[1]
Phair, R.D.; Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature, 2000, 404, 604-609.
[2]
Murphy, R.F.; Boland, M.V.; Velliste, M. In: proceedings of the
eighth international conference on intelligent systems for molecular
biology, La Jolla/San Diego, 19-23 August, 2000. Towards a
systematics for protein subcellular location: quantitative description
of protein localization patterns and automated analysis of
fluorescence microscope images. ISMB,, 2000, pp. 251-259.
[3]
Nakashima, H.; Nishikawa, K. Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies. J. Mol. Biol., 1994, 238, 54-61.
[4]
Cedano, J.; Aloy, P.; Pèrez-Pons, J.A.; Querol, E. Relation between amino acid composition and cellular location of proteins. J. Mol. Biol., 1997, 266, 594-600.
[5]
Emanuelsson, O.; Nielsen, H.; Brunak, S.; von Heijne, G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol., 1997, 300, 1005-1016.
[6]
Höglund, A.; Dönnes, P.; Blum, T.; Adolph, H.W.; Kohlbacher, O. MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics, 2006, 22, 1158-1165.
[7]
Emanuelsson, O.; Brunak, S.; von Heijne, G.; Nielsen, H. Locating proteins in the cell using TargetP, SignalP, and related tools. Nat. Protoc., 2007, 2(4), 953-971.
[8]
Wang, J.R.; Sung, W.K.; Krishnan, A.; Li, K.B. Protein subcellular localization prediction for Gram-negative bacteria using amino acid subalphabets and a combination of multiple support vector machines. BMC Bioinformatics, 2005, 6, 174.
[9]
Pierleoni, A.; Martelli, P.L.; Fariselli, P.; Casadio, R. BaCelLo: a balanced subcellular localization predictor. Bioinformatics, 2006, 22, e408-e416.
[10]
Huang, W.L.; Tung, C.W.; Huang, H.L.; Hwang, S.F.; Ho, S.Y. ProLoc: prediction of protein subnuclear localization using SVM with automatic selection from physicochemical composition features. Biosystems, 2007, 90, 573-581.
[11]
Sarda, D.; Chua, G.H.; Li, K.B.; Krishnan, A. pSLIP: SVM based protein subcellular localization prediction using multiple physicochemical properties. BMC Bioinformatics, 2005, 6, 152.
[12]
Briesemeister, S.; Rahnenführer, J.; Kohlbacher, O. Going from where to why-interpretable prediction of protein subcellular localization. Bioinformatics, 2010, 26, 1232-1238.
[13]
Mei, S.Y.; Fei, W. Amino acid classification based spectrum kernel fusion for protein subnuclear localization. BMC Bioinformatics, 2010(Suppl. 1), S17.
[14]
Zheng, X.Q.; Liu, T.G.; Wang, J. A complexity-based method for predicting protein subcellular location. Amino Acids, 2009, 37, 427-433.
[15]
Yu, N.Y.; Wagner, J.R.; Laird, M.R.; Melli, G.; Rey, S.; Lo, R.; Dao, P.; Sahinalp, S.C.; Ester, M.; Foster, L.J.; Brinkman, F.S.L. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics, 2010, 26, 1608-1615.
[16]
Chou, K.C.; Cai, Y.D. Using functional domain composition and support vector machines for prediction of protein subcellular location. J. Biol. Chem., 2002, 277, 45765-45769.
[17]
Chou, K.C.; Cai, Y.D. Prediction of protein subcellular locations by GO-FunD-PseAA predictor. Biochem. Biophys. Res. Commun., 2004, 320, 1236-1239.
[18]
Chou, K.C.; Shen, H.B. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0. PLoS One, 2010, 5e9931
[19]
Lei, Z.D.; Dai, Y. Assessing protein similarity with gene ontology and its use in subnuclear localization prediction. BMC Bioinformatics, 2006, 7, 491.
[20]
Mei, S.Y.; Fei, W.; Zhou, S.G. Gene ontology based transfer learning for protein subcellular localization. BMC Bioinformatics, 2011, 12, 44.
[21]
Chang, J.M.; Su, E.C.Y.; Lo, A.; Chiu, H.S.; Sung, T.Y.; Hsu, W.L. PSLDoc: protein subcellular localization prediction based on gapped-dipeptides and probabilistic latent semantic analysis. Proteins, 2008, 72, 693-710.
[22]
Guo, J.; Lin, Y.L. TSSub: eukaryotic protein subcellular localization by extracting features from profiles. Bioinformatics, 2006, 22, 1784-1785.
[23]
Mundra, P.; Kumar, M.; Kumar, K.K.; Jayaraman, V.K.; Kulkarni, B.D. Using pseudo amino acid composition to predict protein subnuclear localization: approached with PSSM. Pattern Recognit. Lett., 2007, 28, 1610-1615.
