Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Diagnoses of Pathological States Based on Acetylcholinesterase and Butyrylcholinesterase

Author(s): Miroslav Pohanka*

Volume 27, Issue 18, 2020

Page: [2994 - 3011] Pages: 18

DOI: 10.2174/0929867326666190130161202

Price: $65

Abstract

Two cholinesterases exist: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). While AChE plays a crucial role in neurotransmissions, BChE has no specific function apart from the detoxification of some drugs and secondary metabolites from plants. Thus, both AChE and BChE can serve as biochemical markers of various pathologies. Poisoning by nerve agents like sarin, soman, tabun, VX, novichok and overdosing by drugs used in some neurodegenerative disorders like Alzheimer´s disease and myasthenia gravis, as well as poisoning by organophosphorus pesticides are relevant to this issue. But it appears that changes in these enzymes take place in other processes including oxidative stress, inflammation, some types of cancer and genetically conditioned diseases. In this review, the cholinesterases are introduced, the mechanism of inhibitors action is explained and the relations between the cholinesterases and pathologies are explained.

Keywords: Acetylcholinesterase, anesthesia, butyrylcholinesterase, diagnosis, liver function test, myorelaxant, nerve agent, neurotransmission, pesticide, poisoning.

[1]
de los Ríos, C. Cholinesterase inhibitors: a patent review (2007 - 2011). Expert Opin. Ther. Pat., 2012, 22(8), 853-869.
[http://dx.doi.org/10.1517/13543776.2012.701619] [PMID: 22764681]
[2]
Deardorff, W.J.; Feen, E.; Grossberg, G.T. The use of cholinesterase inhibitors across all stages of alzheimer’s disease. Drugs Aging, 2015, 32(7), 537-547.
[http://dx.doi.org/10.1007/s40266-015-0273-x] [PMID: 26033268]
[3]
Di Stefano, A.; Iannitelli, A.; Laserra, S.; Sozio, P. Drug delivery strategies for Alzheimer’s disease treatment. Expert Opin. Drug Deliv., 2011, 8(5), 581-603.
[http://dx.doi.org/10.1517/17425247.2011.561311] [PMID: 21391862]
[4]
Ehret, M.J.; Chamberlin, K.W. Current practices in the treatment of alzheimer disease: where is the evidence after the phase III Trials? Clin. Ther., 2015, 37(8), 1604-1616.
[http://dx.doi.org/10.1016/j.clinthera.2015.05.510] [PMID: 26122885]
[5]
Krall, W.J.; Sramek, J.J.; Cutler, N.R. Cholinesterase inhibitors: a therapeutic strategy for Alzheimer disease. Ann. Pharmacother., 1999, 33(4), 441-450.
[http://dx.doi.org/10.1345/aph.18211] [PMID: 10332536]
[6]
Pohanka, M. Acetylcholinesterase inhibitors: a patent review (2008 - present). Expert Opin. Ther. Pat., 2012, 22(8), 871-886.
[http://dx.doi.org/10.1517/13543776.2012.701620] [PMID: 22768972]
[7]
Pohanka, M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2011, 155(3), 219-229.
[http://dx.doi.org/10.5507/bp.2011.036] [PMID: 22286807]
[8]
Young, R.A.; Opresko, D.M.; Watson, A.P.; Ross, R.H.; King, J.; Choudhury, H. Deriving toxicity values for organophosphate nerve agents: A position paper in support of the procedures and rationale for deriving oral RfDs for chemical warfare nerve agents. Hum. Ecol. Risk Assess., 1999, 5(3), 589-634.
[http://dx.doi.org/10.1080/10807039991289554]
[9]
Jokanović, M. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Toxicol. Lett., 2009, 190(2), 107-115.
[http://dx.doi.org/10.1016/j.toxlet.2009.07.025] [PMID: 19651196]
[10]
Cannard, K. The acute treatment of nerve agent exposure. J. Neurol. Sci., 2006, 249(1), 86-94.
[http://dx.doi.org/10.1016/j.jns.2006.06.008] [PMID: 16945386]
[11]
Pope, C.N.; Brimijoin, S. Cholinesterases and the fine line between poison and remedy. Biochem. Pharmacol., 2018, 153(18), 205-216.
[http://dx.doi.org/10.1016/j.bcp.2018.01.044] [PMID: 29409903]
[12]
Thapa, S.; Lv, M.; Xu, H. Acetylcholinesterase: a primary target for drugs and insecticides. Mini Rev. Med. Chem., 2017, 17(17), 1665-1676.
[http://dx.doi.org/10.2174/1389557517666170120153930] [PMID: 28117022]
[13]
Loewi, O. Uber humorale ubertragbarkeit der Hernervenwirkung. I Mitt. Pflugers Arch., 1921, 189, 239-242.
[http://dx.doi.org/10.1007/BF01738910]
[14]
Sheng, Y.; Zhu, L. The crosstalk between autonomic nervous system and blood vessels. Int. J. Physiol. Pathophysiol. Pharmacol., 2018, 10(1), 17-28.
[PMID: 29593847]
[15]
Nishimune, H.; Shigemoto, K. Practical anatomy of the neuromuscular junction in health and disease. Neurol. Clin., 2018, 36(2), 231-240.
[http://dx.doi.org/10.1016/j.ncl.2018.01.009] [PMID: 29655446]
[16]
Woolf, N.J.; Butcher, L.L. Cholinergic systems mediate action from movement to higher consciousness. Behav. Brain Res., 2011, 221(2), 488-498.
[http://dx.doi.org/10.1016/j.bbr.2009.12.046] [PMID: 20060422]
[17]
Hepple, R.T.; Rice, C.L. Innervation and neuromuscular control in ageing skeletal muscle. J. Physiol., 2016, 594(8), 1965-1978.
[http://dx.doi.org/10.1113/JP270561] [PMID: 26437581]
[18]
Plomp, J.J.; Huijbers, M.G.M.; Verschuuren, J.J.G.M. Neuromuscular synapse electrophysiology in myasthenia gravis animal models. Ann. N. Y. Acad. Sci., 2018, 1412(1), 146-153.
[http://dx.doi.org/10.1111/nyas.13507] [PMID: 29068559]
[19]
Pohanka, M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int. J. Mol. Sci., 2014, 15(6), 9809-9825.
[http://dx.doi.org/10.3390/ijms15069809] [PMID: 24893223]
[20]
Tonhajzerova, I.; Mokra, D.; Visnovcova, Z. Vagal function indexed by respiratory sinus arrhythmia and cholinergic anti-inflammatory pathway. Respir. Physiol. Neurobiol., 2013, 187(1), 78-81.
[http://dx.doi.org/10.1016/j.resp.2013.02.002] [PMID: 23410913]
[21]
Rosas-Ballina, M.; Tracey, K.J. Cholinergic control of inflammation. J. Intern. Med., 2009, 265(6), 663-679.
[http://dx.doi.org/10.1111/j.1365-2796.2009.02098.x] [PMID: 19493060]
[22]
Pohanka, M. Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int. J. Mol. Sci., 2012, 13(2), 2219-2238.
[http://dx.doi.org/10.3390/ijms13022219] [PMID: 22408449]
[23]
Dorko, F.; Danko, J.; Flešárová, S.; Boroš, E.; Sobeková, A. Effect of pesticide bendiocarbamate on distribution of acetylcholine- and butyrylcholine-positive nerves in rabbit’s thymus. Eur. J. Histochem., 2011, 55(4)e37
[http://dx.doi.org/10.4081/ejh.2011.e37] [PMID: 22297443]
[24]
Murabayashi, H.; Kuramoto, H.; Ishikawa, K.; Iwamoto, J.; Miyakawa, K.; Tanaka, K.; Sekikawa, M.; Sasaki, M.; Kitamura, N.; Oomori, Y. Acetylcholinesterase activity, choline acetyltransferase and vesicular acetylcholine transporter immunoreactivities in the rat adrenal gland during postnatal development. Anat. Rec. (Hoboken), 2009, 292(3), 371-380.
