.
[117]
Borkin, D.A.; Carlson, A.; Török, B. K-10-catalyzed highly diastereoselective synthesis of aziridines. Synlett, 2010, 745-748.
[118]
Mohsenzadeh, F.; Aghapoor, K.; Darabi, H.R.; Jalali, M.R.; Halvagar, M.R. Greener aminolysis of epoxides on BiCl3/SiO2. Compt. Rend. Chim., 2016, 19, 978-985.
[119]
Zhu, R.; Jiang, J-L.; Li, X-L.; Deng, J.; Fu, Y. A comprehensive study on metal triflate-promoted hydrogenolysis of lactones to carboxylic acids: From synthetic and mechanistic perspectives. ACS Catal., 2017, 7, 7520-7528.
[120]
Gowda, R.R.; Chakraborty, D. Environmentally benign process for bulk ring opening polymerization of lactones using iron and ruthenium chloride catalysts. J. Mol. Catal A:. Chem., 2009, 301, 84-92.
[121]
Kernbichl, S.; Reiter, M.; Bucalon, D.H.; Altmann, P.J.; Kronast, A.; Rieger, B. Synthesis of lewis acidic, aromatic aminotroponiminate zinc complexes for the ring-opening polymerization of cyclic esters. Inorg. Chem., 2018, 57, 9931-9940.
[122]
Nguyen, H.T.H.; Short, G.N.; Qi, P.; Miller, S.A. Copolymerization of lactones and bioaromatics via concurrent ring-opening polymerization/ polycondensation. Green Chem., 2017, 19, 1877-1889.
[123]
Kuźniarska-Biernacka, I.; Pereira, C.; Carvalho, A.P.; Pires, J.; Freire, C. Epoxidation of olefins catalyzed by manganese(III) salen complexes grafted to porous heterostructured clays. Appl. Clay Sci., 2011, 53, 195-203.
[124]
Song, F.; Wang, C.; Falkowski, J.M.; Ma, L.; Lin, W. Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: tuning catalytic activity by controlling framework catenation and varying open channel sizes. J. Am. Chem. Soc., 2010, 132, 15930-15938.
[125]
Huang, J.; Ding, W.; Cai, J. Heterogeneous Jacobsen’s catalyst on alkoxyl‐modified zirconium poly (styrene‐phenylvinylphospho-nate)‐phosphate (ZPS‐PVPA) for asymmetric epoxidation. Appl. Organometal. Chem., 2017, 31e3861
[126]
Ren, Y.; Cheng, X.; Yang, S.; Qi, C.; Jiang, H.; Mao, Q. A chiral mixed metal–organic framework based on a Ni(saldpen) metalloligand: synthesis, characterization and catalytic performances. Dalton Trans., 2013, 42, 9930-9937.
[127]
Xia, Q.; Li, Z.; Tan, C.; Liu, Y.; Gong, W.; Yong, Cui. Y. Multivariate metal−organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions. J. Am. Chem. Soc., 2017, 139, 8259-8266.
[128]
Li, J.; Ren, Y.; Qi, C.; Jiang, H. The first porphyrin–salen based chiral metal–organic framework for asymmetric cyanosilylation of aldehydes. Chem. Commun. , 2017, 53, 8223-8226.
[129]
Dong, J.; Liu, Y.; Cui, Y. Chiral porous organic frameworks for asymmetric heterogeneous catalysis and gas chromatographic separation. Chem. Commun. , 2014, 50, 14949-14952.
[130]
Peng, C.; Lu, X-H.; Ma, X-T.; Shen, Y. Wei, C.-C.; He, J.; Zhou, D.; Xia, Q.-H. Highly efficient epoxidation of cyclohexene with aqueous H2O2 over powdered anion-resin supported solid catalysts. J. Mol. Catal. A: Chem., 2016, 423, 393-399.