[24]
Shen, H.B.; Chou, K.C. Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein Eng. Des. Sel., 2007, 20, 561-567.
[25]
Xiao, R.Q.; Guo, Y.Z.; Zeng, Y.H.; Tan, H.F.; Pu, X.M.; Li, M.L. Using position specific scoring matrix and auto covariance to predict protein subnuclear localization. J. Biomed. Sci. Eng., 2009, 2, 51-56.
[26]
Shin, C.J.; Wong, S.; Davis, M.J.; Ragan, M.A. Protein-protein interaction as a predictor of subcellular location. BMC Syst. Biol., 2009, 3, 28.
[27]
Cui, Q.H.; Jiang, T.Z.; Liu, B.; Ma, S.D. Esub8: a novel tool to predict protein subcellular localizations in eukaryotic organisms. BMC Bioinformatics, 2004, 5, 66.
[28]
Guda, C.; Subramaniam, S. TARGET: a new method for predicting protein subcellular localization in eukaryotes. Bioinformatics, 2005, 21, 3963-3969.
[29]
Shen, H.B.; Chou, K.C. A top-down approach to enhance the power of predicting human protein subcellular localization: hum-mPLoc 2.0. Anal. Biochem., 2009, 394, 269-274.
[30]
Zhou, M.M.; Boekhorst, J.; Francke, C.; Siezen, R.J. LocateP: genome-scale subcellular-location predictor for bacterial proteins. BMC Bioinformatics, 2008, 9, 173.
[31]
Han, G.S.; Yu, Z.G.; Anh, V.; Krishnajith, A.P.D.; Tian, Y.C. An ensemble method for predicting subnuclear localizations from primary protein structures. PLoS One, 2013, 8e57225
[32]
Chou, K.C. Prediction of protein subcellular attributes using pseudo-amino acid composition. Proteins: Struct. Funct. Genet., 2001, 43, 246-255.
[33]
Foster, L.J.; de Hoog, C.L.; Zhang, Y.; Zhang, Y.; Xie, X. A mammalian organelle map by protein correlation profiling. Cell, 2006, 125, 187-199.
[34]
Chou, K.C.; Shen, H.B. Cell-PLoc: a package of web-servers for predicting subcellular localization of proteins in various organisms. Nat. Protoc., 2008, 3, 153-162.
[35]
Wan, S.B.; Mak, M.W.; Kung, S.Y. mGOASVM: Multi-label protein subcellular localization based on gene ontology and support vector machines. BMC Bioinformatics, 2012, 13, 290.
[36]
Xiao, X.; Wu, Z.C.; Chou, K.C. A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites. PLoS One, 2011, 6e20592
[37]
Chou, K.C.; Shen, H.B. Cell-PLoc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms. Nat. Sci., 2010, 2, 1090-1103.
[38]
Shen, H.B.; Chou, K.C. Virus-mPLoc: a fusion classifier for viral protein subcellular location prediction by incorporating multiple sites. J. Biomol. Struct. Dyn., 2010, 28, 175-186.
[39]
Chou, K.C.; Shen, H.B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One, 2010, 5e11335
[40]
Shen, H.B.; Chou, K.C. Gneg-mPLoc: a top-down strategy to enhance the quality of predicting subcellular localization of Gram-negative bacterial proteins. J. Theor. Biol., 2010, 264, 326-333.
[41]
Bishop, C.M. Neural networks for pattern recognition; Oxford University Press: New York, 1995, pp. 1-482.
[42]
Zhang, M.L. ML-RBF: RBF neural networks for multi-label learning. Neural Process. Lett., 2009, 29, 61-74.
[44]
Liu, J.; Ji, S.W.; Ye, J.P. Multi-task feature learning via efficient
l2,1-norm minimization. Proc. Twenty-Fifth Conf. Uncertainty Artif.
Intell, 2009, pp. 339-348.
[45]
Zhang, Y.; Schneider, J.G. Multi-label output codes using canonical correlation analysis. Int. Conf. Artif. Intell. Statistics, 2011, pp. 873-882.
[46]
Wang, X.; Li, G.Z.; Lu, W.C. Virus-ECC-mPLoc: a multi-label predictor for predicting the subcellular localization of virus proteins with both single and multiple sites based on a general form of Chou’s pseudo amino acid composition. Protein Pept. Lett., 2013, 20, 309-317.
[47]
He, J.; Gu, H.; Liu, W. Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites. PLoS One, 2012, 7e37155
[48]
Wang, X.; Li, G.Z. Multilabel learning via random label selection for protein subcellular multilocations prediction. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2013, 10, 436-446.