[http://dx.doi.org/10.1002/ar.20856] [PMID: 19248156]
[25]
Kawashima, K.; Fujii, T. Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. Front. Biosci., 2004, 9, 2063-2085.
[http://dx.doi.org/10.2741/1390] [PMID: 15353271]
[26]
Snyder, D.A.; Kelly, M.L.; Woodbury, D.J. SNARE complex regulation by phosphorylation. Cell Biochem. Biophys., 2006, 45(1), 111-123.
[http://dx.doi.org/10.1385/CBB:45:1:111] [PMID: 16679567]
[27]
McMahon, H.T.; Missler, M.; Li, C.; Südhof, T.C. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell, 1995, 83(1), 111-119.
[http://dx.doi.org/10.1016/0092-8674(95)90239-2] [PMID: 7553862]
[28]
Searl, T.J.; Silinsky, E.M. Modulation of calcium-dependent and -independent acetylcholine release from motor nerve endings. J. Mol. Neurosci., 2006, 30(1-2), 215-218.
[http://dx.doi.org/10.1385/JMN:30:1:215] [PMID: 17192679]
[29]
Sharrad, D.F.; Gai, W.P.; Brookes, S.J. Selective coexpression of synaptic proteins, α-synuclein, cysteine string protein-α, synaptophysin, synaptotagmin-1, and synaptobrevin-2 in vesicular acetylcholine transporter-immunoreactive axons in the guinea pig ileum. J. Comp. Neurol., 2013, 521(11), 2523-2537.
[http://dx.doi.org/10.1002/cne.23296] [PMID: 23296877]
[30]
Wess, J. Novel insights into muscarinic acetylcholine receptor function using gene targeting technology. Trends Pharmacol. Sci., 2003, 24(8), 414-420.
[http://dx.doi.org/10.1016/S0165-6147(03)00195-0] [PMID: 12915051]
[31]
Wu, J.; Gao, M.; Taylor, D.H. Neuronal nicotinic acetylcholine receptors are important targets for alcohol reward and dependence. Acta Pharmacol. Sin., 2014, 35(3), 311-315.
[http://dx.doi.org/10.1038/aps.2013.181] [PMID: 24464050]
[32]
Changeux, J.P. The nicotinic acetylcholine receptor: a typical ‘allosteric machine’. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2018, 373(1749)pii: 20170174
[http://dx.doi.org/10.1098/rstb.2017.0174] [PMID: 29735728]
[33]
Verma, S.; Kumar, A.; Tripathi, T.; Kumar, A. Muscarinic and nicotinic acetylcholine receptor agonists: current scenario in Alzheimer’s disease therapy. J. Pharm. Pharmacol., 2018, 70(8), 985-993.
[http://dx.doi.org/10.1111/jphp.12919] [PMID: 29663387]
[34]
Dobransky, T.; Rylett, R.J. Functional regulation of choline acetyltransferase by phosphorylation. Neurochem. Res., 2003, 28(3-4), 537-542.
[http://dx.doi.org/10.1023/A:1022873323561] [PMID: 12675142]
[35]
Dobransky, T.; Rylett, R.J. A model for dynamic regulation of choline acetyltransferase by phosphorylation. J. Neurochem., 2005, 95(2), 305-313.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03367.x] [PMID: 16135099]
[36]
Anne, C.; Gasnier, B. Vesicular neurotransmitter transporters: mechanistic aspects. Curr. Top. Membr., 2014, 73, 149-174.
[http://dx.doi.org/10.1016/B978-0-12-800223-0.00003-7] [PMID: 24745982]
[37]
Lawal, H.O.; Krantz, D.E. SLC18: Vesicular neurotransmitter transporters for monoamines and acetylcholine. Mol. Aspects Med., 2013, 34(2-3), 360-372.
[http://dx.doi.org/10.1016/j.mam.2012.07.005] [PMID: 23506877]
[38]
Brimijoin, S.; Chen, V.P.; Pang, Y.P.; Geng, L.; Gao, Y. Physiological roles for butyrylcholinesterase: A BChE-ghrelin axis. Chem. Biol. Interact., 2016, 259(Pt B), 271-275.
[http://dx.doi.org/10.1016/j.cbi.2016.02.013]
[39]
Schuman, R.F.; Brimfield, A.A.; Hunter, K.W. A micro-method for the detection of butyrylcholinesterase secreted by hepatocytes in vitro. Biosci. Rep., 1984, 4(2), 149-154.
[http://dx.doi.org/10.1007/BF01120311] [PMID: 6713085]
[40]
Kutty, K.M.; Payne, R.H. Serum pseudocholinesterase and very-low-density lipoprotein metabolism. J. Clin. Lab. Anal., 1994, 8(4), 247-250.
[http://dx.doi.org/10.1002/jcla.1860080411] [PMID: 7931819]
[41]
Ostergaard, D.; Viby-Mogensen, J.; Hanel, H.K.; Skovgaard, L.T. Half-life of plasma cholinesterase. Acta Anaesthesiol. Scand., 1988, 32(3), 266-269.
[http://dx.doi.org/10.1111/j.1399-6576.1988.tb02727.x] [PMID: 3364151]
[42]
Zhan, C.G.; Zheng, F.; Landry, D.W. Fundamental reaction mechanism for cocaine hydrolysis in human butyrylcholinesterase. J. Am. Chem. Soc., 2003, 125(9), 2462-2474.
[http://dx.doi.org/10.1021/ja020850+] [PMID: 12603134]
[43]
Browne, S.P.; Slaughter, E.A.; Couch, R.A.; Rudnic, E.M.; McLean, A.M. The influence of plasma butyrylcholinesterase concentration on the in vitro hydrolysis of cocaine in human plasma. Biopharm. Drug Dispos., 1998, 19(5), 309-314.
[http://dx.doi.org/10.1002/(SICI)1099-081X(199807)19:5<309:AID-BDD108>3.0.CO;2-9] [PMID: 9673783]
[44]
Qiao, Y.; Han, K.; Zhan, C.G. Fundamental reaction pathway and free energy profile for butyrylcholinesterase-catalyzed hydrolysis of heroin. Biochemistry, 2013, 52(37), 6467-6479.
[http://dx.doi.org/10.1021/bi400709v] [PMID: 23992153]
[45]
Hou, S.; Zhan, M.; Zheng, X.; Zhan, C.G.; Zheng, F. Kinetic characterization of human butyrylcholinesterase mutants for the hydrolysis of cocaethylene. Biochem. J., 2014, 460(3), 447-457.
[http://dx.doi.org/10.1042/BJ20140360] [PMID: 24870023]
[46]
Nana, A.; Cardan, E.; Cucuianu, M. Pseudocholinesterase changes in anesthesia using pancuronium. Acta Anaesthesiol. Belg., 1977, 28(3), 183-187.
[PMID: 612115]
[47]
Yuan, J.; Yin, J.; Wang, E. Characterization of procaine metabolism as probe for the butyrylcholinesterase enzyme investigation by simultaneous determination of procaine and its metabolite using capillary electrophoresis with electrochemiluminescence detection. J. Chromatogr. A, 2007, 1154(1-2), 368-372.
[http://dx.doi.org/10.1016/j.chroma.2007.02.024] [PMID: 17507024]
[48]
Monedero, P.; Hess, P. High epidural block with chloroprocaine in a parturient with low pseudocholinesterase activity. Can. J. Anaesth., 2001, 48(3), 318-319.