[131]
Shen, Y.; Lu, X-H.; Wei, C-C.; Ma, X-T.; Peng, C.; He, J.; Zhou, D.; Xia, Q-H. Highly selective mono-epoxidation of dicyclopentadiene with aqueous H2O2 over heterogeneous peroxo-phosphotungstic catalysts. Mol. Catal., 2017, 433, 185-192.
[132]
Schäfer, C.; Ellstrom, C.J.; Török, B. Heterogeneous catalytic aqueous phase oxidative cleavage of styrenes to benzaldehydes: An environmentally benign alternative to ozonolysis. Top. Catal., 2018, 61, 643-651.
[133]
Landge, S.M.; Atanassova, V.; Thimmaiah, M.; Török, B. Microwave-assisted oxidative coupling of amines to imines on solid acid catalysts. Tetrahedron Lett., 2007, 48, 5161-5164.
[134]
Atanassova, V.; Ganno, K.; Kulkarni, A.; Landge, S.M.; Curtis, S.; Foster, M.; Török, B. Mechanistic study on the oxidative coupling of amines to imines on K-10 montmorillonite. Appl. Clay Sci., 2011, 53, 220-226.
[135]
Fabian, L.; Gómez, M.; Kuran, J.A.C.; Moltrasio, G.; Moglioni, A. Efficient microwave-assisted esterification reaction employing methanesulfonic acid supported on alumina as catalyst. Synth. Commun., 2014, 44, 2386-2392.
[136]
(a) Gallo, J.M.R.; Trapp, M.A. The chemical conversion of biomass-derived saccharides: An overview. J. Braz. Chem. Soc., 2017, 28, 1586-1607.
(b) De, S.; Duttab, S.; Saha, B. Critical design of heterogeneous catalysts for biomass valorization: current thrust and emerging prospects. Catal. Sci. Technol., 2016, 6, 7364-7385.
(c) Chatterjee, C.; Pong, F.; Sen, A. Chemical conversion pathways for carbohydrates. Green Chem., 2015, 17, 40-71.
(d) Pagan-Torres, Y.J.; Gallo, J.M.R.; Wang, D.; Pham, H.N.; Libera, J.A.; Marshall, C.L.; Elam, J.W.; Datye, A.K.; Dumesic, J.A. Synthesis of highly ordered hydrothermally stable mesoporous niobia catalysts by atomic layer deposition. ACS Catal., 2011, 1, 1234-1245.
[137]
Nishimura, S.C. Paris. France: European Patent Office. 2004. European
Patent No EP 1 123 939 B1
[138]
Perrier, A.; Keller, M.; Caminade, A.; Majoral, J.; Ouali, A. Efficient and recyclable rare earth-based catalysts for Friedel-Crafts acylations under microwave heating: dendrimers show the way. Green Chem., 2013, 15, 2075-2080.
[139]
Tran, P.H.; Nguyen, H.T.; Hansen, P.E.; Le, T.N. Greener Friedel-Crafts acylation using microwave-enhanced reactivity of bismuth triflate in the Friedel-Crafts benzoylation of aromatic compounds with benzoic anhydride. Chem. Select., 2017, 2, 571-575.
[140]
Abid, M.; Teixeira, L.; Török, B. Triflic acid controlled successive annelation of aromatic sulfonamides: An efficient one-pot synthesis of N-sulfonyl pyrroles, indoles and carbazoles. Tetrahedron Lett., 2007, 48, 4047-4050.
[141]
Abid, M.; Teixeira, L.; Török, B. Triflic acid-catalyzed highly stereoselective friedel-crafts aminoalkylation of indoles and pyrroles. Org. Lett., 2008, 10, 933-935.
[142]
Mendoza, F.; Ruíz-Guerrero, R.; Hernández-Fuentes, C.; Molina, P.; Norzagaray-Campos, M.; Reguera, E. On the bromination of aromatics, alkenes and alkynes using alkylammonium bromide: Towards the mimic of bromoperoxidases reactivity. Tetrahedron Lett., 2016, 57, 5644-5648.
