[1]
Agyeman, A.A.; Ofori-Asenso, R. Tuberculosis-an overview. J. Public Health Emerg., 2017, 1(7), 1-11.
[2]
WHO treatment guidelines for drug resistant tuberculosis, 2016,
update report.
[3]
Tripathi, K.D. Essentials of medical pharmacology Seventh ed. JP
Medical Ltd.,
[4]
WHO. Global tuberculosis report; Geneva, Switzerland, 2017.
[5]
Velayati, A.A.; Masjedi, M.R.; Farnia, P.; Tabarsi, P.; Ghanavi, J. ZiaZarifi, A.H.; Hoffner, S.E. Emergence of new forms of totally drug-resistant tuberculosis bacilli: Super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest, 2009, 136(2), 420-425.
[6]
Kalyaanamoorthy, S.; Chen, Y-P.P. Structure-based drug design to augment hit discovery. Drug Discov. Today, 16(17-18), 831-839.
[7]
Ekins, S.; Godbole, A.A.; Keri, G.; Orfi, L.; Pato, J.; Bhat, R.S.; Verma, R.; Bradley, E.K.; Nagaraja, V. Machine learning and docking models for Mycobacterium tuberculosis topoisomerase I. Tuberculosis, 2017, 103, 52-60.
[8]
Hartman, G.D.; Egbertson, M.S.; Halczenko, W.; Laswell, W.L.; Duggan, M.E.; Smith, R.L.; Naylor, A.M.; Manno, P.D.; Lynch, R.J. Non-peptide fibrinogen receptor antagonists. 1. Discovery and design of exosite inhibitors. J. Med. Chem., 1992, 35(24), 4640-4642.
[9]
Vijayakrishnan, R. Structure-based drug design and modern medicine. J. Postgrad. Med., 2009, 55(4), 301.
[10]
Talele, T.T.; Khedkar, S.A.; Rigby, A.C. Successful applications of computer aided drug discovery: Moving drugs from concept to the clinic. Curr. Top. Med. Chem., 2010, 10(1), 127-141.
[11]
Van Drie, J.H. Computer-aided drug design: the next 20 years. J. Comput. Aided Mol. Des., 2007, 21(10-11), 591-601.
[12]
Ekins, S.; Freundlich, J.S.; Choi, I.; Sarker, M.; Talcott, C. Computational databases, pathway and cheminformatics tools for tuberculosis drug discovery. Trends Microbiol., 2011, 19(2), 65-74.
[13]
Rawat, D.S. Antituberculosis drug research: A critical overview. Med. Res. Rev., 2013, 33(4), 693-764.
[14]
Njogu, P.M.; Guantai, E.M.; Pavadai, E.; Chibale, K. Computer-aided drug discovery approaches against the tropical infectious diseases malaria, tuberculosis, trypanosomiasis, and leishmaniasis. ACS Infect. Dis., 2016, 2(1), 8-31.
[15]
Swaminathan, S.; Sundaramurthi, J.C.; Palaniappan, A.N.; Narayanan, S. Recent developments in genomics, bioinformatics and drug discovery to combat emerging drug-resistant tuberculosis. Tuberculosis, 2016, 101, 31-40.
[16]
Fernandes, G.F.D.S.; Man Chin, C.; Dos Santos, J.L. Advances in drug discovery of new antitubercular multidrug-resistant compounds. Pharmaceuticals, 2017, 10(2), 51.
[17]
Zhang, W.; Pei, J.; Lai, L. Computational multitarget drug design. J. Chem. Inf. Model., 2017, 57(3), 403-412.
[18]
Khusro, A.; Aarti, C.; Barbabosa-Pliego, A.; Salem, A.Z.M. Neoteric advancement in TB drugs and an overview on the anti-tubercular role of peptides through computational approaches. Microb. Pathog., 2018, 114, 80-89.
[19]
Mdluli, K.; Spigelman, M. Novel targets for tuberculosis drug discovery. Curr. Opin. Pharmacol., 2006, 6(5), 459-467.