[http://dx.doi.org/10.1007/BF03019772] [PMID: 11305839]
[49]
Galenko-Yaroshevskii, A.P.; Derlugov, L.P.; Ponomarev, V.V.; Dukhanin, A.S. Pharmacokinetics and pharmacodynamics of a new local anesthetic agent. Bull. Exp. Biol. Med., 2003, 136(2), 170-173.
[http://dx.doi.org/10.1023/A:1026323124831] [PMID: 14631501]
[50]
Dubbels, R.; Schloot, W. Studies on the metabolism of benoxinate by human pseudocholinesterase. Metab. Pediatr. Syst. Ophthalmol., 1983, 7(1), 37-43.
[PMID: 6621359]
[51]
Masson, P.; Froment, M.T.; Fortier, P.L.; Visicchio, J.E.; Bartels, C.F.; Lockridge, O. Butyrylcholinesterase-catalysed hydrolysis of aspirin, a negatively charged ester, and aspirin-related neutral esters. Biochim. Biophys. Acta, 1998, 1387(1-2), 41-52.
[http://dx.doi.org/10.1016/S0167-4838(98)00104-6] [PMID: 9748494]
[52]
Zhou, G.; Marathe, G.K.; Hartiala, J.; Hazen, S.L.; Allayee, H.; Tang, W.H.; McIntyre, T.M. Aspirin hydrolysis in plasma is a variable function of butyrylcholinesterase and platelet-activating factor acetylhydrolase 1b2 (PAFAH1b2). J. Biol. Chem., 2013, 288(17), 11940-11948.
[http://dx.doi.org/10.1074/jbc.M112.427674] [PMID: 23508960]
[53]
Albertí, J.; Martinet, A.; Sentellas, S.; Salvà, M. Identification of the human enzymes responsible for the enzymatic hydrolysis of aclidinium bromide. Drug Metab. Dispos., 2010, 38(7), 1202-1210.
[http://dx.doi.org/10.1124/dmd.109.031724] [PMID: 20332199]
[54]
Ammundsen, H.B.; Sørensen, M.K.; Gätke, M.R. Succinylcholine resistance. Br. J. Anaesth., 2015, 115(6), 818-821.
[http://dx.doi.org/10.1093/bja/aev228] [PMID: 26183168]
[55]
Wichmann, S.; Færk, G.; Bundgaard, J.R.; Gätke, M.R. Patients with prolonged effect of succinylcholine or mivacurium had novel mutations in the butyrylcholinesterase gene. Pharmacogenet. Genomics, 2016, 26(7), 351-356.
[http://dx.doi.org/10.1097/FPC.0000000000000221] [PMID: 27031121]
[56]
Gätke, M.R.; Bundgaard, J.R.; Viby-Mogensen, J. Two novel mutations in the BCHE gene in patients with prolonged duration of action of mivacurium or succinylcholine during anaesthesia. Pharmacogenet. Genomics, 2007, 17(11), 995-999.
[http://dx.doi.org/10.1097/FPC.0b013e3282f06646] [PMID: 18075469]
[57]
Dafferner, A.J.; Lushchekina, S.; Masson, P.; Xiao, G.; Schopfer, L.M.; Lockridge, O. Characterization of butyrylcholinesterase in bovine serum. Chem. Biol. Interact., 2017, 266, 17-27.
[http://dx.doi.org/10.1016/j.cbi.2017.02.004] [PMID: 28189703]
[58]
Ruiz, C.A.; Rossi, S.G.; Rotundo, R.L. Rescue and stabilization of acetylcholinesterase in skeletal muscle by N-terminal peptides derived from the noncatalytic subunits. J. Biol. Chem., 2015, 290(34), 20774-20781.
[http://dx.doi.org/10.1074/jbc.M115.653741] [PMID: 26139603]
[59]
Jiang, S.; Wang, X.; Xi, R.; Zhang, Y. Research on the regulation of the spatial structure of acetylcholinesterase tetramer with high efficiency by AFM. Int. J. Nanomedicine, 2013, 8, 1095-1102.
[http://dx.doi.org/10.2147/IJN.S41591] [PMID: 23515568]
[60]
Gorfe, A.A.; Chang, C.E.; Ivanov, I.; McCammon, J.A. Dynamics of the acetylcholinesterase tetramer. Biophys. J., 2008, 94(4), 1144-1154.
[http://dx.doi.org/10.1529/biophysj.107.117879] [PMID: 17921202]
[61]
Xu, M.L.; Luk, W.K.W.; Bi, C.W.C.; Liu, E.Y.L.; Wu, K.Q.Y.; Yao, P.; Dong, T.T.X.; Tsim, K.W.K. Erythropoietin regulates the expression of dimeric form of acetylcholinesterase during differentiation of erythroblast. J. Neurochem., 2018, 146(4), 390-402.
[http://dx.doi.org/10.1111/jnc.14448] [PMID: 29675901]
[62]
Shafferman, A.; Kronman, C.; Flashner, Y.; Leitner, M.; Grosfeld, H.; Ordentlich, A.; Gozes, Y.; Cohen, S.; Ariel, N.; Barak, D.; Harel, M.; Silman, I.; Sussman, J.L.; Velan, B. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. J. Biol. Chem., 1992, 267(25), 17640-17648.
[PMID: 1517212]
[63]
Arredondo, J.; Lara, M.; Ng, F.; Gochez, D.A.; Lee, D.C.; Logia, S.P.; Nguyen, J.; Maselli, R.A. COOH-terminal collagen Q (COLQ) mutants causing human deficiency of endplate acetylcholinesterase impair the interaction of ColQ with proteins of the basal lamina. Hum. Genet., 2014, 133(5), 599-616.
[http://dx.doi.org/10.1007/s00439-013-1391-3] [PMID: 24281389]
[64]
Ohno, K.; Ito, M.; Kawakami, Y.; Krejci, E.; Engel, A.G. Specific binding of collagen Q to the neuromuscular junction is exploited to cure congenital myasthenia and to explore bases of myasthenia gravis. Chem. Biol. Interact., 2013, 203(1), 335-340.
[http://dx.doi.org/10.1016/j.cbi.2012.08.020] [PMID: 22981737]
[65]
Sigoillot, S.M.; Bourgeois, F.; Lambergeon, M.; Strochlic, L.; Legay, C. ColQ controls postsynaptic differentiation at the neuromuscular junction. J. Neurosci., 2010, 30(1), 13-23.
[http://dx.doi.org/10.1523/JNEUROSCI.4374-09.2010] [PMID: 20053883]
[66]
Tsui, C.C.; Gabreski, N.A.; Hein, S.J.; Pierchala, B.A. Lipid rafts are physiologic membrane microdomains necessary for the morphogenic and developmental functions of glial cell line-derived neurotrophic factor in vivo. J. Neurosci., 2015, 35(38), 13233-13243.
[http://dx.doi.org/10.1523/JNEUROSCI.2935-14.2015] [PMID: 26400951]
[67]
Kakani, E.G.; Bon, S.; Massoulié, J.; Mathiopoulos, K.D. Altered GPI modification of insect AChE improves tolerance to organophosphate insecticides. Insect Biochem. Mol. Biol., 2011, 41(3), 150-158.
[http://dx.doi.org/10.1016/j.ibmb.2010.11.005] [PMID: 21112395]
[68]
Bucht, G.; Wikström, P.; Hjalmarsson, K. Optimising the signal peptide for glycosyl phosphatidylinositol modification of human acetylcholinesterase using mutational analysis and peptide-quantitative structure-activity relationships. Biochim. Biophys. Acta, 1999, 1431(2), 471-482.
[http://dx.doi.org/10.1016/S0167-4838(99)00079-5] [PMID: 10350622]
[69]
Arsov, Z.; Schara, M.; Zorko, M.; Strancar, J. The membrane lateral domain approach in the studies of lipid-protein interaction of GPI-anchored bovine erythrocyte acetylcholinesterase. Eur. Biophys. J., 2004, 33(8), 715-725.
