Abstract
Background: Computational or in silico studies are undertaken to assess the drug like properties of lead compounds. These studies help in fast prediction of relevant properties.
Objective: Through this review, an effort is made to encapsulate some of the important parameters which should be met by a compound for it to be considered as a potential drug candidate along with an overview of automated softwares which can be used for making various predictions. Methods: Drug uptake, its absorption, evacuation and associated hazardous effects are important factors for consideration in drug designing and should be known in early stages of drug development. Several important physicochemical properties like molecular weight, polar surface area (PSA), molecular flexibility etc. have to be taken into consideration in drug designing. Toxicological assessment is another important aspect of drug discovery which predicts the safety and adverse effects of a drug. Results: Additionally, bioactivity scores of probable drug leads against various human receptors can also be predicted to evaluate the probability of them to act as a potential drug candidate. The in vivo biological targets of a molecule can also be efficiently predicted by molecular docking studies. Conclusion: Some important software like iGEMDOCK, AutoDock, OSIRIS property explorer, Molinspiration, MetaPrint2D, admetSAR and their working methodology and principle of working have been summarized in this review.Keywords: Drug, design, toxicological, bioactivity, softwares, in silico tools.
Graphical Abstract
[1]
Hou, T. ADME Evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine. J. Chem. Inf. Model., 2007, 47(6), 2408-2415.
[2]
Selick, H.E.; Beresford, A.P.; Tarbit, M.H. The emerging importance of predictive ADME simulation in drug discovery. Drug Discov. Today, 2002, 7(2), 109-116.
[3]
Kubinyi, H. Drug research: Myths, hype and reality. Nat. Rev. Drug Discov., 2003, 2(8), 665-668.
[4]
Lyne, P.D. Structure-based virtual screening: An overview. Drug Discov. Today, 2002, 7(20), 1047-1055.
[5]
Oprea, T.I.; Davis, A.M.; Teague, S.J.; Leeson, P.D. Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci., 2001, 41(5), 1308-1315.
[6]
Teague, S.J.; Davis, A.M.; Leeson, P.D.; Oprea, T. The design of leadlike combinatorial libraries. Angew. Chem. Int. Ed. Engl., 1999, 38(24), 3743-3748.
[7]
Beresford, A.P.; Segall, M.; Tarbit, M.H. In silico prediction of ADME properties: Are we making progress? Curr. Opin. Drug Discov. Devel., 2004, 7(1), 36-42.
[8]
Meyer, E.F.; Swanson, S.M.; Williams, J.A. Molecular modeling and drug design. Pharmacol. Ther., 2000, 85, 113-121.
[9]
Shinde, S.P.; Banerjee, A.K.; Arora, N.; Murty, U.S.; Sripathi, V.R.; Pal-Bhadra, M.; Bhadra, U. Computational approach for elucidating interactions of cross-species miRNAs and their targets in Flaviviruses. J. Vector Borne, 2015, 52, 11-22.
[10]
Albert, J.S.; Blomberg, N.; Breeze, A.L.; Brown, A.J.; Burrows, J.N.; Edwards, P.D.; Folmer, R.H.; Geschwindner, S.; Griffen, E.J.; Kenny, P.W.; Nowak, T.; Olsson, L.L.; Sanganee, H.; Shapiro, A.B. An integrated approach to fragment-based lead generation: Philosophy, strategy and case studies from AstraZeneca’s drug discovery programmes. Curr. Top. Med. Chem., 2007, 7(16), 1600-29.
[11]
Banerjee, A.K.; Ravi, V.; Murty, U.S.; Shanbhag, A.P.; Prasanna, V.L. Keratin protein property based classification of mammals and non-mammals using machine learning techniques. Comput. Biol. Med., 2013, 43, 889-899.
[12]
Banerjee, A.K.; Ravi, V.; Murty, U.S.; Sengupta, N.; Karuna, B. Application of intelligent techniques for classification of bacteria using protein sequence derived features. Appl. Biochem. Biotechnol., 2013, 170, 1263-1281.
[13]
Hileman, B. Accounting for R&D, many doubt the $800 million pharmaceutical price tag. Chemical. Eng. News, 2006, 84, 50-51.
[15]
Baldi, A. Computational approaches for drug design and discovery: An overview. Sys. Rev. Pharm., 2010, 1, 99-105.
[16]
Roy, K. Computational Modeling of Drugs Against Alzheimer’s
Disease. 1st ed.; Springer Sci. Humana Press: Switzerland, 2018.
