[1]
Zur, H.H. Papillomaviruses and cancer: From basic studies to clinical application. Nat. Rev. Cancer, 2002, 2, 342-350.
[2]
Haedicke, J.; Iftner, T. Human papillomaviruses and cancer; Cancer Associated Viruses: Springer, US, 2012.
[3]
Choi, Y.J.; Ki, E.Y.; Zhang, C.; Ho, W.C.; Lee, S.J.; Jeong, M.J.; Chan, P.K.; Park, J.S. Analysis of sequence variation and risk association of human papillomavirus 52 variants circulating in Korea. PLoS One, 2016, 11, e0168178.
[4]
Burd, E.M. Human papillomavirus laboratory testing: The changing paradigm. Clin. Microbiol. Rev., 2016, 29, 291-319.
[5]
de Villiers, E.M.; Fauquet, C.; Broker, T.R.; Bernard, H.U.; zur Hausen, H. Classification of papillomaviruses. Virology, 2004, 324, 17-27.
[6]
Pillai, M.R.; Lakshmi, S.; Sreekala, S.; Devi, T.G.; Jayaprakash, P.G.; Rajalakshmi, T.N.; Devi, C.G.; Nair, M.K.; Nair, M.B. High-risk human papillomavirus infection and E6 protein expression in lesions of the uterine cervix. Pathobiology, 1998, 66, 240-246.
[7]
Tornesello, M.L.; Duraturo, M.L.; Botti, G.; Greggi, S.; Piccoli, R. De, Palo.G.; Montella, M.; Buonaguro, L.; Buonaguro, F.M. Italian HPV working group: prevalence of α-papillomavirus genotypes in cervical intraepithelial neoplasia and cervical cancer in the Italian population. J. Med. Virol., 2006, 78, 1663-1672.
[8]
Arbyn, M.; Tommasino, M.; Depuydt, C.; Dillner, J. Are 20 human papillomavirus types causing cervical cancer? J. Pathol., 2014, 234, 431-435.
[9]
Cogliano, V.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; Ghissassi, F.E. Carcinogenicity of human papillomaviruses. Lancet Oncol., 2005, 6, 204.
[10]
Schiffman, M.; Clifford, G.; Buonaguro, F.M. Classification of weakly carcinogenic human papillomavirus types: Addressing the limits of epidemiology at the borderline. Infect. Agent. Cancer, 2009, 4, 8.
[11]
Halec, G.; Alemany, L.; Lloveras, B.; Schmitt, M.; Alejo, M.; Bosch, F.X.; Tous, S.; Klaustermeier, J.E.; Guimerà, N.; Grabe, N.; Lahrmann, B.; Gissmann, L.; Quint, W.; Bosch, F.X.; de Sanjose, S.; Pawlita, M. Retrospective International Survey and HPV Time Trends Study Group. Retrospective International Survey and HPV Time Trends Study Group. Pathogenic role of the eight probably/possibly carcinogenic HPV types 26, 53, 66, 67, 68, 70, 73 and 82 in cervical cancer. J. Pathol., 2014, 234, 441-451.
[12]
Munoz, N.; Bosch, F.X. De, Sanjose, S.; Herrero, R.; Castellsague, X.; Shah, K.V.; Snijders, P.J.; Meijer, C.J. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med., 2003, 348, 518-527.
[13]
John, D.; Wim, Q.; Lawrence, B.; Ignacio, G.B.; Mark, S.; Broker, T.R.; Stanley, M.A. The biology and life-cycle of human papillomaviruses. Vaccine, 2012, 30S, F55-F70.
[14]
Zhong, T.Y.; Zhou, J.C.; Hu, R.; Fan, X.N.; Xie, X.Y.; Lin, M.; Chen, Y.G.; Hum, X.M.; Wang, W.H.; Li, L.; Xiao, H.P. Prevalence of human papillomavirus infection among 71,435 women in Jiangxi Province, China. J. Infect. Public Health, 2017, 10, 783-788.
[15]
Li, Z.; Liu, F.; Cheng, S.; Shi, L.; Yan, Z.; Yang, J.; Yao, Y.; Ma, Y. Prevalence of HPV infection among 28,457 Chinese women in Yunnan Province, southeast China. Sci. Rep., 2016, 6, 21039.
[16]
Liu, X.X.; Fan, X.L.; Yu, Y.P.; Ji, L.; Yan, J.; Sun, A.H. Human papillomavirus prevalence and type-distribution among women in Zhejiang Province, Southeast China: A cross-sectional study. BMC Infect. Dis., 2014, 14, 708.
[17]
So, K.A.; Hong, J.H.; Lee, J.K. Human papillomavirus prevalence and type distribution among 968 women in South Korea. J. Cancer Prev., 2016, 21, 104-109.
[18]
Azuma, Y.; Kusumoto-Matsuo, R.; Takeuchi, F.; Uenoyama, A.; Kondo, K.; Tsunoda, H.; Nagasaka, K.; Kawana, K.; Morisada, T.; Iwata, T.; Aoki, D.; Kukimoto, I. Human papillomavirus genotype distribution in cervical intraepithelial neoplasis grade 2/3 and invasive cervical cancer in Japanese women. Jpn. J. Clin. Oncol., 2014, 44, 910-917.
[19]
De Oliveira, G.R.; Vierira, V.C.; Avila, E.C.; Finger-Jardim, F.; Caldeira, T.D.; Gatti, F.A.; Gonçalves, C.V.; Oliveira, S.G.; Da Hora, V.P.; Soares, M.A.; De Martinez, A.M. Human papillomavirus type distribution and HPV16 intratype diversity in southern Brazil in women with and without cervical lesions. Mem. Inst. Oswaldo Cruz, 2017, 112, 492-498.
[20]
Krashias, G.; Koptides, D.; Christodoulou, C. HPV prevalence and type distribution in Cypriot women with cervical cytological abnormalities. BMC Infect. Dis., 2017, 17, 346.
[21]
Loya, A.; Serrano, B.; Rasgeed, F.; Tous, S.; Hassan, M.; Clavero, O.; Raza, M.; De Sanjosé, S.; Bosch, F.X.; Alemany, L. Human papillomavirus genotype distribution in invasive cervical cancer in Pakistan. Cancers (Basel), 2016, 8, pii E72.
[22]
Cordel, N.; Ragin, C.; Trival, M.; Tressieres, B.; Janky, E. High-risk human papillomavirus cervical infections among healthy women in Guadeloupe. Int. J. Infect. Dis., 2015, 41, 13-16.
[23]
Bosch, F.X.; Manos, M.M.; Muñoz, N.; Sherman, M.; Jansen, A.M.; Peto, J.; Schiffman, M.H.; Moreno, V.; Kurman, R.; Shah, K.V. Prevalence of human papillomavirus in cervical cancer: A worldwide perspective. J. Natl. Cancer Inst., 1995, 87, 796-802.
[24]
Furumoto, H.; Irahara, M. Human Papillomavirus (HPV) and cervical cancer. J. Med. Invest., 2002, 49, 124-133.
[25]
Muñoz, N.; Bosch, F.X.; De Sanjose, S.; Herrero, R.; Castellsague, X.; Shah, K.V.; Snijders, P.J.; Meijer, C.J. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med., 2003, 348, 518-527.
[26]
Centurioni, M.G.; Puppo, A.; Merlo, D.F.; Pasciucco, G.; Cusimano, E.R. Sirit,o R.; Gustavino, C.A. Prevalence of human papillomavirus cervical infection in an italian asymptomatic population. BMC Infect. Dis., 2005, 5, 77.
[27]
Yete, S.; D’Souza, W.; Saranath, D. High-risk human papillomavirus in oral cancer: Clinical implications. Oncology, 2018, 94, 133-141.
[28]
Tjalma, W.A.; Depuydt, C.E. Cervical cancer screening: Which HPV test should be used-L1 or E6/E7? Eur. J. Obstet. Gyn. R.B., 2013, 170, 45-46.
[29]
Park, S.B.; Hwang, S.; Zhang, B.T. Mining the risk types of Human Papillomavirus (HPV) by AdaCost. Lect. Notes Comput. Sci., 2003, 2736, 403-412.
[30]
Eom, J.H.; Park, S.B.; Zhang, B.T. Genetic mining of DNA sequence structures for effective classification of the risk types of Human Papillomavirus (HPV). Lect. Notes Comput. Sci., 2004, 3316, 1334-1343.
[31]
Kim, S.; Eom, J.H. Prediction of the human papillomavirus risk types using gap-spectrum kernels. Springer Berlin Heidelberg, 2006, 3973, 710-715.
[32]
Kim, S.; Zhang, B.T. Human papillomavirus risk type classification from protein sequences using support vector machines. Applications of Evolutionary Computing, Evoworkshops: Evobio, Evocomnet, Evohot, Evoiasp, Evointeraction, Evomusart, & Evostoc; Budapest, Hungary April. DBLP, 2006.
[33]
Esmaeili, M.; Mohabatkar, H.; Mohsenzadeh, S. Using the concept of Chou’s pseudo amino acid composition for risk type prediction of human papillomaviruses. J. Theor. Biol., 2010, 263, 203-209.
[34]
Alemi, M.; Mohabatkar, H.; Behbahani, M. In silico comparison of low- and high-risk human papillomavirus proteins. Appl. Biochem. Biotechnol., 2014, 172, 188-195.
[35]
Kim, S.; Kim, J.; Zhang, B.T. Ensembled support vector machines for human papillomavirus risk type prediction from protein secondary structures. Comput. Biol. Med., 2009, 39, 187-193.
[36]
Maj, L.E.; Hervé, D. HPV detection methods and genotyping techniques in screening for cervical cancer. Annales de pathologie., 2012, 32, e15-e23.
[37]
Yan, J.; Sardesai, N.Y. Human papillomavirus therapeutic vaccines: Targeting viral antigens as immunotherapy for precancerous disease and cancer Matthew P Morrow. Expert Rev. Vaccines, 2013, 12, 271-283.
[38]
Oscar, P.Z.; Víctor, H.B.; Carlos, P.P.; Jonathan, S.L.; Claudia, G.C.; Vicente, M.M. Targeted treatments for cervical cancer: a review. OncoTargets Ther., 2012, 5, 315-328.
[39]
Luciano, M.; Aldo, V. HPV vaccine: An overview of immune response, clinical protection, and new approaches for the future. J. Transl. Med., 2010, 8, 105-105.
[40]
Wang, P.; Xiao, X. Predicting the risk type of human papillomaviruses
based on sequence-derived features, In: 5th International
Conference on Bioinformatics and Biomedical Engineering Wuhan,
China, May 10-12. 2011.
[41]
Dgusev, V.; Anemytikova, L. On the complexity measures of genetic sequences. Bioinformatics, 1999, 15, 994-999.
[42]
Leslie, C.; Eskin, E.; Noble, W.S. The Spectrum Kernel: A String Kernel for SVM Protein Classification. Pac. Symp. Biocomput., 2002, 2002, 564-575.
[43]
Leslie, C.S.; Eskin, E.; Cohen, A.; Weston, J.; Noble, W.S. Mismatch string kernels for discriminative protein classification. Bioinformatics, 2004, 20, 67-476.
[44]
Joung, J.G.; June, S.; Zhang, B.T. Protein sequence-based risk classification for human papillomaviruses. Comput. Biol. Med., 2006, 36, 656-667.
[45]
Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res., 1994, 22, 4673-4680.
[46]
Wang, C.; Hai, Y.B.; Liu, X.Q.; Yao, Y.H.; He, P.A.; Dai, Q. Prediction of high-risk types of human papillomaviruses using statistical model of protein “sequence space”. Comput. Math. Methods Med., 2015, 2015, 756345.
[47]
Zheng, Y. Prediction of protein subcellular locations using Markov chain models. FEBS Lett., 1999, 451, 23-26.
[48]
Kuang, C.K.
Research on prediction methods for the genotyping of human papilloma virus., Master Thesis, Zhejiang Sci-Tech University:
Hangzhou, January. 2015.
[49]
Joung, J.G.; Sok, J.O.; Zhang, B.T. Prediction of the Risk Types of
Human Papillomaviruses by Support Vector Machines, Trends in
Artificial Intelligence, 8th Pacific Rim International Conference on
Artificial Intelligence, Auckland, New Zealand, August 9-13. 2004.
[50]
Vapnik, V. The nature of statistical learning theory. Springer. 1995.
[51]
Kong, L.; Zhang, L.; Lv, J. Accurate prediction of protein structural classes by incorporating predicted secondary structure information into the general form of Chou’s pseudo amino acid composition. J. Theor. Biol., 2014, 344, 12-18.
[52]
Xu, H.M.; Yan, S.J.; Dai, Q.; He, P.A.; Liao, B.; Yao, Y.H. Protein subcellular location prediction based on pseudo amino acid composition and PSI-blast profile. J. Comput. Theor. Nanosci., 2015, 12, 1-7.
[53]
Larose, D.T. Discovering Knowledge in Data: An Introduction to Data Mining; John Wiley and Sons, Inc.: Hoboken, New Jersey, 2005.
[54]
Lai, H.Y.; Chen, X.X.; Chen, W.; Tang, H.; Lin, H. Sequence-based predictive modeling to identify cancerlectins. Oncotarget, 2017, 8(17), 28169-28175.
[55]
Chen, W.; Tang, H.; Lin, H. MethyRNA: A web server for identification of N6-methyladenosine sites. J. Biomol. Struct. Dyn., 2017, 35(3), 683-687.
[57]
Chen, W.; Yang, H.; Feng, P.M.; Ding, H.; Lin, H. iDNA4mC: Identifying DNA N4-methylcytosine sites based on nucleotide chemical properties. Bioinformatics, 2017, 33(22), 3518-3523.
[58]
Yang, H.; Tang, H.; Chen, X.X.; Zhang, C.J.; Zhu, P.P.; Ding, H.; Chen, W.; Lin, H. Identification of secretory proteins in mycobacterium tuberculosis using pseudo amino acid composition. BioMed Res. Int., 2016, 2016, 5413903.
[59]
Chen, X.X.; Tang, H.; Li, W.C.; Wu, H.; Chen, W.; Ding, H.; Lin, H. Identification of bacterial cell wall lyases via pseudo amino acid composition. BioMed Res. Int., 2016, 2016, 1654623.
[60]
Zhao, Y.W.; Lai, H.Y.; Tang, H.; Chen, W.; Lin, H. Prediction of phosphothreonine sites in human proteins by fusing different features. Sci. Rep., 2016, 6, 34817.
[61]
Qiu, W.R.; Sun, B.Q.; Tang, H.; Huang, J.; Lin, H. Identify and analysis crotonylation sites in histone by using support vector machines. Artif. Intell. Med., 2017, 83, 75-81.
[62]
Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chen, W.; Chou, K.C. iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics, 2019, 111(1), 96-102.
[63]
Chou, K.C.; Zhang, C.T. Review: Prediction of protein structural classes. Crit. Rev. Biochem. Mol. Biol., 1995, 30, 275-349.