[http://dx.doi.org/10.1007/s00249-004-0417-0] [PMID: 15241570]
[70]
Chen, V.P.; Xie, H.Q.; Chan, W.K.; Leung, K.W.; Chan, G.K.; Choi, R.C.; Bon, S.; Massoulié, J.; Tsim, K.W. The PRiMA-linked cholinesterase tetramers are assembled from homodimers: hybrid molecules composed of acetylcholinesterase and butyrylcholinesterase dimers are up-regulated during development of chicken brain. J. Biol. Chem., 2010, 285(35), 27265-27278.
[http://dx.doi.org/10.1074/jbc.M110.113647] [PMID: 20566626]
[71]
Chen, V.P.; Choi, R.C.; Chan, W.K.; Leung, K.W.; Guo, A.J.; Chan, G.K.; Luk, W.K.; Tsim, K.W. The assembly of proline-rich membrane anchor (PRiMA)-linked acetylcholinesterase enzyme: glycosylation is required for enzymatic activity but not for oligomerization. J. Biol. Chem., 2011, 286(38), 32948-32961.
[http://dx.doi.org/10.1074/jbc.M111.261248] [PMID: 21795704]
[72]
Hicks, D.A.; Makova, N.Z.; Nalivaeva, N.N.; Turner, A.J. Characterisation of acetylcholinesterase release from neuronal cells. Chem. Biol. Interact., 2013, 203(1), 302-308.
[http://dx.doi.org/10.1016/j.cbi.2012.09.019] [PMID: 23047022]
[73]
Petrov, K. Macrocyclic derivatives of 6-methyluracil: New ligands of the peripheral anionic site of acetylcholinesterase. Int. J. Risk Saf. Med., 2015, 27(1)(Suppl. 1), S72-S73.
[http://dx.doi.org/10.3233/JRS-150695] [PMID: 26639720]
[74]
Nawaz, S.A.; Ayaz, M.; Brandt, W.; Wessjohann, L.A.; Westermann, B. Cation-π and π-π stacking interactions allow selective inhibition of butyrylcholinesterase by modified quinine and cinchonidine alkaloids. Biochem. Biophys. Res. Commun., 2011, 404(4), 935-940.
[http://dx.doi.org/10.1016/j.bbrc.2010.12.084] [PMID: 21185266]
[75]
Kilic, B.; Gulcan, H.O.; Aksakal, F.; Ercetin, T.; Oruklu, N.; Umit Bagriacik, E.; Dogruer, D.S. Design and synthesis of some new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring and the investigation of their inhibitory potential on in-vitro acetylcholinesterase and butyrylcholinesterase. Bioorg. Chem., 2018, 79, 235-249.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.006] [PMID: 29775949]
[76]
Skibiński, R.; Czarnecka, K.; Girek, M.; Bilichowski, I.; Chufarova, N.; Mikiciuk-Olasik, E.; Szymański, P. Novel tetrahydroacridine derivatives with iodobenzoic acid moiety as multifunctional acetylcholinesterase inhibitors. Chem. Biol. Drug Des., 2018, 91(2), 505-518.
[http://dx.doi.org/10.1111/cbdd.13111] [PMID: 28944565]
[77]
Masson, P.; Froment, M.T.; Bartels, C.F.; Lockridge, O. Asp7O in the peripheral anionic site of human butyrylcholinesterase. Eur. J. Biochem., 1996, 235(1-2), 36-48.
[http://dx.doi.org/10.1111/j.1432-1033.1996.00036.x] [PMID: 8631355]
[78]
Johnson, G.; Moore, S.W. The peripheral anionic site of acetylcholinesterase: structure, functions and potential role in rational drug design. Curr. Pharm. Des., 2006, 12(2), 217-225.
[http://dx.doi.org/10.2174/138161206775193127] [PMID: 16454738]
[79]
Barak, D.; Kronman, C.; Ordentlich, A.; Ariel, N.; Bromberg, A.; Marcus, D.; Lazar, A.; Velan, B.; Shafferman, A. Acetylcholinesterase peripheral anionic site degeneracy conferred by amino acid arrays sharing a common core. J. Biol. Chem., 1994, 269(9), 6296-6305.
[PMID: 8119978]
[80]
Saxena, A.; Redman, A.M.; Jiang, X.; Lockridge, O.; Doctor, B.P. Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Biochemistry, 1997, 36(48), 14642-14651.
[http://dx.doi.org/10.1021/bi971425+] [PMID: 9398183]
[81]
Ranjan, A.; Kumar, A.; Gulati, K.; Thakur, S.; Jindal, T. Role of aromatic amino acids in stabilizing organophosphate and human acetylcholinesterase Complex. J. Curr. Pharm. Res., 2015, 5(4), 1632-1639.
[http://dx.doi.org/10.33786/JCPR.2015.v05i04.006]
[82]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[83]
Zhang, Y.; Kua, J.; McCammon, J.A. Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: an ab initio QM/MM study. J. Am. Chem. Soc., 2002, 124(35), 10572-10577.
[http://dx.doi.org/10.1021/ja020243m] [PMID: 12197759]
[84]
Bai, D.L.; Tang, X.C.; He, X.C.; Huperzine, A. Huperzine A, a potential therapeutic agent for treatment of Alzheimer’s disease. Curr. Med. Chem., 2000, 7(3), 355-374.
[http://dx.doi.org/10.2174/0929867003375281] [PMID: 10637369]
[85]
Zhang, J.M.; Hu, G.Y.; Huperzine, A. Huperzine A, a nootropic alkaloid, inhibits N-methyl-D-aspartate-induced current in rat dissociated hippocampal neurons. Neuroscience, 2001, 105(3), 663-669.
[http://dx.doi.org/10.1016/S0306-4522(01)00206-8] [PMID: 11516831]
[86]
Tayeb, H.O.; Yang, H.D.; Price, B.H.; Tarazi, F.I. Pharmacotherapies for Alzheimer’s disease: beyond cholinesterase inhibitors. Pharmacol. Ther., 2012, 134(1), 8-25.
[http://dx.doi.org/10.1016/j.pharmthera.2011.12.002] [PMID: 22198801]
[87]
Cheewakriengkrai, L.; Gauthier, S. A 10-year perspective on donepezil. Expert Opin. Pharmacother., 2013, 14(3), 331-338.
[http://dx.doi.org/10.1517/14656566.2013.760543] [PMID: 23316713]
[88]
Teponnou, G.A.K.; Joubert, J.; Malan, S.F. Tacrine, trolox and tryptoline as lead compounds for the design and synthesis of multi-target agents for alzheimer’s disease therapy. Open Med. Chem. J., 2017, 11, 24-37.
[http://dx.doi.org/10.2174/1874104501711010024] [PMID: 28567126]
[89]
Pohanka, M. Copper, aluminum, iron and calcium inhibit human acetylcholinesterase in vitro. Environ. Toxicol. Pharmacol., 2014, 37(1), 455-459.
[http://dx.doi.org/10.1016/j.etap.2014.01.001] [PMID: 24473150]
[90]
Pohanka, M.; Dobes, P. Caffeine inhibits acetylcholinesterase, but not butyrylcholinesterase. Int. J. Mol. Sci., 2013, 14(5), 9873-9882.
[http://dx.doi.org/10.3390/ijms14059873] [PMID: 23698772]
[91]
Pohanka, M. The effects of caffeine on the cholinergic system. Mini Rev. Med. Chem., 2014, 14(6), 543-549.
[http://dx.doi.org/10.2174/1389557514666140529223436] [PMID: 24873820]
[92]
Cometa, M.F.; Lorenzini, P.; Fortuna, S.; Volpe, M.T.; Meneguz, A.; Palmery, M. In vitro inhibitory effect of aflatoxin B1 on acetylcholinesterase activity in mouse brain. Toxicology, 2005, 206(1), 125-135.