[http://dx.doi.org/10.1007/978-1-4939-7404-7]
[http://dx.doi.org/10.1007/978-1-4939-7404-7]
[17]
Balakumar, C.; Ramesh, M.; Tham, C.L.; Khathi, S.P.; Kozielski, F.; Srinivasulu, C.; Hampannavar, G.A.; Sayyad, N.; Soliman, M.E.; Karpoormath, R. Ligand- and structure-based in silico studies to identify kinesin spindle protein (KSP) inhibitors as potential anticancer agents. J. Biomol. Str. Dyn., 2017, 29, 1-18.
[18]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[19]
Khan, T.; Ahmad, R.; Azad, I.; Raza, S.; Joshi, S.; Khan, A.R. (2018) Computer-aided drug design and virtual screening of targeted combinatorial libraries of mixed-ligand transition metal complexes of 2-butanone thiosemicarbazone. Comput. Biol. Chem., 2018(75), 178-195.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.05.008]
[http://dx.doi.org/10.1016/j.compbiolchem.2018.05.008]
[20]
Gao, X.; Qian, J.; Zheng, S.; Changyi, Y.; Zhang, J.; Ju, S.; Zhu, J.; Li, C. Overcoming the blood-brain barrier for delivering drugs into the brain by using adenosine receptor nanoagonist. ACS Nano, 2014, 8(4), 3678-3689.
[21]
Levin, V.A. Relationship of octanol/water partition coefficient and
molecular weight to rat brain capillary permeability. J. Med.
Chem., 1980, 23, 682-684.
[22]
Kansy, M.; van de Waterbeemd, H. Hydrogen bonding capacity and brain penetration. Chimia, 1992, 46, 299-303.
[23]
Abraham, M.H.; Chadha, H.S.; Mitchell, R.C. Hydrogen bonding. 33. Factors that influence the distribution of solutes between blood and brain. J. Pharm. Sci., 1994, 83, 1257-1268.
[24]
Bala, N.; Raj, J.S.; Kandakatla, N. In silico studies of new Indazole derivatives as GSK-3β inhibitors. Int. J. Pharm. Pharma. Sci., 2015, 7(3), 295-299.
[25]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[26]
Navia, M.A.; Chaturvedi, P.R. Design principles for orally bioavailable drugs. Drug Discovery. Today, 1996, 1, 179-189.
[27]
Smith, A.B.; Hirschmann, R.; Pasternak, A.; Yao, W.; Sprengler, P.A.; Halloway, M.K.; Kuo, L.C.; Chen, Z.; Darke, P.L.; Schleif, W.A. An orally bioavailable pyrrolinone inhibitor of hiv-1 protease: computational analysis and X-ray crystal structure of the enzyme complex. J. Med. Chem., 1997, 40, 2440-2444.
[28]
Palm, K.; Stenberg, P.; Luthman, K.; Artursson, P. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm. Res., 1997, 14, 568-571.
[29]
Hung-Yuan, C.; Smith, B.R.; Ward, K.W.; Kenneth, D. Kopple molecular properties that influence the oral bioavailability of drug candidates daniel F. Veber, Stephen R. Johnson. J. Med. Chem., 2002, 45, 2615-2623.
[30]
Palm, K.; Stenberg, P.; Luthman, K.; Artursson, P. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm. Res., 1997, 14, 568-571.
[31]
Azad, I.; Nasibullah, M.; Khan, T.; Hassan, F.; Akhter, Y. Exploring the novel heterocyclic derivatives as lead molecules for design and development of potent anticancer agents. J. Mol. Gra. Mod., 2018, 81, 211-228.
[32]
Clark, D.E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. Prediction of intestinal absorption. J. Pharm. Sci., 1999, 88, 807-814.
[33]
Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem., 2000, 43, 3714-3717.
[34]
Bytheway, I.; Darley, M.G.; Popelier, P.L. The calculation of polar surface area from first principles: An application of quantum chemical topology to drug design. ChemMedChem, 2008, 3(3), 445-453.
[35]
Ghose, A.K.; Crippen, G.M. 1987 Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. J. Chem. Inf. Comput. Sci., 1987, 27, 21-35.
[37]
Hansch, C. Rockwell, S.D.; Jow, P.Y.C.; Leo, A.; Steller, E.E. Substituent Constants for Correlation Analysis. J. Med. Chem., 1977, 20(2), 304-306.
[38]
Khan, T.; Ahmad, R.; Azad, I.; Raza, S.; Joshi, S.; Khan, A.R. Computer-aided drug design and virtual screening of targeted combinatorial libraries of mixed-ligand transition metal complexes of 2-butanone thiosemicarbazone. Comput. Biol. Chem., 2018, 75, 178-195.