[143]
Heravi, M.M.; Bakhtiari, K.; Benmorad, T.; Bamoharram, F.F.; Oskooie, H.; Tehrani, M.H. Nitration of aromatic compounds catalyzed by divanadium substituted molybdophosphoric acid H5.[PMo10V2O40]. Monatsh. Chem., 2007, 138, 449-452.
[144]
Zhu, W.; Liu, Y.; Niu, G.; Wang, Q.; Li, J.; Zhu, X.; Li, Y.; Xue, H.; Yang, G. First application of bismuth triflate as an efficient, non-transition metallic and reusable catalyst for aromatic nitration. Catal. Commun., 2012, 29, 145-148.
[145]
Qian, H.; Wang, Y.; Liu, D.; Lv, C. Bismuth triflate catalyzed mononitration of aromatic compounds with N2O5. Lett. Org. Chem., 2014, 11, 509-512.
[146]
Zare, A.; Yousofi, T.; Moosavi-Zare, A.R. Ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate: a novel and highly efficient catalyst for the preparation of 1-carbamatoalkyl-2-naphthols and 1-amidoalkyl-2-naphthols. RSC Advances, 2012, 2, 7988-7991.
[147]
Mohammadi, S.; Abbasi, M. Design of ionic liquid sulfonic acid pyridinium hydrogen sulfate as an efficient, eco-friendly, and reusable catalyst for one-pot synthesis of highly functionalized tetrahydropyridines. Res. Chem. Intermed., 2015, 41, 8877-8890.
[148]
Rahmatpour, A. Polyvinylsulfonic acid: An efficient, water-soluble and reusable Brønsted acid catalyst for the three-component synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones in water and ethanol. Catal. Lett., 2012, 142, 1505-1511.
[149]
Yanai, H.; Sakiyama, T.; Oguchi, T.; Taguchi, T. Four component reaction of aldehydes, isocyanides, Me3SiN3, and aliphatic alcohols catalyzed by indium triflate. Tetrahedron Lett., 2012, 53, 3161-3164.
[151]
Seyyedhamzeh, M.; Shaabani, S.; Sangachin, M.H.; Shaabani, A. Guanidinium-based sulfonic acid as a new Bronsted acid organocatalyst in organic synthesis in water. Res. Chem. Intermed., 2016, 42, 2845-2855.
[152]
Wang, S.; Cheng, C.; Wu, F.; Jiang, B.; Shi, F.; Tu, S.; Rajale, T.; Li, G. Microwave-assisted multi-component reaction in water leading to highly regioselective formation of benzo[f]azulen-1-ones. Tetrahedron, 2011, 67, 4485-4493.
[153]
Naidoo, S.; Jeena, V. A green, solvent-free one-pot synthesis of disubstituted quinolines via A3-coupling using 1mol % FeCl3. Heterocycles, 2016, 92, 1655-1664.
[154]
Ansari, A.J.; Sharma, S.; Pathare, R.S.; Gopal, K.; Sawant, D.M.; Pardasani, R.T. Solvent–free multicomponent synthesis of biologically–active fused–imidazo heterocycles catalyzed by reusable Yb(OTf)3 under microwave irradiation. Chem. Select., 2016, 1, 1016-1021.
[155]
Tayebee, R.; Tizabi, S. One-pot four-component dakin-west synthesis of beta-acetamido ketones catalyzed by a vanadium-substituted heteropolyacid. Chin. J. Catal., 2012, 33, 923-932.
[156]
Borkin, D.; Morzhina, E.; Datta, S.; Rudnitskaya, A.; Sood, A.; Török, M.; Török, B. Heteropoly acid-catalyzed microwave-assisted three-component aza-diels-alder cyclizations: diastereoselective synthesis of potential drug candidates for alzheimer’s disease. Org. Biomol. Chem., 2011, 9, 1394-1401.
[157]
Ishak, C.Y.; Wahbi, H.I.; Mohamed, M.E. Synthesis and characterization of some new 6-substituted-2, 4-di (hetar-2-yl) quinolines via micheal addition - ring closure reaction of schiff base n-(hetar-2- yl) methylene aniline with hetarylketones. Int. J. Pharm. Phytopharm. Res., 2013, 2, 431-435.