[http://dx.doi.org/10.1016/j.tox.2004.07.009] [PMID: 15590113]
[93]
Arduini, F.; Errico, I.; Amine, A.; Micheli, L.; Palleschi, G.; Moscone, D. Enzymatic spectrophotometric method for aflatoxin B detection based on acetylcholinesterase inhibition. Anal. Chem., 2007, 79(9), 3409-3415.
[http://dx.doi.org/10.1021/ac061819j] [PMID: 17408242]
[94]
McGehee, D.S.; Krasowski, M.D.; Fung, D.L.; Wilson, B.; Gronert, G.A.; Moss, J. Cholinesterase inhibition by potato glycoalkaloids slows mivacurium metabolism. Anesthesiology, 2000, 93(2), 510-519.
[http://dx.doi.org/10.1097/00000542-200008000-00031] [PMID: 10910502]
[95]
Lilienfeld, S. Galantamine--a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev., 2002, 8(2), 159-176.
[http://dx.doi.org/10.1111/j.1527-3458.2002.tb00221.x] [PMID: 12177686]
[96]
Mashkovsky, M.D.; Kruglikova-Lvova, R.P. On the pharmacology of the new alkaloid galantamine. Farmakologiea Toxicologia (Moscow), 1951, 14, 27-30.
[97]
Takata, K.; Kitamura, Y.; Saeki, M.; Terada, M.; Kagitani, S.; Kitamura, R.; Fujikawa, Y.; Maelicke, A.; Tomimoto, H.; Taniguchi, T.; Shimohama, S. Galantamine-induced amyloid-beta clearance mediated via stimulation of microglial nicotinic acetylcholine receptors. J. Biol. Chem., 2010, 285(51), 40180-40191.
[http://dx.doi.org/10.1074/jbc.M110.142356] [PMID: 20947502]
[98]
Rainer, M. Galanthamine in Alzheimer’s disease : a new alternative to tacrine? CNS Drugs, 1997, 7(2), 89-97.
[http://dx.doi.org/10.2165/00023210-199707020-00001] [PMID: 23338128]
[99]
Cavalli, A.; Bottegoni, G.; Raco, C.; De Vivo, M.; Recanatini, M. A computational study of the binding of propidium to the peripheral anionic site of human acetylcholinesterase. J. Med. Chem., 2004, 47(16), 3991-3999.
[http://dx.doi.org/10.1021/jm040787u] [PMID: 15267237]
[100]
Mazzanti, C.M.; Spanevello, R.M.; Obregon, A.; Pereira, L.B.; Streher, C.A.; Ahmed, M.; Mazzanti, A.; Graça, D.L.; Morsch, V.M.; Schetinger, M.R. Ethidium bromide inhibits rat brain acetylcholinesterase activity in vitro. Chem. Biol. Interact., 2006, 162(2), 121-127.
[http://dx.doi.org/10.1016/j.cbi.2006.05.013] [PMID: 16839531]
[101]
Zueva, I.V.; Semenov, V.E.; Mukhamedyarov, M.A.; Lushchekina, S.V.; Kharlamova, A.D.; Petukhova, E.O.; Mikhailov, A.S.; Podyachev, S.N.; Saifina, L.F.; Petrov, K.A.; Minnekhanova, O.A.; Zobov, V.V.; Nikolsky, E.E.; Masson, P.; Reznik, V.S. 6-Methyluracil derivatives as acetylcholinesterase inhibitors for treatment of Alzheimer’s disease. Int. J. Risk Saf. Med., 2015, 27(1)(Suppl. 1), S69-S71.
[http://dx.doi.org/10.3233/JRS-150694] [PMID: 26639718]
[102]
Martini, F.; Bruning, C.A.; Soares, S.M.; Nogueira, C.W.; Zeni, G. Inhibitory effect of ebselen on cerebral acetylcholinesterase activity in vitro: kinetics and reversibility of inhibition. Curr. Pharm. Des., 2015, 21(7), 920-924.
[http://dx.doi.org/10.2174/1381612820666141014124319] [PMID: 25312723]
[103]
da Silva Gonçalves, A.; França, T.C.; Vital de Oliveira, O. Computational studies of acetylcholinesterase complexed with fullerene derivatives: a new insight for Alzheimer disease treatment. J. Biomol. Struct. Dyn., 2016, 34(6), 1307-1316.
[http://dx.doi.org/10.1080/07391102.2015.1077345] [PMID: 26219766]
[104]
Kafurke, U.; Erijman, A.; Aizner, Y.; Shifman, J.M.; Eichler, J. Synthetic peptides mimicking the binding site of human acetylcholinesterase for its inhibitor fasciculin 2. J. Pept. Sci., 2015, 21(9), 723-730.
[http://dx.doi.org/10.1002/psc.2797] [PMID: 26200472]
[105]
Sharabi, O.; Peleg, Y.; Mashiach, E.; Vardy, E.; Ashani, Y.; Silman, I.; Sussman, J.L.; Shifman, J.M. Design, expression and characterization of mutants of fasciculin optimized for interaction with its target, acetylcholinesterase. Protein Eng. Des. Sel., 2009, 22(10), 641-648.
[http://dx.doi.org/10.1093/protein/gzp045] [PMID: 19643977]
[106]
Vanzolini, K.L.; Ainsworth, S.; Bruyneel, B.; Herzig, V.; Seraus, M.G.L.; Somsen, G.W.; Casewell, N.R.; Cass, Q.B.; Kool, J. Rapid ligand fishing for identification of acetylcholinesterase-binding peptides in snake venom reveals new properties of dendrotoxins. Toxicon, 2018, 152, 1-8.
[http://dx.doi.org/10.1016/j.toxicon.2018.06.080] [PMID: 29990530]
[107]
Sanchez-Hernandez, J.C.; Sanchez, B.M. Lizard cholinesterases as biomarkers of pesticide exposure: enzymological characterization. Environ. Toxicol. Chem., 2002, 21(11), 2319-2325.
[http://dx.doi.org/10.1002/etc.5620211109] [PMID: 12389909]
[108]
Keegan, T.J.; Carpenter, L.M.; Brooks, C.; Langdon, T.; Venables, K.M. Sarin exposures in a cohort of british military participants in human experimental research at porton down 1945-1987. Ann. Work Expo. Health, 2017, 62(1), 17-27.
[http://dx.doi.org/10.1093/annweh/wxx084] [PMID: 29136135]
[109]
Abou-Donia, M.B.; Siracuse, B.; Gupta, N.; Sobel Sokol, A. Sarin (GB, O-isopropyl methylphosphonofluoridate) neurotoxicity: critical review. Crit. Rev. Toxicol., 2016, 46(10), 845-875.
[http://dx.doi.org/10.1080/10408444.2016.1220916] [PMID: 27705071]
[110]
Wright, L.K.; Lee, R.B.; Vincelli, N.M.; Whalley, C.E.; Lumley, L.A. Comparison of the lethal effects of chemical warfare nerve agents across multiple ages. Toxicol. Lett., 2016, 241, 167-174.
[http://dx.doi.org/10.1016/j.toxlet.2015.11.023] [PMID: 26621540]
[111]
Vale, J.A.; Marrs, T.C.; Maynard, R.L. Novichok: a murderous nerve agent attack in the UK. Clin. Toxicol. (Phila.), 2018, 56(11), 1093-1097.
[http://dx.doi.org/10.1080/15563650.2018.1469759] [PMID: 29757015]
[112]
Al-Hakka, Z.S.; Al-Azzawi, M.J.; Al-Adhamy, B.W.; Khalil, S.A. Inhibitory action of phosphine on acetylcholinesterase of Ephestia cautella (Lepidoptera: Pyralidae). J. Stored Prod. Res., 1989, 25(3), 171-174.