[39]
Viswanadhan, V.N.; Ghose, A.K.; Hanna, N.B.; Matsumoto, S.S.; Avery, T.L.; Revankar, G.R.; Robins, R.K. Analysis of the in vitro antitumor activity of novel purine-6-sulfenamide, -sulfinamide, and -sulfonamide nucleosides and certain related compounds using a computer-aided receptor modeling procedure. J. Med. Chem., 1991, 34, 526-532.
[40]
Ghose, A.K.; Vellarkad, N. Viswanadhan, John, J.; Wendoloski, J.A.; Knowledge-Based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. a qualitative and quantitative characterization of known drug databasescomb. Chemistry, 1999, 1, 55-68.
[41]
Riadh, H.; Salah, B.; Aicha, K.; Salima, B. Structure activity/property relationships of pyrazole derivatives by MPO and QSAR methods for drug design. Ser. J. Pharm. Biol. Chem. Sci., 2015, 6(4), 923-935.
[42]
Teague, S.J.; Davis, A.M.; Paul, D. Leeson, Oprea, T.; Angew. The design of lead like combinatorial libraries. Chem. Int. ed.,
1999, 38(24), 3743-3748.
[43]
Rohs, R.; Bloch, I.; Sklenar, H.; Shakked, Z. Molecular flexibility in ab-initio drug docking to DNA: Binding-site and binding-mode transitions in all-atom Monte Carlo simulations. Nucl Acids Res., 2005, 33, 7048-7057.
[44]
Guedes, I.A.; de Magalhães, C.S.; Dardenne, L.E. Receptor-ligand molecular docking. Bio. Rev, 2014, 6, 75-87.
[45]
López-Vallejo, F.; Caulfield, T.; Martínez-Mayorga, K.; Giulianotti, M.A.; Houghten, R.A.; Nefzi, A.; Medina-Franco, J.L. Integrating virtual screening and combinatorial chemistry for accelerated drug discovery. Comb. Chem. High Throughput Screen., 2011, 14, 475-487.
[46]
Agarwal, S.; Chadha, D.; Mehrotra, R. Molecular modeling and spectroscopic studies of semustine binding with DNA and its comparison with lomustine-DNA adduct formation. J. Biomol. Stru. Dyn., 2015, 33, 1653-1668.
[47]
Foloppe, N.; Hubbard, R. Towards predictive ligand design with free-energy based computational methods? Curr. Med. Chem., 2006, 13, 3583-3608.
[48]
Jain, A.N. Scoring functions for protein-ligand docking. Curr. Protein Pept. Sci., 2006, 7, 407-420.
[49]
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24, 417-422.
[50]
Kapetanovic, I.M. Computer-aided drug discovery and development (CADDD): In silico-chemicobiological approach. Chem. Biol. Interact., 2008, 171, 165-176.
[51]
Lamb, M.L.; Jorgensen, W.L. Computational approaches to molecular recognition. Curr. Opin. Chem. Biol., 1997, 1, 449-457.
[52]
Gschwend, D.A.; Good, A.C.; Kuntz, I.D. Molecular docking towards drug discovery. J. Mol. Recognit., 1996, 9, 175-186.
[53]
Carlsson, L.; Spjuth, O.; Adams, S.; Glen, R.C.; Boyer, S. Use of historic metabolic biotransformation data as a means of anticipating metabolic sites using MetaPrint2D and Bioclipse. BMC Bioinformatics, 2010, 11, 362-367.
[54]
Nigel, J. Waters, michelle k. Dennehy computational approaches in
drug biotransformation studies: metabolite prediction. Handbook of
Metabolic Pathways of Xenobiotics. 2014, 1-24.
[http://dx.doi.org/10.1002/9781118541203.xen0019]
[http://dx.doi.org/10.1002/9781118541203.xen0019]
[56]
Meng, X-U.; Zhang, H-X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des., 2011, 7(2), 146-157.
[57]
Adam, C. Chamberlin; Levitt, D.G.; Cramer, C.J.; Truhlar, D.G. Modeling free energies of solvation in olive oil. Mol. Pharmceutic, 2008, 5(6), 1064-1079.
[58]
Kola, I.; Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug. Dis., 2004, 3, 711-715.
[59]
Hou, T.; Wang, J. Structure-ADME relationship: Still a long way to go? Expert Opin. Drug Metab. Toxicol., 2008, 4, 759-770.
[60]
Kramer, J.A.; Sagartz, J.E.; Morris, D.L. The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nat. Rev. Drug Discov., 2007, 6, 636-649.
[61]
Ames, B.N.; McCann, J.; Yamasaki, E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat. Res., 1975, 31, 347-364.
[62]
Iurii Sushko, S.N.; Igor, V.T. Applicability domain for in silico models to achieve accuracy of experimental measurements. J. Chemometr., 2010, 24, 202-208.
[63]
Cronin, T.D.M. Predicting Chemical Toxicity and Fate. 1st Taylor
& Francis Group CRC Press: Ohio, 2004.
[64]
Raymond, S.T.; Tirrell, M. Bottom-up design of biomimetic assemblies. Adv. Drug Deliv. Rev., 2004, 56(11), 1537-1563.
[65]
Benigni, R.; Giuliani, A. Computer-assisted analysis of interlaboratory Ames test variability. J. Toxicol. Environ. Health, 1988, 25, 135-148.
[66]
Cheng, F.; Weihua, Li.; Zhou, Y.; Jie, S.; Zengrui, W.; Guixia, L.; Philip, W.; Lee, Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52, 3099-3105.
[67]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[68]
Van Breemen, R.B.; Li, Y. Caco-2 cell permeability assays to measure drug absorption. Expert Opin. Drug Metab. Toxicol., 2005, 1(2), 175-185.
[69]
Aniyery, R.B.; Sharma, A.; Gupta, A. Molecular docking studies and in silico pharmacokinetic property study of synthesized organotin complex of (1r, 2s, 5r)-2-isopropyl-5- methylcyclohexanol. J. Chem. Pharm. Sci, 2015, 9(4), 2656-2663.
[70]
Ames, B.N. The metabolic tune-up: Metabolic harmony and disease prevention. J. Nutr., 2003, 94, 1544S-15448S.
[71]
Maritim, A.C.; Sanders, R.A.; Watkins, J.B. 3rd Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol., 2003, 17(2), 24-38.
[73]
Gunasekar, P.G.; Rogers, J.V.; Kabbur, M.B.; Garrett, C.M.; Brinkley, W.W.; McDougal, J.N. J. Biochem. Mol. Toxicol., 2003, 17(2), 92.
[74]
Puratchikody, A.; Doble, M.; Ramalakshmi, N. Toxicity risk assessment of some novel quinoxalines. RASAYAN J. Chem., 2011, 4(3), 636-639.
[75]
Segel, I.H. Biochemical calculations: How to solve mathematical problems in general biochemistry, 2nd ed; Wiley Publications: New York, 1976.
[76]
Appling, D.R.; Anthony-Cahill, S.J.; Mathews, C.K. Biochemistry: concepts and connection Biochemical genetics. 2nd ed; , 2018.
[77]
Khan, T.; Dixit, S.; Ahmad, R.; Raza, S.; Azad, I.; Joshi, S.; Khan, A.R. Molecular docking, PASS analysis, bioactivity score prediction, synthesis, characterization and biological activity evaluation of a functionalized 2-butanone thiosemicarbazone ligand and its complexes. J. Chem. Biol., 2017, 10(3), 91-104.
[http://dx.doi.org/10.1007/s12154-0170167-y]
[http://dx.doi.org/10.1007/s12154-0170167-y]
[78]
Verma, A. Lead finding from Phyllanthus debelis with hepatoprotective potentials. Asian Pac. J. Trop. Biomed., 2012, S1735-S1737.
[79]
Azad, I.; Jafri, A.; Khan, T.; Akhter, Y.; Arshad, M.; Hassan, F.; Ahmad, N.; Khan, A.R.; Nasibullah, M. Evaluation of pyrrole-2,3-dicarboxylate derivatives: Synthesis, DFT analysis, molecular docking, virtual screening and in vitro anti-hepatic cancer study. J. Mol. Str., 2019, 1176, 314-334.
[80]
Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem., 2000, 43, 3714-3717.
[81]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45, 2615-2623.
[82]
Liu, H.; Wang, L.; Mingliang, L.M.; Pei, R.; Li, P.; Pei, Z.; Wang, Y.; Su, W.; Xie, X. AlzPlatform: An alzheimer’s disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. J. Chem. Inf. Model., 2014, 54, 1050-1060.
[83]
Wager, T.T.; Hou, X.; Verhoest, P.R.; Villalobos, A. Central nervous system multiparameter optimization desirability: Application in drug discovery. ACS Chem. Neurosci., 2016, 7, 767-775.