[158]
Zhang, J-H.; Wang, R-B.; Li, D-F.; Zhoa, L-M. Green method to preparing oxindole-fused spirotetrahydrofuran scaffolds through methanesulfonic acid-catalyzed cyclization reactions of 3‐allyl-3-hydroxy-2-oxindole in water. ACS Omega, 2017, 2, 7022-7028.
[159]
Gooßen, L.J.; Ohlmann, D.M.; Dierker, M. Silver triflate-catalysed synthesis of γ-lactones from fatty acids. Green Chem., 2010, 12, 197-200.
[160]
Mike, J.F.; Intemann, J.J.; Cai, M.; Xiao, T.; Shinar, R.; Shinar, J.; Jeffries-EL, M. Efficient synthesis of benzobisazole terpolymers containing thiophene and fluorene. Polym. Chem., 2011, 2, 2299-2305.
[161]
Shen, G.; Zhou, H.; Du, P.; Liu, S.; Zou, K.; Uozumi, Y. Brønsted acid-catalyzed selective C–C bond cleavage of 1,3-diketones: A facile synthesis of 4(3H)-quinazolinones in aqueous ethyl lactate. RSC Advances, 2015, 5, 85646-85651.
[162]
Ahmed, W.; Zhang, S.; Yu, X.; Yamamoto, Y.; Bao, M. Brønsted acid-catalyzed metal- and solvent-free quinoline synthesis from N-alkyl anilines and alkynes or alkenes. Green Chem., 2018, 20, 261-265.
[163]
Grigorjeva, L.; Jirgensons, A. Lewis acid catalyzed intramolecular allylic substitution of bis(trichloroacetimidates): A versatile approach to racemic unsaturated amino acids. Eur. J. Org. Chem., 2011, 13, 2421-2425.
[164]
Klimovica, K.; Grigorjeva, L.; Maleckis, A.; Popelis, J.; Jirgensons, A. C-quaternary vinylglycinols by metal-catalyzed cyclization of allylic bistrichloroacetimidates. Synlett, 2011, 19, 2849-2851.
[165]
Grigorjeva, L.; Maleckis, A.; Klimovica, K.; Skvorcova, M.; Ivdra, N.; Leitis, G.; Jirgensons, A. Novel synthesis of 2-trichloromethyl-4-vinyloxazoline and its derivatization by ring cleavage reactions. Chem. Heterocycl. Compd., 2012, 48, 919-924.
[166]
Cornil, J.; Gonnard, L.; Guérinot, A.; Reymond, S.; Cossy, J. Lewis acid catalyzed synthesis of cyclic carbonates, precursors of 1,2- and 1,3-diols. Eur. J. Org. Chem., 2014, 23, 4958-4962.
[168]
Yu, Z.; Liu, L.; Zhang, J. Triflic acid-catalyzed enynes cyclization: A new strategy beyond electrophilic π-activation. Chemistry Eur. J., 2016, 22, 8488-8492.
[169]
Singh, A.K.; Rai, A. Yadav. L.D.S. LiBr catalyzed solvent-free ring expansion of epoxides to 1,4-oxathian-2-ones with a-mercaptocarboxylic acids. Tetrahedron Lett., 2011, 52, 3614-3617.
[170]
Kiasat, A.R.; Mehrjadi, M.F. PEG-SO3H as eco-friendly polymeric catalyst for regioselective ring opening of epoxides using thiocyanate anion in water: An efficient route to synthesis of b-hydroxy thiocyanate. Catal. Commun., 2008, 9, 1497-1500.
[171]
Nazari, S. Iravani, N.; Ahmady, A.Z.; Vafaee-Nezhad, M.; Keshavarz, M. Imidazol-1-yl-acetic acid as a green simple bifunctional organocatalyst for the regioselective conversion of epoxides to 1,2-azido alcohols and -hydroxythiocyanates. Curr. Organocatal., 2014, 1, 7-12.