[http://dx.doi.org/10.1016/0022-474X(89)90039-8]
[113]
Cummings, J.L.; Nadel, A.; Masterman, D.; Cyrus, P.A. Efficacy of metrifonate in improving the psychiatric and behavioral disturbances of patients with Alzheimer’s disease. J. Geriatr. Psychiatry Neurol., 2001, 14(2), 101-108.
[http://dx.doi.org/10.1177/089198870101400211] [PMID: 11419566]
[114]
Pohanka, M.; Novotny, L.; Pikula, J. Metrifonate alters antioxidant levels and caspase activity in cerebral cortex of Wistar rats. Toxicol. Mech. Methods, 2011, 21(8), 585-590.
[http://dx.doi.org/10.3109/15376516.2011.589089] [PMID: 21943232]
[115]
Eyer, F.; Meischner, V.; Kiderlen, D.; Thiermann, H.; Worek, F.; Haberkorn, M.; Felgenhauer, N.; Zilker, T.; Eyer, P. Human parathion poisoning. A toxicokinetic analysis. Toxicol. Rev., 2003, 22(3), 143-163.
[http://dx.doi.org/10.2165/00139709-200322030-00003] [PMID: 15181664]
[116]
Nigg, H.N.; Knaak, J.B. Blood cholinesterases as human biomarkers of organophosphorus pesticide exposure. Rev. Environ. Contam. Toxicol., 2000, 163, 29-111.
[http://dx.doi.org/10.1007/978-1-4757-6429-1_2] [PMID: 10771584]
[117]
Marrs, T.C.; Maynard, R.L. Neurotranmission systems as targets for toxicants: a review. Cell Biol. Toxicol., 2013, 29(6), 381-396.
[http://dx.doi.org/10.1007/s10565-013-9259-9] [PMID: 24036955]
[118]
Darvesh, S.; Darvesh, K.V.; McDonald, R.S.; Mataija, D.; Walsh, R.; Mothana, S.; Lockridge, O.; Martin, E. Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase. J. Med. Chem., 2008, 51(14), 4200-4212.
[http://dx.doi.org/10.1021/jm8002075] [PMID: 18570368]
[119]
Mohammad, D.; Chan, P.; Bradley, J.; Lanctôt, K.; Herrmann, N. Acetylcholinesterase inhibitors for treating dementia symptoms - a safety evaluation. Expert Opin. Drug Saf., 2017, 16(9), 1009-1019.
[http://dx.doi.org/10.1080/14740338.2017.1351540] [PMID: 28678552]
[120]
Chelinho, S.; Dieter Sautter, K.; Cachada, A.; Abrantes, I.; Brown, G.; Costa Duarte, A.; Sousa, J.P. Carbofuran effects in soil nematode communities: using trait and taxonomic based approaches. Ecotoxicol. Environ. Saf., 2011, 74(7), 2002-2012.
[http://dx.doi.org/10.1016/j.ecoenv.2011.07.015] [PMID: 21868095]
[121]
Ashani, Y.; Peggins, J.O., III; Doctor, B.P. Mechanism of inhibition of cholinesterases by huperzine A. Biochem. Biophys. Res. Commun., 1992, 184(2), 719-726.
[http://dx.doi.org/10.1016/0006-291X(92)90649-6] [PMID: 1575745]
[122]
Rosenberg, Y.J.; Mao, L.; Jiang, X.; Lees, J.; Zhang, L.; Radic, Z.; Taylor, P. Post-exposure treatment with the oxime RS194B rapidly reverses early and advanced symptoms in macaques exposed to sarin vapor. Chem. Biol. Interact., 2017, 274, 50-57.
[http://dx.doi.org/10.1016/j.cbi.2017.07.003] [PMID: 28693885]
[123]
Chambers, J.E.; Chambers, H.W.; Funck, K.E.; Meek, E.C.; Pringle, R.B.; Ross, M.K. Efficacy of novel phenoxyalkyl pyridinium oximes as brain-penetrating reactivators of cholinesterase inhibited by surrogates of sarin and VX. Chem.Biol. Interact.,, 2016, 259(Pt B), 154-159.
[http://dx.doi.org/10.1016/j.cbi.2016.07.004]
[124]
Chambers, J.E.; Meek, E.C.; Chambers, H.W. Novel brain-penetrating oximes for reactivation of cholinesterase inhibited by sarin and VX surrogates. Ann. N. Y. Acad. Sci., 2016, 1374(1), 52-58.
[http://dx.doi.org/10.1111/nyas.13053] [PMID: 27153507]
[125]
Veszelka, S.; Tóth, A.; Walter, F.R.; Tóth, A.E.; Gróf, I.; Mészáros, M.; Bocsik, A.; Hellinger, É.; Vastag, M.; Rákhely, G.; Deli, M.A. Comparison of a rat primary cell-based blood-brain barrier model with epithelial and brain endothelial cell lines: gene expression and drug transport. Front. Mol. Neurosci., 2018, 11(166), 166.
[http://dx.doi.org/10.3389/fnmol.2018.00166] [PMID: 29872378]
[126]
Villarroya, M.; García, A.G.; Marco-Contelles, J.; López, M.G. An update on the pharmacology of galantamine. Expert Opin. Investig. Drugs, 2007, 16(12), 1987-1998.
[http://dx.doi.org/10.1517/13543784.16.12.1987] [PMID: 18042006]
[127]
Sugi, Y.; Nitahara, K.; Shiroshita, T.; Higa, K. Restoration of train-of-four ratio with neostigmine after insufficient recovery with sugammadex in a patient with myasthenia gravis. A A Case Rep., 2013, 1(3), 43-45.
[http://dx.doi.org/10.1097/ACC.0b013e3182953053] [PMID: 25611846]
[128]
Farmakidis, C.; Pasnoor, M.; Dimachkie, M.M.; Barohn, R.J. Treatment of myasthenia gravis. Neurol. Clin., 2018, 36(2), 311-337.
[http://dx.doi.org/10.1016/j.ncl.2018.01.011] [PMID: 29655452]
[129]
Marrs, T.C. Organophosphate poisoning. Pharmacol. Ther., 1993, 58(1), 51-66.
[http://dx.doi.org/10.1016/0163-7258(93)90066-M] [PMID: 8415873]
[130]
Peter, J.V.; Sudarsan, T.I.; Moran, J.L. Clinical features of organophosphate poisoning: A review of different classification systems and approaches. Indian J. Crit. Care Med., 2014, 18(11), 735-745.
[http://dx.doi.org/10.4103/0972-5229.144017] [PMID: 25425841]
[131]
Ding, Q.; Fang, S.; Chen, X.; Wang, Y.; Li, J.; Tian, F.; Xu, X.; Attali, B.; Xie, X.; Gao, Z. TRPA1 channel mediates organophosphate-induced delayed neuropathy. Cell Discov., 2017, 3(17024), 17024.
[http://dx.doi.org/10.1038/celldisc.2017.24] [PMID: 28894590]
[132]
Vale, A.; Lotti, M. Organophosphorus and carbamate insecticide poisoning. Handb. Clin. Neurol., 2015, 131, 149-168.
[http://dx.doi.org/10.1016/B978-0-444-62627-1.00010-X] [PMID: 26563788]
[133]
Wang, J.; Shao, Y.; Shi, K.; Yang, H.; Li, M. Restricted diffusion in the splenium of the corpus callosum in organophosphate induced delayed neuropathy: case report and review of literatures. Int. J. Clin. Exp. Med., 2015, 8(8), 14246-14250.
[PMID: 26550404]
[134]
White, R.F.; Steele, L.; O’Callaghan, J.P.; Sullivan, K.; Binns, J.H.; Golomb, B.A.; Bloom, F.E.; Bunker, J.A.; Crawford, F.; Graves, J.C.; Hardie, A.; Klimas, N.; Knox, M.; Meggs, W.J.; Melling, J.; Philbert, M.A.; Grashow, R. Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment. Cortex, 2016, 74, 449-475.
