[1]
U.S Drug Enforcement Administration. Drugs of Abuse 2017 Edition: A DEA Resource Guide; U.S. Dep. Justice, 2017, p. 94.
[2]
European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2017: Trends and Developments; Publications Office of the European Union, 2017.
[3]
The ESPAD Group. ESPAD Report 2015: Results from the European School Survey Project on Alcohol and Other Drugs; Publications Office of the European Union, 2016.
[4]
Baumann, M.H.; Solis, E.; Watterson, L.R.; Marusich, J.A.; Fantegrossi, W.E.; Wiley, J.L. Baths Salts, Spice, and Related Designer Drugs: The Science Behind the Headlines. J. Neurosci., 2014, 34(46), 15150-15158.
[5]
Schifano, F.; Corkery, J.; Ghodse, A.H. Suspected and Confirmed Fatalities Associated with Mephedrone (4-Methylmethcathinone, “Meow Meow”) in the United Kingdom. J. Clin. Psychopharmacol., 2012, 32(5), 710-714.
[6]
Schifano, F.; Albanese, A.; Fergus, S.; Stair, J.L.; Deluca, P.; Corazza, O.; Davey, Z.; Corkery, J.; Siemann, H.; Scherbaum, N.; Farre, M.; Torrens, M.; Demetrovics, Z.; Ghodse, H. Psychonaut Web Mapping; ReDNet Research Groups. Mephedrone (4-Methylmethcathinone; ‘Meow Meow’): Chemical, Pharmacological and Clinical Issues. Psychopharmacology (Berl.), 2011, 214(3), 593-602.
[7]
Lõpez-Arnau, R.; Martínez-Clemente, J.; Pubill, D.; Escubedo, E.; Camarasa, J. Comparative Neuropharmacology of Three Psychostimulant Cathinone Derivatives: Butylone, Mephedrone and Methylone. Br. J. Pharmacol., 2012, 167(2), 407-420.
[8]
Ramoz, L.; Lodi, S.; Bhatt, P.; Reitz, A.B.; Tallarida, C.; Tallarida, R.J.; Raffa, R.B.; Rawls, S.M. Mephedrone (“bath Salt”) Pharmacology: Insights from Invertebrates. Neuroscience, 2012, 208, 79-84.
[9]
Wood, D.M.; Davies, S.; Puchnarewicz, M.; Button, J.; Archer, R.; Ovaska, H.; Ramsey, J.; Lee, T.; Holt, D.W.; Dargan, P.I. Recreational Use of Mephedrone (4-Methylmethcathinone, 4-MMC) with Associated Sympathomimetic Toxicity. J. Med. Toxicol., 2010, 6(3), 327-330.
[10]
Kehr, J.; Ichinose, F.; Yoshitake, S.; Goiny, M.; Sievertsson, T.; Nyberg, F.; Yoshitake, T. Mephedrone, Compared with MDMA (Ecstasy) and Amphetamine, Rapidly Increases Both Dopamine and 5-HT Levels in Nucleus Accumbens of Awake Rats. Br. J. Pharmacol., 2011, 164(8), 1949-1958.
[11]
Angoa-Pérez, M.; Kane, M.J.; Francescutti, D.M.; Sykes, K.E.; Shah, M.M.; Mohammed, A.M.; Thomas, D.M.; Kuhn, D.M. Mephedrone, an Abused Psychoactive Component of “bath Salts” and Methamphetamine Congener, Does Not Cause Neurotoxicity to Dopamine Nerve Endings of the Striatum. J. Neurochem., 2012, 120(6), 1097-1107.
[12]
Pantano, F.; Tittarelli, R.; Mannocchi, G.; Pacifici, R.; di Luca, A.; Busardò, F.P.; Marinelli, E. Neurotoxicity Induced by Mephedrone: An up-to-Date Review. Curr. Neuropharmacol., 2017, 15(5), 738-749.
[13]
German, C.L.; Fleckenstein, A.E.; Hanson, G.R. Bath Salts and Synthetic Cathinones: An Emerging Designer Drug Phenomenon. Life Sci., 2014, 97(1), 2-8.
[14]
Establishment of Drug Codes for 26 Substances. Final Rule. Fed. Regist., 2013, 78(3), 664-666.
[15]
Den Hollander, B.; Rozov, S.; Linden, A.M.; Uusi-Oukari, M.; Ojanperä, I.; Korpi, E.R. Long-Term Cognitive and Neurochemical Effects of “Bath Salt” Designer Drugs Methylone and Mephedrone. Pharmacol. Biochem. Behav., 2013, 103(3), 501-509.
[16]
Baumann, M.H.; Drug, D.; Institutes, N.; Abuse, D.; Drive, C.; Bath, K. Awash in a Sea of “Bath Salts”: Implications for Biomedical Research and Public Health. Addiction, 2014, 109(10), 1577-1579.
[17]
Wood, D.M.; Dargan, P.I. Mephedrone (4-Methylmethcathinone): What Is New in Our Understanding of Its Use and Toxicity. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, 39(2), 227-233.
[18]
Lisek, R.; Xu, W.; Yuvasheva, E.; Chiu, Y.T.; Reitz, A.B.; Liu-Chen, L.Y.; Rawls, S.M. Mephedrone (‘bath Salt’) Elicits Conditioned Place Preference and Dopamine-Sensitive Motor Activation. Drug Alcohol Depend., 2012, 126(1-2), 257-262.
[19]
Baumann, M.H.; Ayestas, M.A.; Partilla, J.S.; Sink, J.R.; Shulgin, A.T.; Daley, P.F.; Brandt, S.D.; Rothman, R.B.; Ruoho, A.E.; Cozzi, N.V. The Designer Methcathinone Analogs, Mephedrone and Methylone, Are Substrates for Monoamine Transporters in Brain Tissue. Neuropsychopharmacology, 2012, 37(5), 1192-1203.
[20]
Martínez-Clemente, J.; López-Arnau, R.; Abad, S.; Pubill, D.; Escubedo, E.; Camarasa, J. Dose and Time-Dependent Selective Neurotoxicity Induced by Mephedrone in Mice. PLoS One, 2014, 9(6), e99002.
[21]
Di Chiara, G.; Bassareo, V. Reward System and Addiction: What Dopamine Does and Doesn’t Do. Curr. Opin. Pharmacol., 2007, 7(1), 69-76.
[22]
Meighan, P.C.; Meighan, S.E.; Davis, C.J.; Wright, J.W.; Harding, J.W. Effects of Matrix Metalloproteinase Inhibition on Short- and Long-Term Plasticity of Schaffer Collateral/CA1 Synapses. J. Neurochem., 2007, 102(6), 2085-2096.
[23]
Mizoguchi, H.; Yamada, K.; Niwa, M.; Mouri, A.; Mizuno, T.; Noda, Y.; Nitta, A.; Itohara, S.; Banno, Y.; Nabeshima, T. Reduction of Methamphetamine-Induced Sensitization and Reward in Matrix Metalloproteinase-2 and -9-Deficient Mice. J. Neurochem., 2007, 100(6), 1579-1588.
[24]
Boguszewska-Czubara, A.; Budzynska, B.; Skalicka-Wozniak, K.; Kurzepa, J. Perspectives and New Aspects of Metalloproteinases’ Inhibitors in Therapy of CNS Disorders: From Chemistry to Medicine. Curr. Med. Chem., 2018, 25.
[25]
Tsilibary, E.; Tzinia, A.; Radenovic, L.; Stamenkovic, V.; Lebitko, T.; Mucha, M.; Pawlak, R.; Frischknecht, R.; Kaczmarek, L. Neural ECM Proteases in Learning and Synaptic Plasticity. Prog. Brain Res., 2014, 214, 135-157.
[26]
Vandenbroucke, R.E.; Libert, C. Is There New Hope for Therapeutic Matrix Metalloproteinase Inhibition? Nat. Rev. Drug Discov., 2014, 13(12), 904-927.
[27]
Meyer, M.B.; Benkusky, N.A.; Onal, M.; Pike, J.W. Selective Regulation of Mmp13 by 1,25(OH)2D3, PTH, and Osterix through Distal Enhancers. J. Steroid Biochem. Mol. Biol., 2016, 164, 258-264.
[28]
Prystupa, A.; Boguszewska-Czubara, A.; Bojarska-Junak, A.; Toruń-Jurkowska, A.; Roliński, J.; Załuska, W. Activity of MMP-2, MMP-8 and MMP-9 in Serum as a Marker of Progression of Alcoholic Liver Disease in People from Lublin Region, Eastern Poland. Ann. Agric. Environ. Med., 2015, 22(2), 325-328.
[29]
Gołąb, P.; Boguszewska-Czubara, A.; Kiełbus, M.; Kurzepa, J. The RtPA Increases MMP-9 Activity in Serum during Ischaemic Stroke. Neurol. Neurochir. Pol., 2015, 48(5), 309-314.
[30]
Seong-Ryong Lee, Kiyoshi Tsuji, Sun-Ryung Lee, and E. H. Lo. Role of Matrix Metalloproteinases in Delayed Neuronal Damage after Transient Global Cerebral Ischemia. J. Neurosci., 2004, 24(3), 671-678.
[31]
Xu, T.; Liu, S.; Ma, T.; Jia, Z.; Zhang, Z.; Wang, A. Aldehyde Dehydrogenase 2 Protects against Oxidative Stress Associated with Pulmonary Arterial Hypertension. Redox Biol., 2017, 11, 286-296.
[32]
Lubbers, B.R.; Smit, A.B.; Spijker, S.; van den Oever, M.C. Neural ECM in Addiction, Schizophrenia, and Mood Disorder. Prog. Brain Res., 2014, 214, 263-284.
[33]
Zimmermann, D.R.; Dours-Zimmermann, M.T. Extracellular Matrix of the Central Nervous System: From Neglect to Challenge. Histochem. Cell Biol., 2008, 130(4), 635-653.
[34]
Frischknecht, R.; Chang, K-J.J.; Rasband, M.N.; Seidenbecher, C.I. Neural ECM Molecules in Axonal and Synaptic Homeostatic Plasticity. Prog. Brain Res., 2014, 214, 81-100.
[35]
Song, I.; Dityatev, A. Crosstalk between Glia, Extracellular Matrix and Neurons. Brain Res. Bull., 2018, 136, 101-108.
[36]
Brown, T.E.; Forquer, M.R.; Cocking, D.L.; Jansen, H.T.; Harding, J.W.; Sorg, B.A. Role of Matrix Metalloproteinases in the Acquisition and Reconsolidation of Cocaine-Induced Conditioned Place Preference. Learn. Mem., 2007, 14(3), 214-223.
[37]
Mizoguchi, H.; Yamada, K.; Mouri, A.; Niwa, M.; Mizuno, T.; Noda, Y.; Nitta, A.; Itohara, S.; Banno, Y.; Nabeshima, T. Role of Matrix Metalloproteinase and Tissue Inhibitor of MMP in Methamphetamine-Induced Behavioral Sensitization and Reward: Implications for Dopamine Receptor down-Regulation and Dopamine Release. J. Neurochem., 2007, 102(5), 1548-1560.
[38]
Nagy, V.; Bozdagi, O.; Huntley, G.W. The Extracellular Protease Matrix Metalloproteinase-9 Is Activated by Inhibitory Avoidance Learning and Required for Long-Term Memory. Learn. Mem., 2007, 14(10), 655-664.
[39]
Knapska, E.; Lioudyno, V.; Kiryk, A.; Mikosz, M.; Gorkiewicz, T.; Michaluk, P.; Gawlak, M.; Chaturvedi, M.; Mochol, G.; Balcerzyk, M.; Wojcik, D.; Wilczynski, F.; Kaczmarek, L. Reward Learning Requires Activity of Matrix Metalloproteinase-9 in the Central Amygdala. J. Neurosci., 2013, 33(36), 14591-14600.
[40]
Gorkiewicz, T.; Balcerzyk, M.; Kaczmarek, L.; Knapska, E. Matrix Metalloproteinase 9 (MMP-9) Is Indispensable for Long Term Potentiation in the Central and Basal but Not in the Lateral Nucleus of the Amygdala. Front. Cell. Neurosci., 2015, 9, 1-5.
[41]
Nagy, V.; Bozdagi, O.; Matynia, A.; Balcerzyk, M.; Okulski, P.; Dzwonek, J.; Costa, R.M.; Silva, A.J.; Kaczmarek, L.; Huntley, G.W. Matrix Metalloproteinase-9 Is Required for Hippocampal Late-Phase Long-Term Potentiation and Memory. J. Neurosci., 2006, 26(7), 1923-1934.
[42]
Haorah, J.; Ramirez, S.H.; Schall, K.; Smith, D.; Pandya, R.; Persidsky, Y. Oxidative Stress Activates Protein Tyrosine Kinase and Matrix Metalloproteinases Leading to Blood-Brain Barrier Dysfunction. J. Neurochem., 2007, 101(2), 566-576.
[43]
Batra, A.; Latour, L.L.; Ruetzler, C.A.; Hallenbeck, J.M.; Spatz, M.; Warach, S.; Henning, E.C. Increased Plasma and Tissue MMP Levels Are Associated with BCSFB and BBB Disruption Evident on Post-Contrast FLAIR after Experimental Stroke. J. Cereb. Blood Flow Metab., 2010, 30(6), 1188-1199.
[44]
DeLarge, A.F.; Erwin, L.L.; Winsauer, P.J. Atypical Binding at Dopamine and Serotonin Transporters Contribute to the Discriminative Stimulus Effects of Mephedrone. Neuropharmacology, 2017, 119, 62-75.
[45]
Budzynska, B.; Boguszewska-Czubara, A.; Kruk-Slomka, M.; Kurzepa, J.; Biala, G. Mephedrone and Nicotine: Oxidative Stress and Behavioral Interactions in Animal Models. Neurochem. Res., 2015, 40(5), 1083-1093.
[46]
Tarkowski, P.; Jankowski, K.; Budzyńska, B.; Biała, G.; Boguszewska-Czubara, A. Potential Pro-Oxidative Effects of Single Dose of Mephedrone in Vital Organs of Mice. Pharmacol. Rep., 2018, 70, 1097-1104.
[47]
Samochowiec, A.; Grzywacz, A.; Kaczmarek, L.; Bienkowski, P.; Samochowiec, J.; Mierzejewski, P.; Preuss, U.W.; Grochans, E.; Ciechanowicz, A. Functional Polymorphism of Matrix Metalloproteinase-9 (MMP-9) Gene in Alcohol Dependence: Family and Case Control Study. Brain Res., 2010, 1327, 103-106.
[48]
Baumann, M.H.; Partilla, J.S.; Lehner, K.R. Psychoactive “Bath Salts”: Not so Soothing. Eur. J. Pharmacol., 2013, 698(1-3), 1-5.
[49]
Green, A.R.; King, M.V.; Shortall, S.E.; Fone, K.C.F. The Preclinical Pharmacology of Mephedrone; Not Just MDMA by Another Name. Br. J. Pharmacol., 2014, 171(9), 2251-2268.