[172]
Halimehjani, A.Z.; Gholami, H.; Saidi, M.R. Boric acid/glycerol as an efficient catalyst for regioselective epoxide ring opening by aromatic amines in water. Green Chem. Lett. Rev., 2012, 5, 1-5.
[173]
Cucciniello, R.; Ricciardi, M.; Vitiello, R.; Di Serio, M.; Proto, A.; Capacchione, C. Synthesis of monoalkyl glyceryl ethers by ring opening of glycidol with alcohols in the presence of lewis acids. ChemSusChem, 2016, 9, 3272-3275.
[174]
Ghosal, N.C.; Santra, S.; Das, S.; Hajra, A.; Zyryanov, G.V.; Majee, A. Organocatalysis by an aprotic imidazolium zwitterion: regioselective ring-opening of aziridines and applicable to gram scale synthesis. Green Chem., 2016, 18, 565-574.
[175]
Gowda, R.R.; Chakraborty, D. Environmentally benign process for bulk ring opening polymerization of lactones using iron and ruthenium chloride catalysts. J. Mol. Catal.A: Chem., 2009, 301, 84-92.
[176]
Ji, H-Y.; Wang, B.; Pan, L.; Li, S-Y. Lewis pairs for ring-opening alternating copolymerization of cyclic anhydrides and epoxides. Green Chem., 2018, 20, 641-648.
[177]
Huang, Y.; Yang, T.; Zhou, M.; Pan, H.; Fu, Y. Microwave-assisted alcoholysis of furfural alcohol into alkyl levulinates catalyzed by metal salts. Green Chem., 2016, 18, 1516-1523.
[178]
Huang, Y.; Yang, X. Lv, Z.;Cai, C.; Kai, C.; Pei, Y.; Feng, Y. Asymmetric synthesis of 1,3-butadienyl-2-carbinols by the homoallenylboration of aldehydes with a chiral phosphoric acid catalyst. Angew. Chem. Int. Ed., 2015, 54, 7299-7302.
[179]
Shevchenko, G.A.; Pupo, G.; List, B. Catalytic asymmetric α-amination of α-branched ketones via enol catalysis. Synlett, 2015, 26, 1413-1416.
[180]
Yang, X.; Toste, F.D. Direct asymmetric amination of α‐branched cyclic ketones catalyzed by a chiral phosphoric acid. J. Am. Chem. Soc., 2015, 137, 3205-3208.
[181]
Lou, H.; Wang, Y.; Jin, E.; Lin, X. Organocatalytic asymmetric synthesis of dihydrobenzoxazinones bearing trifluoromethylated quaternary stereocenters. J. Org. Chem., 2016, 81, 2019-2026.
[182]
Qin, L.; Wang, P.; Zhang, Y.; Ren, Z.; Zhang, X.; Da, C-S. Direct asymmetric friedel–crafts reaction of naphthols with acetals catalyzed by chiral brønsted acids. Synlett, 2016, 27, 571-574.
[183]
Rueping, M.; Bootwicha, T.; Sugiono, E. Continuous-flow catalytic asymmetric hydrogenations: Reaction optimization using FTIR inline analysis. Beilstein J. Org. Chem., 2012, 8, 300-307.
[184]
More, G.V.; Bhanage, B.M. Chiral phosphoric acid catalyzed asymmetric transfer hydrogenation of quinolines in a sustainable solvent. Tetrahedron, 2015, 26, 1174-1179.
[185]
Lifchits, O.; Reisinger, C.M.; List, B. Catalytic asymmetric epoxidation of α-branched enals. J. Am. Chem. Soc., 2010, 132, 10227-10229.
[186]
Zhang, H.; Yao, Q.; Lin, L.; Xu, C.; Liu, X.; Feng, X. Catalytic asymmetric epoxidation of electron-deficient enynes promoted by chiral N,N′-dioxide-scandium(III) complex. Adv. Synth. Catal., 2017, 359, 3454-3459.
[187]
Chen, G.; Fu, X.; Li, C.; Wu, C.; Miao, Q. Highly efficient direct a larger-scale aldol reactions catalyzed by a flexible prolinamide based-metal Lewis acid bifunctional catalyst in the presence of water. J. Organomet. Chem., 2012, 702, 19-26.
[188]
Penhoat, M.; Barbry, D.; Rolando, C. Direct asymmetric aldol reaction co-catalyzed by L-proline and group 12 elements Lewis acids in the presence of water. Tetrahedron Lett., 2011, 52, 159-162.
[189]
Kitanosono, T.; Ollevier, T.; Kobayash, S. Iron- and bismuth-catalyzed asymmetric mukaiyama aldol reactions in aqueous media. Chem. Asian J., 2013, 8, 3051-3062.
[190]
Aplander, K.; Ding, R.; Krasavin, M.; Lindström, U.M.; Wennerberg, J. Asymmetric lewis acid catalysis in water: α-amino acids as effective ligands in aqueous biphasic catalytic michael additions. Eur. J. Org. Chem., 2009, 6, 810-821.
[191]
Barbero, M.; Cadamuro, S.; Dughera, S.; Torregrossa, R. Chiral derivatives of 1,2-benzenedisulfonimide as efficient Brønsted acid catalysts in the Strecker reaction. Org. Biomol. Chem., 2014, 12, 3902-3911.
[193]
Kulkarni, A.; Zhou, W.; Török, B. Heterogeneous catalytic hydrogenation of unprotected indoles in water: A green solution to a long-standing challenge. Org. Lett., 2011, 13, 5124-5127.
[194]
Shekhar, A.C.; Kumar, A.R.; Sathaiah, G.; Paul, V.L.; Sridhar, M.; Rao, P.S. Facile N-formylation of amines using Lewis acids as novel catalysts. Tetrahedron Lett., 2009, 50, 7099-7101.
[195]
Terada, Y.; Ieda, N.; Komura, K.; Sugi, Y. Multivalent metal salts as versatile catalysts for the amidation of long-chain aliphatic acids with aliphatic amines. Synthesis, 2008, 15, 2318-2320.
[196]
Yaragorla, S.; Singh, G.; Saini, P.L.; Reddy, M.K. Microwave assisted, Ca(II)-catalyzed Ritter reaction for the green synthesis of amides. Tetrahedron Lett., 2014, 55, 4657-4660.
[197]
Zhou, B.; Yang, J.; Li, M.; Gu, Y. Gluconic acid aqueous solution as a sustainable and recyclable promoting medium for organic reactions. Green Chem., 2011, 13, 2204-2211.
[198]
Jeong, H.; Axtell, J.C.; Török, B.; Schrock, R.R.; Muller, P. Syntheses of tungsten tert-butylimido and adamantylimido alkylidene complexes employing pyridinium chloride as the acid. Organometallics, 2012, 31, 6522-6525.
[199]
Kamimura, A.; Murata, K.; Tanaka, Y.; Okagawa, T.; Matsumoto, H.; Kaiso, K.; Yoshimoto, M. Rapid conversion of sorbitol to isosorbide in hydrophobic ionic liquids under microwave irradiation. ChemSusChem, 2014, 7, 3257-3259.
[200]
Antonetti, C.; Melloni, M.; Licursi, D. Fulignati, S.; Ribechini, E.; Rivas, S.; Parajó, J.C.; Cavani, F.; Raspolli Galletti, A.M. Microwave-assisted dehydration of fructose and inulin to HMF catalyzed by niobium and zirconium phosphate catalysts. Appl. Catal. B Env., 2017, 206, 364-377.
[201]
Bhanja, P.; Modak, A.; Chatterjee, S.; Bhaumik, A. Bifunctionalized mesoporous SBA-15: A new heterogeneous catalyst for the facile synthesis of 5-hydroxymethylfurfural. ACS Sustain. Chem.& Eng., 2017, 5, 2763-2773.