[http://dx.doi.org/10.1016/j.cortex.2015.08.022] [PMID: 26493934]
[135]
Abdullah, L.; Evans, J.E.; Montague, H.; Reed, J.M.; Moser, A.; Crynen, G.; Gonzalez, A.; Zakirova, Z.; Ross, I.; Mullan, C.; Mullan, M.; Ait-Ghezala, G.; Crawford, F. Chronic elevation of phosphocholine containing lipids in mice exposed to Gulf War agents pyridostigmine bromide and permethrin. Neurotoxicol. Teratol., 2013, 40, 74-84.
[http://dx.doi.org/10.1016/j.ntt.2013.10.002] [PMID: 24140745]
[136]
Amourette, C.; Lamproglou, I.; Barbier, L.; Fauquette, W.; Zoppe, A.; Viret, R.; Diserbo, M. Gulf War illness: Effects of repeated stress and pyridostigmine treatment on blood-brain barrier permeability and cholinesterase activity in rat brain. Behav. Brain Res., 2009, 203(2), 207-214.
[http://dx.doi.org/10.1016/j.bbr.2009.05.002] [PMID: 19433115]
[137]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7, 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[138]
George, P.M.; Abernethy, M.H. Improved Ellman procedure for erythrocyte cholinesterase. Clin. Chem., 1983, 29(2), 365-368.
[http://dx.doi.org/10.1093/clinchem/29.2.365] [PMID: 6821947]
[139]
Pohanka, M. Cholinesterases in biorecognition and biosensor construction, a review. Anal. Lett., 2013, 46(12), 1849-1868.
[http://dx.doi.org/10.1080/00032719.2013.780240]
[140]
Pohanka, M. Determination of acetylcholinesterase and butyrylcholinesterase activity without dilution of biological samples. Chem. Pap., 2015, 69(8), 1044-1049.
[http://dx.doi.org/10.1515/chempap-2015-0117]
[141]
Oropesa, A.L.; Gravato, C.; Sánchez, S.; Soler, F. Characterization of plasma cholinesterase from the White stork (Ciconia ciconia) and its in vitro inhibition by anticholinesterase pesticides. Ecotoxicol. Environ. Saf., 2013, 97, 131-138.
[http://dx.doi.org/10.1016/j.ecoenv.2013.07.022] [PMID: 23962622]
[142]
Dhananjayan, V.; Ravichandran, B.; Anitha, N.; Rajmohan, H.R. Assessment of acetylcholinesterase and butyrylcholinesterase activities in blood plasma of agriculture workers. Indian J. Occup. Environ. Med., 2012, 16(3), 127-130.
[http://dx.doi.org/10.4103/0019-5278.111755] [PMID: 23776322]
[143]
Li, B.; Ricordel, I.; Schopfer, L.M.; Baud, F.; Mégarbane, B.; Masson, P.; Lockridge, O. Dichlorvos, chlorpyrifos oxon and Aldicarb adducts of butyrylcholinesterase, detected by mass spectrometry in human plasma following deliberate overdose. J. Appl. Toxicol., 2010, 30(6), 559-565.
[http://dx.doi.org/10.1002/jat.1526] [PMID: 20809544]
[144]
Pohanka, M. Butyrylcholinesterase as a biochemical marker. Bratisl. Lek Listy, 2013, 114(12), 726-734.
[PMID: 24329513]
[145]
Jezyna, C. [Correlation of chnges in hypocholinesterasemia and hypoalbuminemia in virus hepatitis]. Przegl. Lek., 1969, 25(7), 515-519.
[PMID: 5343591]
[146]
Tomaszewska, L.; Schmidt, E. [Activity of serum cholinesterase in certain liver diseases, particularly in virus hepatitis]. Wiad. Lek., 1966, 19(10), 795-798.
[PMID: 5916300]
[147]
Tamarelle, C.; Quinton, A.; Bancons, J.; Dubarry, J.J. [Serum cholinesterase, test of liver cell failure]. Sem. Hop., 1973, 49(12), 859-864.
[PMID: 4352982]
[148]
Fintelmann, V.; Lindner, H. [Diagnostic significance of serum cholinesterase in liver diseases]. Dtsch. Med. Wochenschr., 1970, 95(9), 469-470.
[http://dx.doi.org/10.1055/s-0028-1108487] [PMID: 5412387]
[149]
Kemkes-Matthes, B.; Preissner, K.T.; Langenscheidt, F.; Matthes, K.J.; Müller-Berghaus, G. S protein/vitronectin in chronic liver diseases: correlations with serum cholinesterase, coagulation factor X and complement component C3. Eur. J. Haematol., 1987, 39(2), 161-165.
[http://dx.doi.org/10.1111/j.1600-0609.1987.tb00747.x] [PMID: 2444458]
[150]
Liu, W.; Hada, T.; Fukui, K.; Imanishi, H.; Matsuoka, N.; Iwasaki, A.; Higashino, K. Familial hypocholinesterasemia found in a family and a new confirmed mutation. Intern. Med., 1997, 36(1), 9-13.
[http://dx.doi.org/10.2169/internalmedicine.36.9] [PMID: 9058093]
[151]
Tajiri, J.; Nishizono, Y.; Fujiyama, S.; Sagara, K.; Sato, T.; Shibata, H. Hypercholinesterasemia in patients with hepatocellular carcinoma: a new paraneoplastic syndrome. Gastroenterol. Jpn., 1983, 18(2), 137-141.
[http://dx.doi.org/10.1007/BF02774688] [PMID: 6303885]
[152]
Vijayaraghavan, S.; Darreh-Shori, T.; Rongve, A.; Berge, G.; Sando, S.B.; White, L.R.; Auestad, B.H.; Witoelar, A.; Andreassen, O.A.; Ulstein, I.D.; Aarsland, D. Association of butyrylcholinesterase-K allele and apolipoprotein E ɛ4 allele with cognitive decline in dementia with lewy bodies and alzheimer’s disease. J. Alzheimers Dis., 2016, 50(2), 567-576.
[http://dx.doi.org/10.3233/JAD-150750] [PMID: 26757188]
[153]
De Beaumont, L. Pelleieux, S.; Lamarre-Theroux, L.; Dea, D.; Poirier, J., Butyrylcholinesterase K and Apolipoprotein E-varepsilon4 reduce the age of onset of alzheimer’s disease, accelerate cognitive decline, and modulate donepezil response in mild cognitively impaired subjects. J. Alzheimers Dis., 2016, 54(3), 913-922.
[http://dx.doi.org/10.3233/JAD-160373] [PMID: 27567841]
[154]
Sokolow, S.; Li, X.; Chen, L.; Taylor, K.D.; Rotter, J.I.; Rissman, R.A.; Aisen, P.S.; Apostolova, L.G. Deleterious effect of butyrylcholinesterase K-variant in donepezil treatment of mild cognitive impairment. J. Alzheimers Dis., 2017, 56(1), 229-237.
[http://dx.doi.org/10.3233/JAD-160562] [PMID: 27911294]
[155]
Pongthanaracht, N.; Yanarojana, S.; Pinthong, D.; Unchern, S.; Thithapandha, A.; Assantachai, P.; Supavilai, P. Association between butyrylcholinesterase K variant and mild cognitive impairment in the Thai community-dwelling patients. Clin. Interv. Aging, 2017, 12, 897-901.
[http://dx.doi.org/10.2147/CIA.S137264] [PMID: 28603409]
[156]
Vahdati-Mashhadian, N.; Hassanzadeh, M.K.; Hosseini, J.; Saffareshargh, A.A. Ethnic differences in the frequency of distribution of serum cholinesterase activity in the Iranian population. Can. J. Physiol. Pharmacol., 2004, 82(5), 326-330.