[20]
Scheich, C.; Szabadka, Z.; Vertessy, B.; Pütter, V.; Grolmusz, V.; Schade, M. Discovery of novel MDR-Mycobacterium tuberculosis inhibitor by new FRIGATE computational screen. PLoS One, 2011, 6(12)e28428
[21]
Billones, J.B.; Carrillo, M.C.O.; Organo, V.G.; Macalino, S.J.Y.; Sy, J.B.A.; Emnacen, I.A.; Clavio, N.A.B.; Concepcion, G.P. Toward antituberculosis drugs: In silico screening of synthetic compounds against Mycobacterium tuberculosis L, D-transpeptidase 2. Drug Des. Devel. Ther., 2016, 10, 1147-1157.
[23]
Petersen, G.O.; Saxena, S.; Renuka, J.; Soni, V.; Yogeeswari, P.; Santos, D.S.; Bizarro, C.V.; Sriram, D. Structure-based virtual screening as a tool for the identification of novel inhibitors against Mycobacterium tuberculosis 3-dehydroquinate dehydratase. J. Mol. Graph. Model., 2015, 60, 124-131.
[26]
Wang, D.; Zhu, X.; Cui, C.; Dong, M.; Jiang, H.; Li, Z.; Liu, Z.; Zhu, W.; Wang, J-G. Discovery of novel acetohydroxyacid synthase inhibitors as active agents against Mycobacterium tuberculosis by virtual screening and bioassay. J. Chem. Inf. Model., 2013, 53(2), 343-353.
[36]
Chiaradia, L.D.; Martins, P.G.A.; Cordeiro, M.N.S.; Guido, R.V.C.; Ecco, G.; Andricopulo, A.D.; Yunes, R.A.; Vernal, J.; Nunes, R.J.; Terenzi, H.n. Synthesis, biological evaluation, and molecular modeling of chalcone derivatives as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatases (PtpA and PtpB). J. Med. Chem., 2012, 55(1), 390-402.
[44]
HorvaÌti. K.; Bacsa, B.; SzaboÌ, N.r.; DaÌvid, S.N.; MezoÌ, G.B.; Grolmusz, V.; VeÌrtessy, B.T.; Hudecz, F.; Bosze, S. Enhanced cellular uptake of a new, in silico identified antitubercular candidate by peptide conjugation. Bioconjugate. Chem., 2012, 23(5), 900-907.
[45]
Koch, O.; Jager, T.; Heller, K.; Khandavalli, P.C.; Pretzel, J.; Becker, K.; Flohe, Ì. L.; Selzer, P.M. Identification of M. tuberculosis thioredoxin reductase inhibitors based on high-throughput docking using constraints. J. Med. Chem., 2013, 56(12), 4849-4859.
[46]
Poyraz, O.; Jeankumar, V.U.; Saxena, S.; Schnell, R.; Haraldsson, M.; Yogeeswari, P.; Sriram, D.; Schneider, G. Structure-guided design of novel thiazolidine inhibitors of O-acetyl serine sulfhydrylase from Mycobacterium tuberculosis. J. Med. Chem., 2013, 56(16), 6457-6466.
[47]
Hamza, A.; Wagner, J.M.; Evans, T.J.; Frasinyuk, M.S.; Kwiatkowski, S.; Zhan, C-G.; Watt, D.S.; Korotkov, K.V. Novel mycosin protease MycP1 inhibitors identified by virtual screening and 4D fingerprints. J. Chem. Inf. Model., 2014, 54(4), 1166-1173.
[48]
Choudhury, C.; Priyakumar, U.D.; Sastry, G.N. Dynamics based pharmacophore models for screening potential inhibitors of mycobacterial cyclopropane synthase. J. Chem. Inf. Model., 2015, 55(4), 848-860.
[49]
Mehra, R.; Rani, C.; Mahajan, P.; Vishwakarma, R.A.; Khan, I.A.; Nargotra, A. Computationally guided identification of novel Mycobacterium tuberculosis GlmU inhibitory leads, their optimization, and in vitro validation. ACS Comb. Sci., 2016, 18(2), 100-116.
[50]
Lele, A.C.; Raju, A.; Khambete, M.P.; Ray, M.K.; Rajan, M.G.R.; Arkile, M.A.; Jadhav, N.J.; Sarkar, D.; Degani, M.S. Design and synthesis of a focused library of diamino triazines as potential Mycobacterium tuberculosis DHFR inhibitors. ACS Med. Chem. Lett., 2015, 6(11), 1140-1144.
[51]
Pauli, I.; Dos Santos, R.N.; Rostirolla, D.C.; Martinelli, L.K.; Ducati, R.G.; Timmers, L.F.S.M.; Basso, L.A.; Santos, D.S.; Guido, R.V.C.; Andricopulo, A.D. Discovery of new inhibitors of Mycobacterium tuberculosis InhA enzyme using virtual screening and a 3D-pharmacophore-based approach. J. Chem. Inf. Model., 2013, 53(9), 2390-2401.
[52]
Purohit, R.; Rajendran, V.; Sethumadhavan, R. Relationship between mutation of serine residue at 315th position in M. tuberculosis catalase-peroxidase enzyme and Isoniazid susceptibility: An in silico analysis. J. Mol. Model., 2011, 17(4), 869-877.
[53]
Mehra, R.; Rajput, V.S.; Gupta, M.; Chib, R.; Kumar, A.; Wazir, P.; Khan, I.A.; Nargotra, A. Benzothiazole derivative as a novel Mycobacterium tuberculosis shikimate kinase inhibitor: Identification and elucidation of its allosteric mode of inhibition. J. Chem. Inf. Model., 2016, 56(5), 930-940.
[54]
Singh, N.; Tiwari, S.; Srivastava, K.K.; Siddiqi, M.I. Identification of novel inhibitors of Mycobacterium tuberculosis PknG using pharmacophore based virtual screening, docking, molecular dynamics simulation, and their biological evaluation. J. Chem. Inf. Model., 2015, 55(6), 1120-1129.
[55]
Devi, P.B.; Jogula, S.; Reddy, A.P.; Saxena, S.; Sridevi, J.P.; Sriram, D.; Yogeeswari, P. Design of novel Mycobacterium tuberculosis pantothenate synthetase inhibitors: Virtual screening, synthesis and in vitro biological activities. Mol. Inf., 2015, 34(2-3), 147-159.
[56]
Jeankumar, V.U.; Saxena, S.; Vats, R.; Reshma, R.S.; Janupally, R.; Kulkarni, P.; Yogeeswari, P.; Sriram, D. Structure-guided discovery of antitubercular agents that target the gyrase atpase domain. ChemMedChem, 2016, 11(5), 539-548.
[57]
Jose, G.; Kumara, T.H.S.; Sowmya, H.B.V.; Sriram, D.; Row, T.N.G.; Hosamani, A.A.; More, S.S.; Janardhan, B.; Harish, B.G.; Telkar, S. Synthesis, molecular docking, antimycobacterial and antimicrobial evaluation of new pyrrolo [3, 2-c] pyridine Mannich bases. . Eur. J. Med. Chem., 2017, 131, 275-288.
[58]
Lee, Y-V.; Choi, S.B.; Wahab, H.A.; Choong, Y.S. Active site flexibility of mycobacterium tuberculosis isocitrate lyase in dimer form. J. Chem. Inf. Model., 2017, 57(9), 2351-2357.
[59]
Ekins, S.; Godbole, A.A.; Keri, G.; Orfi, L.; Pato, J.; Bhat, R.S.; Verma, R.; Bradley, E.K.; Nagaraja, V. Machine learning and docking models for Mycobacterium tuberculosis topoisomerase-I. Tuberculosis, 2017, 103, 52-60.
[60]
Kumar, M.; Vijayakrishnan, R.; Rao, G.S. In silico structure-based design of a novel class of potent and selective small peptide inhibitor of Mycobacterium tuberculosis Dihydrofolate reductase, a potential target for anti-TB drug discovery. Mol. Divers., 2010, 14(3), 595-604.
[61]
Muddassar, M.; Jang, J.W.; Gon, H.S.; Cho, Y.S.; Kim, E.E.; Keum, K.C.; Oh, T.; Cho, S-N.; Pae, A.N. Identification of novel antitubercular compounds through hybrid virtual screening approach. Bioorg. Med. Chem., 2010, 18(18), 6914-6921.
[62]
Kinjo, T.; Koseki, Y.; Kobayashi, M.; Yamada, A.; Morita, K.; Yamaguchi, K.; Tsurusawa, R.; Gulten, G.; Komatsu, H.; Sakamoto, H. Identification of compounds with potential antibacterial activity against Mycobacterium through structure-based drug screening. J. Chem. Inf. Model., 2013, 53(5), 1200-1212.
[63]
Blanco, B.; Prado, V.; Lence, E.; Otero, J.M.; Garcia-Doval, C.; van Raaij, M.J.; Llamas-Saiz, A.L.; Lamb, H.; Hawkins, A.R.; Gonzalez-Bello, C. Mycobacterium tuberculosis shikimate kinase inhibitors: design and simulation studies of the catalytic turnover. J. Am. Chem. Soc., 2013, 135(33), 12366-12376.
[64]
Jena, L.; Waghmare, P.; Kashikar, S.; Kumar, S.; Harinath, B.C. Computational approach to understanding the mechanism of action of isoniazid, an anti-TB drug. Int. J. Mycobacteriol., 2014, 3(4), 276-282.
[65]
Perryman, A.L.; Yu, W.; Wang, X.; Ekins, S.; Forli, S.; Li, S-G.; Freundlich, J.S.; Tonge, P.J.; Olson, A.J. A virtual screen discovers novel, fragment-sized inhibitors of Mycobacterium tuberculosis InhA. J. Chem. Inf. Model., 2015, 55(3), 645-659.
[66]
Jose, G.; Kumara, T.H.S.; Nagendrappa, G.; Sowmya, H.B.V.; Sriram, D.; Yogeeswari, P.; Sridevi, J.P.; Row, T.N.G.; Hosamani, A.A.; Ganapathy, P.S.S. Synthesis, molecular docking and anti-mycobacterial evaluation of new imidazo [1, 2-a] pyridine-2-carboxamide derivatives. Eur. J. Med. Chem., 2015, 89, 616-627.
[67]
Mujahid, M.; Yogeeswari, P.; Sriram, D.; Basavanag, U.M.V.; Diaz-Cervantes, E.; Cordoba-Bahena, L.; Robles, J.; Gonnade, R.G.; Karthikeyan, M.; Vyas, R. Spirochromone-chalcone conjugates as antitubercular agents: Synthesis, bio evaluation and molecular modeling studies. RSC Advances, 2015, 5(129), 106448-106460.
[68]
Revathi, R.; Perumal, R.V.; Pai, K.S.R.; Arunkumar, G.; Sriram, D.; Kini, S.G. Design, development, drug-likeness, and molecular docking studies of novel piperidin-4-imine derivatives as antitubercular agents. Drug Des. Devel. Ther., 2015, 9, 3779-3787.
[69]
Soni, V.; Suryadevara, P.; Sriram, D.; Kumar, S.; Nandicoori, V.K.; Yogeeswari, P.; Consortium, O. Structure-based design of diverse inhibitors of Mycobacterium tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase: Combined molecular docking, dynamic simulation, and biological activity. J. Mol. Model., 2015, 21(7), 174.
[70]
Tatar, E.; Karakus, S.; Kucukguzel, S.G.; Okullu, S.O.; Kocagöz, N.; Ünübol, N.; De Clercq, E.; Andrei, G.; Snoeck, R.; Pannecouque, C. Design, synthesis, and molecular docking studies of a conjugated thiadiazole-thiourea scaffold as antituberculosis agents. Biol. Pharm. Bull., 2016, 39(4), 502-515.
[71]
Goud, G.L.; Ramesh, S.; Ashok, D.; Reddy, V.P.; Yogeeswari, P.; Sriram, D.; Saikrishna, B.; Manga, V. Design, synthesis, molecular-docking and antimycobacterial evaluation of some novel 1, 2, 3-triazolyl xanthenones. MedChemComm, 2017, 8(3), 559-570.
[92]
Sander, T.; Freyss, J.; von Korff, M.; Reich, J.R.; Rufener, C. OSIRIS, an entirely in-house developed drug discovery informatics system. J. Chem. Inf. Model., 2009, 49(2), 232-246.