[1]
Wei, W.H.; Hemani, G.; Haley, C.S. Detecting epistasis in human complex traits. Nat. Rev. Genet., 2014, 15(11), 722-733.
[2]
Li, P.; Guo, M.; Wang, C.; Liu, X.; Zou, Q. An overview of SNP interactions in genome-wide association studies. Brief. Funct. Genomics, 2014, 14(2), 143-155.
[3]
Roberts, J.M.; Mascalzoni, D.; Ness, R.B.; Poston, L. Collaboration to understand complex diseases. Hypertension, 2016, 67(4), 681-687.
[4]
Hu, J.X.; Thomas, C.E.; Brunak, S. Network biology concepts in complex disease comorbidities. Nat. Rev. Genet., 2016, 17(10), 615-629.
[5]
Klein, R.J.; Zeiss, C.; Chew, E.Y.; Tsai, J.Y.; Sackler, R.S.; Haynes, C.; Henning, A.K.; SanGiovanni, J.P.; Mane, S.M.; Mayne, S.T.; Bracken, M.B.; Ferris, F.L.; Ott, J.; Barnstable, C.; Hoh, J. Complement factor h polymorphism in age-related macular degeneration. Science, 2007, 308(5720), 385-389.
[6]
Moore, J.H.; Asselbergs, F.W.; Williams, S.M. Bioinformatics challenges for genome-wide association studies. Bioinformatics, 2010, 26(4), 445.
[7]
Wang, M.H.; Sun, R.; Guo, J.; Weng, H.; Lee, J.; Hu, I.; Sham, P.C.; Zee, B.C. A fast and powerful W-test for pairwise epistasis testing. Nucleic Acids Res., 2016, 44(12)e115
[8]
Jing, P.J.; Shen, H.B. MACOED: a multi-objective ant colony optimization algorithm for SNP epistasis detection in genome-wide association studies. Bioinformatics, 2015, 31(5), 634.
[9]
Han, B.; Meeyoung, P.; Chen, X.W. A markov blanket-based method for detecting causal SNPs in GWAS. BMC Bioinformatics, 2010, 3(Suppl. 3), S5.
[10]
Ding, X.; Wang, J.; Zelikovsky, A.; Guo, X.; Xie, M.; Pan, Y. Searching high-order SNP combinations for complex diseases based on energy distribution difference. IEEE/Acm Trans. Comput. Biol. Bioinform., 2015, 12(3), 695-704.
[11]
Sluga, D.; Curk, T.; Zupan, B.; Lotric, U. Heterogeneous computing architecture for fast detection of SNP-SNP interactions. BMC Bioinformatics, 2014, 15(1), 216.
[12]
Li, X. A fast and exhaustive method for heterogeneity and epistasis analysis based on multi-objective optimization. Bioinformatics, 2017, 33(18), 2829-2836.
[13]
Xuan, G.; Yu, M.; Ning, Y.; Yi, P. Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering. BMC Bioinformatics, 2014, 15(1), 1-16.
[14]
Kamthong, T.; Azencott, C.A.; Cayton, L.; Pütz, B.; Altmann, A.; Karbalai, N.; Sämann, P.G.; Schölkopf, B.; Müller-Myhsok, B.; Borgwardt, K.M. Glide: GPU-based linear regression for detection of epistasis. Hum. Hered., 2012, 73(4), 220-236.
[15]
Beam, A.L.; Motsingerreif, A.; Doyle, J. Bayesian neural networks for detecting epistasis in genetic association studies. BMC Bioinformatics, 2014, 15(1), 368.
[16]
Lee, I.; Blom, U.M.; Wang, P.I.; Shim, J.E.; Marcotte, E.M. Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res., 2011, 21(7), 1109.
[17]
Chen, L.S.; Hutter, C.M.; Potter, J.D.; Liu, Y.; Prentice, R.L.; Peters, U.; Hsu, L. Insights into colon cancer etiology via a regularized approach to gene set analysis of GWAS data. Am. J. Hum. Genet., 2010, 86(6), 860-871.
[18]
Braun, R.; Buetow, K. Pathways of distinction analysis: a new technique for multi-SNP analysis of GWAS data. PLoS Genet., 2010, 7(6)e1002101
[19]
Askland, K.; Read, C.; O’Connell, C.; Moore, J.H. Ion channels and schizophrenia: a gene set-based analytic approach to GWAS data for biological hypothesis testing. Hum. Genet., 2012, 131(3), 373-391.
[20]
Gibson, G. Hints of hidden heritability in GWAS. Nat. Genet., 2010, 42(7), 558-560.
[21]
Holmes, J.H.; Lanzi, P.L. Learning classifier systems: new models, successful applications. Inf. Process. Lett., 2000, 82(1), 23-30.
[22]
John, U.R.; Andrew, A.S.; Rita, K.M.; Moore, J.H. Role of genetic heterogeneity and epistasis in bladder cancer susceptibility and outcome: a learning classifier system approach. J. Am. Med. Inform. Assoc., 2013, 20(4), 603-612.
[23]
Urbanowicz, R.J.; Jeff, K.; Sinnott-Armstrong, N.A.; Tamra, H.; Fisher, J.M.; Moore, J.H. Gametes: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures. BioData Min., 2012, 5(1), 16.
[24]
Boryczka, U.; Kozak, J. Enhancing the effectiveness of ant colony decision tree algorithms by co-learning. Appl. Soft Comput., 2015, 30, 166-178.
[25]
Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput., 2002, 6(2), 182-197.
[26]
Chaharsooghi, S.K.; Kermani, A.H.M. An effective Ant Colony Optimization algorithm (ACO) for Multi-Objective Resource Allocation Problem (MORAP). Appl. Math. Comput., 2008, 200(1), 167-177.
[27]
Tuo, S.; Zhang, J.; Yuan, X.; Zhang, Y.; Liu, Z. FHSA-SED: two-locus model detection for genome-wide association study with harmony search algorithm. PLoS One, 2016, 11(3)e0150669
[28]
Li, X.; Jiang, W. Method for generating multiple risky barcodes of complex diseases using ant colony algorithm. Theor. Biol. Med. Model., 2017, 14(1), 4.
[29]
Yang, C.H.; Lin, Y.D.; Chuang, L.Y.; Chang, H.W. Evaluation of breast cancer susceptibility using improved genetic algorithms to generate genotype SNP barcodes. IEEE ACM Trans. Computat. Biol, 2013, 10(2), 361.
[30]
Gabriel, C.A.; Mitra, N.; Demichele, A.; Rebbeck, T. Association of Progesterone Receptor Gene (PGR) variants and breast cancer risk in African American women. Breast Cancer Res. Treat., 2013, 139(3), 833.
[31]
Pharoah, P.D.; Tyrer, J.; Dunning, A.M.; Easton, D.F.; Ponder, B.A.; Investigators, S. Association between common variation in 120 candidate genes and breast cancer risk. PLoS Genet., 2007, 3(3)e42
[32]
Udler, M.S.; Azzato, E.M.; Healey, C.S.; Ahmed, S.; Pooley, K.A.; Greenberg, D.; Shah, M.; Teschendorff, A.E.; Caldas, C.; Dunning, A.M.; Ostrander, E.A.; Caporaso, N.E.; Easton, D.; Pharoah, P.D. Common germline polymorphisms in COMT, CYP19A1, ESR1, PGR, SULT1E1 and STS and survival after a diagnosis of breast cancer. Int. J. Cancer, 2009, 125(11), 2687-2696.