[http://dx.doi.org/10.1139/y04-030] [PMID: 15213732]
[157]
Hashim, Y.; Shepherd, D.; Wiltshire, S.; Holman, R.R.; Levy, J.C.; Clark, A.; Cull, C.A. Butyrylcholinesterase K variant on chromosome 3 q is associated with Type II diabetes in white Caucasian subjects. Diabetologia, 2001, 44(12), 2227-2230.
[http://dx.doi.org/10.1007/s001250100033] [PMID: 11793025]
[158]
Manoharan, I.; Boopathy, R.; Darvesh, S.; Lockridge, O. A medical health report on individuals with silent butyrylcholinesterase in the Vysya community of India. Clin. Chim. Acta, 2007, 378(1-2), 128-135.
[http://dx.doi.org/10.1016/j.cca.2006.11.005] [PMID: 17182021]
[159]
Krasowski, M.D.; McGehee, D.S.; Moss, J. Natural inhibitors of cholinesterases: implications for adverse drug reactions. Can. J. Anaesth., 1997, 44(5 Pt 1), 525-534.
[http://dx.doi.org/10.1007/BF03011943] [PMID: 9161749]
[160]
Lockridge, O.; Norgren, R.B., Jr; Johnson, R.C.; Blake, T.A. Naturally occurring genetic variants of human acetylcholinesterase and butyrylcholinesterase and their potential impact on the risk of toxicity from cholinesterase inhibitors. Chem. Res. Toxicol., 2016, 29(9), 1381-1392.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00228] [PMID: 27551784]
[161]
Simão-Silva, D.P.; Bertolucci, P.H.; de Labio, R.W.; Payão, S.L.; Furtado-Alle, L.; Souza, R.L. Association analysis between K and -116A variants of butyrylcholinesterase and Alzheimer’s disease in a Brazilian population. Chem. Biol. Interact., 2013, 203(1), 358-360.
[http://dx.doi.org/10.1016/j.cbi.2012.09.008] [PMID: 23022600]
[162]
Gätke, M.R.; Viby-Mogensen, J.; Bundgaard, J.R. Rapid simultaneous genotyping of the frequent butyrylcholinesterase variants Asp70Gly and Ala539Thr with fluorescent hybridization probes. Scand. J. Clin. Lab. Invest., 2002, 62(5), 375-383.
[http://dx.doi.org/10.1080/00365510260296537] [PMID: 12387584]
[163]
Lejus, C.; Delaroche, O.; Trille, E.; Blanloeil, Y.; Pinaud, M. [Butyrylcholinesterase deficiency: how to analyse the cholinesterase activity in small children?]. Ann. Fr. Anesth. Reanim., 2006, 25(6), 657-660.
[http://dx.doi.org/10.1016/j.annfar.2006.02.009] [PMID: 16581221]
[164]
Bartels, C.F.; James, K.; La Du, B.N. DNA mutations associated with the human butyrylcholinesterase J-variant. Am. J. Hum. Genet., 1992, 50(5), 1104-1114.
[PMID: 1349196]
[165]
Cimasoni, G. Inhibition of cholinesterases by fluoride in vitro. Biochem. J., 1966, 99(1), 133-137.
[http://dx.doi.org/10.1042/bj0990133] [PMID: 6007454]
[166]
Mosca, A.; Bonora, R.; Ceriotti, F.; Franzini, C.; Lando, G.; Patrosso, M.C.; Zaninotto, M.; Panteghini, M. Italian society of clinical biochemistry and clinical molecular biology working group on enzymes. Assay using succinyldithiocholine as substrate: the method of choice for the measurement of cholinesterase catalytic activity in serum to diagnose succinyldicholine sensitivity. Clin. Chem. Lab. Med., 2003, 41(3), 317-322.
[http://dx.doi.org/10.1515/CCLM.2003.051] [PMID: 12705341]
[167]
Jasiecki, J.; Jonca, J.; Zuk, M.; Szczoczarz, A.; Janaszak-Jasiecka, A.; Lewandowski, K.; Waleron, K.; Wasag, B. Activity and polymorphisms of butyrylcholinesterase in a Polish population. Chem. Biol. Interact., 2016, 259(Pt B), 70-77.
[http://dx.doi.org/10.1016/j.cbi.2016.04.030]
[168]
de Oliveira, P.; Gomes, A.Q.; Pacheco, T.R.; Vitorino de Almeida, V.; Saldanha, C.; Calado, A. Cell-specific regulation of acetylcholinesterase expression under inflammatory conditions. Clin. Hemorheol. Microcirc., 2012, 51(2), 129-137.
[http://dx.doi.org/10.3233/CH-2011-1520] [PMID: 22240379]
[169]
Martínez-López de Castro, A.; Nieto-Cerón, S.; Aurelio, P.C.; Galbis-Martínez, L.; Latour-Pérez, J.; Torres-Lanzas, J.; Tovar-Zapata, I.; Martínez-Hernández, P.; Rodríguez-López, J.N.; Cabezas-Herrera, J. Cancer-associated differences in acetylcholinesterase activity in bronchial aspirates from patients with lung cancer. Clin. Sci. (Lond.), 2008, 115(8), 245-253.
[http://dx.doi.org/10.1042/CS20070393] [PMID: 18211261]
[170]
Xi, H.J.; Wu, R.P.; Liu, J.J.; Zhang, L.J.; Li, Z.S. Role of acetylcholinesterase in lung cancer. Thorac. Cancer, 2015, 6(4), 390-398.
[http://dx.doi.org/10.1111/1759-7714.12249] [PMID: 26273392]
[171]
Darreh-Shori, T.; Soininen, H. Effects of cholinesterase inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with Alzheimer’s disease: a review of recent clinical studies. Curr. Alzheimer Res., 2010, 7(1), 67-73.
[http://dx.doi.org/10.2174/156720510790274455] [PMID: 20205672]
[172]
Nordberg, A.; Darreh-Shori, T.; Peskind, E.; Soininen, H.; Mousavi, M.; Eagle, G.; Lane, R. Different cholinesterase inhibitor effects on CSF cholinesterases in Alzheimer patients. Curr. Alzheimer Res., 2009, 6(1), 4-14.
[http://dx.doi.org/10.2174/156720509787313961] [PMID: 19199870]
[173]
Amici, S.; Lanari, A.; Romani, R.; Antognelli, C.; Gallai, V.; Parnetti, L. Cerebrospinal fluid acetylcholinesterase activity after long-term treatment with donepezil and rivastigmina. Mech. Ageing Dev., 2001, 122(16), 2057-2062.
[http://dx.doi.org/10.1016/S0047-6374(01)00314-1] [PMID: 11589922]
[174]
Parnetti, L.; Amici, S.; Lanari, A.; Romani, C.; Antognelli, C.; Andreasen, N.; Minthon, L.; Davidsson, P.; Pottel, H.; Blennow, K.; Gallai, V. Cerebrospinal fluid levels of biomarkers and activity of acetylcholinesterase (AChE) and butyrylcholinesterase in AD patients before and after treatment with different AChE inhibitors. Neurol. Sci., 2002, 23(2)(Suppl. 2), S95-S96.
[http://dx.doi.org/10.1007/s100720200086] [PMID: 12548360]
[175]
Parnetti, L.; Chiasserini, D.; Andreasson, U.; Ohlson, M.; Hüls, C.; Zetterberg, H.; Minthon, L.; Wallin, A.K.; Andreasen, N.; Talesa, V.N.; Blennow, K. Changes in CSF acetyl- and butyrylcholinesterase activity after long-term treatment with AChE inhibitors in Alzheimer’s disease. Acta Neurol. Scand., 2011, 124(2), 122-129.
[http://dx.doi.org/10.1111/j.1600-0404.2010.01435.x] [PMID: 20880294]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy