[1]
Cheng, F.; Li, W.; Liu, G.; Tang, Y. In silico ADMET prediction: Recent advances, current challenges and future trends. Curr. Top. Med. Chem., 2013, 13(11), 1273-1289.
[2]
Tyzack, J.D.; Mussa, H.Y.; Williamson, M.J.; Kirchmair, J.; Glen, R.C. Cytochrome P450 site of metabolism prediction from 2D topological fingerprints using GPU accelerated probabilistic classifiers. J. Cheminform., 2014, 6, 29.
[3]
Nielsen, L.M.; Linnet, K.; Olsen, L.; Rydberg, P. Prediction of cytochrome p450 mediated metabolism of designer drugs. Curr. Top. Med. Chem., 2014, 14(11), 1365-1373.
[4]
Zaretzki, J.; Bergeron, C.; Huang, T.W.; Rydberg, P.; Swamidass, S.J.; Breneman, C.M. RS-WebPredictor: A server for predicting CYP-mediated sites of metabolism on drug-like molecules. Bioinformatics, 2013, 29(4), 497-498.
[5]
Lewis, D.F. Human cytochromes P450 associated with the phase 1 metabolism of drugs and other xenobiotics: A compilation of substrates and inhibitors of the CYP1, CYP2 and CYP3 families. Curr. Med. Chem., 2003, 10(19), 1955-1972.
[6]
Zheng, M.; Luo, X.; Shen, Q.; Wang, Y.; Du, Y.; Zhu, W.; Jiang, H. Site of metabolism prediction for six biotransformations mediated by cytochromes P450. Bioinformatics, 2009, 25(10), 1251-1258.
[7]
Li, L.; Xiong, Y.; Zhang, Z.Y.; Guo, Q.; Xu, Q.; Liow, H.H.; Zhang, Y.H.; Wei, D.Q. Improved feature-based prediction of SNPs in human cytochrome P450 enzymes. Interdiscip. Sci.: Comput. Life Sci., 2015, 7(1), 65-77.
[8]
Ingelman-Sundberg, M. The human genome project and novel aspects of cytochrome P450 research. Toxicol. Appl. Pharmacol., 2005, 207(2)(Suppl.), 52-56.
[9]
Preissner, S.; Kroll, K.; Dunkel, M.; Senger, C.; Goldsobel, G.; Kuzman, D.; Guenther, S.; Winnenburg, R.; Schroeder, M.; Preissner, R. SuperCYP: A comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res., 2010, 38(Database issue), D237-D243.
[10]
Sim, S.C.; Ingelman-Sundberg, M. The Human Cytochrome P450 (CYP) Allele Nomenclature website: A peer-reviewed database of CYP variants and their associated effects. Hum. Genomics, 2010, 4(4), 278-281.
[11]
Lewis, D.F.; Ito, Y. Human CYPs involved in drug metabolism: Structures, substrates and binding affinities. Expert Opin. Drug Metab. Toxicol., 2010, 6(6), 661-674.
[12]
Kesharwani, S.S.; Nandekar, P.P.; Pragyan, P.; Rathod, V.; Sangamwar, A.T. Characterization of differences in substrate specificity among CYP1A1, CYP1A2 and CYP1B1: An integrated approach employing molecular docking and molecular dynamics simulations. J. Mol. Recognit., 2016, 29(8), 370-390.
[13]
Shaikh, N.; Sharma, M.; Garg, P. Selective fusion of heterogeneous classifiers for predicting substrates of membrane transporters. J. Chem. Inf. Model., 2017, 57(3), 594-607.
[14]
Yap, C.W.; Chen, Y.Z. Prediction of cytochrome P450 3A4, 2D6, and 2C9 inhibitors and substrates by using support vector machines. J. Chem. Inf. Model., 2005, 45(4), 982-992.
[15]
Terfloth, L.; Bienfait, B.; Gasteiger, J. Ligand-based models for the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates. J. Chem. Inf. Model., 2007, 47(4), 1688-1701.
[16]
Ramesh, M.; Bharatam, P.V. CYP isoform specificity toward drug metabolism: Analysis using common feature hypothesis. J. Mol. Model., 2012, 18(2), 709-720.
[17]
Nembri, S.; Grisoni, F.; Consonni, V.; Todeschini, R. In silico prediction of cytochrome P450-Drug Interaction: QSARs for CYP3A4 and CYP2C9. Int. J. Mol. Sci., 2016, 17(6), pii E914.
[18]
Mishra, N.K.; Agarwal, S.; Raghava, G.P. Prediction of cytochrome P450 isoform responsible for metabolizing a drug molecule. BMC Pharmacol., 2010, 10, 8.
[19]
Yamashita, F.; Hara, H.; Ito, T.; Hashida, M. Novel hierarchical classification and visualization method for multiobjective optimization of drug properties: Application to structure-activity relationship analysis of cytochrome P450 metabolism. J. Chem. Inf. Model., 2008, 48(2), 364-369.
[20]
Michielan, L.; Terfloth, L.; Gasteiger, J.; Moro, S. Comparison of multilabel and single-label classification applied to the prediction of the isoform specificity of cytochrome p450 substrates. J. Chem. Inf. Model., 2009, 49(11), 2588-2605.
[21]
Zhang, T.; Dai, H.; Liu, L.A.; Lewis, D.F.V.; Wei, D.Q. Classification models for predicting cytochrome P450 enzyme-substrate selectivity. Mol. Inform., 2012, 31(1), 53-62.
[22]
Zhang, W.; Qu, Q.L.; Zhang, Y.Q.; Wang, W. The linear neighborhood propagation method for predicting long non-coding RNA - protein interactions. Neurocomputing, 2018, 273, 526-534.
[23]
Zhu, X.; Xiong, Y.; Kihara, D. Large-scale binding ligand prediction by improved patch-based method Patch-Surfer2.0. Bioinformatics, 2015, 31(5), 707-713.
[24]
Zhang, W.; Xiong, Y.; Zhao, M.; Zou, H.; Ye, X.; Liu, J. Prediction of conformational B-cell epitopes from 3D structures by random forests with a distance-based feature. BMC Bioinformatics, 2011, 12, 341.
[25]
Chen, W.; Yang, H.; Feng, P.; Ding, H.; Lin, H. iDNA4mC: Identifying DNA N4-methylcytosine sites based on nucleotide chemical properties. Bioinformatics, 2017, 33(22), 3518-3523.
[26]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K.C. iRNA-AI: Identifying the adenosine to inosine editing sites in RNA sequences. Oncotarget, 2017, 8(3), 4208-4217.
[27]
Zhang, W.; Chen, Y.; Liu, F.; Luo, F.; Tian, G.; Li, X. Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinformatics, 2017, 18(1), 18.
[28]
Rudik, A.; Dmitriev, A.; Lagunin, A.; Filimonov, D.; Poroikov, V. SOMP: Web server for in silico prediction of sites of metabolism for drug-like compounds. Bioinformatics, 2015, 31(12), 2046-2048.
[29]
Zhang, W.; Liu, X.; Chen, Y.; Wu, W.; Wang, W.; Li, X. Feature-derived graph regularized matrix factorization for predicting drug side effects. Neurocomputing, 2018, 287, 154-162.
[30]
Peng, S.; You, R.; Wang, H.; Zhai, C.; Mamitsuka, H.; Zhu, S. DeepMeSH: Deep semantic representation for improving large-scale MeSH indexing. Bioinformatics, 2016, 32(12), i70-i79.
[31]
Liu, K.; Peng, S.; Wu, J.; Zhai, C.; Mamitsuka, H.; Zhu, S. MeSHLabeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence. Bioinformatics, 2015, 31(12), i339-i347.
[32]
Wei, Y.Q.; Bi, D.X.; Wei, D.Q.; Ou, H.Y. Prediction of type ii toxin-antitoxin loci in Klebsiella pneumoniae genome sequences. Interdiscip. Sci.: Comput. Life Sci., 2016, 8(2), 143-149.
[33]
Zhang, W.; Yue, X.; Lin, W.; Wu, W.; Liu, R.; Huang, F.; Liu, F. Predicting drug-disease associations by using similarity constrained matrix factorization. BMC Bioinformatics, 2018, 19(1), 233.
[34]
Zhang, W.; Yue, X.; Liu, F.; Chen, Y.; Tu, S.; Zhang, X. A unified frame of predicting side effects of drugs by using linear neighborhood similarity. BMC Syst. Biol., 2017, 11(Suppl. 6), 101.
[35]
Zhang, W.; Zou, H.; Luo, L.; Liu, Q.; Wu, W.; Xiao, W. Predicting potential side effects of drugs by recommender methods and ensemble learning. Neurocomputing, 2016, 173, 979-987.
[36]
Hoffmann, M.F.; Preissner, S.C.; Nickel, J.; Dunkel, M.; Preissner, R.; Preissner, S. The Transformer database: biotransformation of xenobiotics. Nucleic Acids Res., 2014, 42(Database issue), D1113-D1117.
[37]
Mak, L.; Marcus, D.; Howlett, A.; Yarova, G.; Duchateau, G.; Klaffke, W.; Bender, A.; Glen, R.C. Metrabase: A cheminformatics and bioinformatics database for small molecule transporter data analysis and(Q)SAR modeling. J. Cheminform., 2015, 7, 31.
[38]
O Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3, 33.
[39]
Hatherley, R.; Brown, D.K.; Musyoka, T.M.; Penkler, D.L.; Faya, N.; Lobb, K.A.; Tastan Bishop, O. SANCDB: A South African natural compound database. J. Cheminform., 2015, 7, 29.
[40]
Keum, J.; Yoo, S.; Lee, D.; Nam, H. Prediction of compound-target interactions of natural products using large-scale drug and protein information. BMC Bioinformatics, 2016, 17(Suppl. 6), 219.
[41]
Speck-Planche, A.; Cordeiro, M.N. Review of current chemoinformatic tools for modeling important aspects of CYPs-mediated drug metabolism. Integrating metabolism data with other biological profiles to enhance drug discovery. Curr. Drug Metab., 2014, 15(4), 429-440.
[42]
Marrero-Ponce, Y. Linear indices of the molecular pseudographs atom adjacency matrix: Definition, significance-interpretation, and application to QSAR analysis of flavone derivatives as HIV-1 integrase inhibitors. J. Chem. Inf. Model., 2004, 44(6), 2010-2026.
[43]
Shin, W.H.; Zhu, X.; Bures, M.G.; Kihara, D. Three-dimensional compound comparison methods and their application in drug discovery. Molecules, 2015, 20(7), 12841-12862.
[44]
Hu, B.; Zhu, X.; Monroe, L.; Bures, M.G.; Kihara, D. PL-PatchSurfer: A novel molecular local surface-based method for exploring protein-ligand interactions. Int. J. Mol. Sci., 2014, 15(9), 15122-15145.
[45]
Venkatraman, V.; Chakravarthy, P.R.; Kihara, D. Application of 3D Zernike descriptors to shape-based ligand similarity searching. J. Cheminform., 2009, 1, 19.
[46]
Zhu, X.; Shin, W.H.; Kim, H.; Kihara, D. Combined approach of patch-surfer and pl-patchsurfer for protein-ligand binding prediction in CSAR 2013 and 2014. J. Chem. Inf. Model., 2016, 56(6), 1088-1099.
[47]
Shin, W.H.; Bures, M.G.; Kihara, D. PatchSurfers: Two methods for local molecular property-based binding ligand prediction. Methods, 2016, 93, 41-50.
[48]
Xu, Q.; Xiong, Y.; Dai, H.; Kumari, K.M.; Xu, Q.; Ou, H.Y.; Wei, D.Q. PDC-SGB: Prediction of effective drug combinations using a stochastic gradient boosting algorithm. J. Theor. Biol., 2017, 417, 1-7.
[49]
Xiong, Y.; Liu, J.; Zhang, W.; Zeng, T. Prediction of heme binding residues from protein sequences with integrative sequence profiles. Proteome Sci., 2012, 10(Suppl. 1), S20.
[50]
Yao, Y.; Zhang, T.; Xiong, Y.; Li, L.; Huo, J.; Wei, D.Q. Mutation probability of cytochrome P450 based on a genetic algorithm and support vector machine. Biotechnol. J., 2011, 6(11), 1367-1376.
[51]
Xiong, Y.; Xia, J.; Zhang, W.; Liu, J. Exploiting a reduced set of weighted average features to improve prediction of DNA-binding residues from 3D structures. PLoS One, 2011, 6(12), e28440.
[52]
Niu, Y.; Zhang, W. Quantitative prediction of drug side effects based on drug-related features. Interdiscip. Sci.: Comput. Life Sci., 2017, 9(3), 434-444.
[53]
Feng, P.; Chen, W.; Lin, H. Identifying antioxidant proteins by using optimal dipeptide compositions. Interdiscip. Sci.: Comput. Life Sci., 2016, 8(2), 186-191.
[54]
Zou, Q.; Wan, S.; Ju, Y.; Tang, J.; Zeng, X. Pretata: Predicting TATA binding proteins with novel features and dimensionality reduction strategy. BMC Syst. Biol., 2016, 10(4), 114.
[55]
Zou, Q.; Zeng, J.; Cao, L.; Ji, R. A novel features ranking metric with application to scalable visual and bioinformatics data classification. Neurocomputing, 2016, 173, 346-354.
[56]
Yu, L.; Sun, X.; Tian, S.W.; Shi, X.Y.; Yan, Y.L. Drug and Nondrug classification based on deep learning with various feature selection strategies. Curr. Bioinform., 2018, 13(3), 253-259.
[57]
Qiao, Y.; Xiong, Y.; Gao, H.; Zhu, X.; Chen, P. Protein-protein interface hot spots prediction based on a hybrid feature selection strategy. BMC Bioinformatics, 2018, 19(1), 14.
[58]
Dai, H.; Xu, Q.; Xiong, Y.; Liu, W.L.; Wei, D.Q. Improved prediction of michaelis constants in CYP450-mediated reactions by resilient back propagation algorithm. Curr. Drug Metab., 2016, 17(7), 673-680.
[59]
Li, D.; Ju, Y.; Zou, Q. Protein folds prediction with hierarchical structured SVM. Curr. Proteomics, 2016, 13(2), 79-85.
[60]
Soyemi, J.; Isewon, I.; Oyelade, J.; Adebiyi, E. Inter-species/host-parasite protein interaction predictions reviewed. Curr. Bioinform., 2018, 13(4), 396-406.
[61]
Xia, J.F.; Zhao, X.M.; Song, J.; Huang, D.S. APIS: Accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. BMC Bioinformatics, 2010, 11(1), 174.
[62]
Xiong, Y.; Liu, J.; Wei, D.Q. An accurate feature-based method for identifying DNA-binding residues on protein surfaces. Proteins, 2011, 79(2), 509-517.
[63]
Sun, Y.; Xiong, Y.; Xu, Q.; Wei, D. A hadoop-based method to predict potential effective drug combination. BioMed Res. Int., 2014, 2014, 196858.
[64]
Wang, W.; Liu, J.; Xiong, Y.; Zhu, L.; Zhou, X. Analysis and classification of DNA-binding sites in single-stranded and double-stranded DNA-binding proteins using protein information. IET Syst. Biol., 2014, 8(4), 176-183.
[65]
Korolev, D.; Balakin, K.V.; Nikolsky, Y.; Kirillov, E.; Ivanenkov, Y.A.; Savchuk, N.P.; Ivashchenko, A.A.; Nikolskaya, T. Modeling of human cytochrome p450-mediated drug metabolism using unsupervised machine learning approach. J. Med. Chem., 2003, 46(17), 3631-3643.
[66]
Zou, Q.; Chen, W.; Huang, Y.; Liu, X.; Jiang, Y. Identifying multi-functional enzyme by hierarchical multi-label classifier. J. Comput. Theor. Nanosci., 2013, 10(4), 1038-1043.
[67]
Zhang, W.; Zhu, X.; Fu, Y.; Tsuji, J.; Weng, Z. Predicting human splicing branchpoints by combining sequence-derived features and multi-label learning methods. BMC Bioinformatics, 2017, 18(Suppl. 13), 464.
[68]
You, R.; Zhang, Z.; Xiong, Y.; Sun, F.; Mamitsuka, H.; Zhu, S. GOLabeler: Improving sequence-based large-scale protein function prediction by learning to rank. Bioinformatics, 2018, 34(14), 2465-2473.
[69]
Zhang, W.; Liu, F.; Luo, L.; Zhang, J. Predicting drug side effects by multi-label learning and ensemble learning. BMC Bioinformatics, 2015, 16, 365.
[70]
Yuan, Q.; Gao, J.; Wu, D.; Zhang, S.; Mamitsuka, H.; Zhu, S. DrugE-Rank: improving drug-target interaction prediction of new candidate drugs or targets by ensemble learning to rank. Bioinformatics, 2016, 32(12), i18-i27.
[71]
Zhang, M.L.; Zhou, Z.H. ML-KNN: A lazy learning approach to multi-label leaming. Pattern Recognit., 2007, 40(7), 2038-2048.
[72]
Lee, C.P.; Lin, C.J. Large-scale linear rankSVM. Neural Comput., 2014, 26(4), 781-817.
[73]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iRSpot-PseDNC: Identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res., 2013, 41(6), e68.
[74]
Chen, W.; Feng, P.; Lin, H. Prediction of ketoacyl synthase family using reduced amino acid alphabets. J. Ind. Microbiol. Biotechnol., 2012, 39(4), 579-584.
[75]
Bai, L.Y.; Dai, H.; Xu, Q.; Junaid, M.; Peng, S.L.; Zhu, X.; Xiong, Y.; Wei, D.Q. Prediction of Effective drug combinations by an improved naive bayesian algorithm. Int. J. Mol. Sci., 2018, 19(2), pii E467.
[76]
Chou, K.C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol., 2011, 273(1), 236-247.
[77]
Feng, P.; Zhang, J.; Tang, H.; Chen, W.; Lin, H. Predicting the organelle location of noncoding RNAs using pseudo nucleotide compositions. Interdiscip. Sci.: Comput. Life Sci., 2017, 9(4), 540-544.