[1]
Galldiks, N.; Langen, K.J. Amino Acid PET - An imaging option to identify treatment response, posttherapeutic effects, and tumor recurrence? Front. Neurol., 2016, 7, 120.
[2]
Langen, K.J.; Stoffels, G.; Filss, C.; Heinzel, A.; Stegmayr, C.; Lohmann, P.; Willuweit, A.; Neumaier, B.; Mottaghy, F.M.; Galldiks, N. Imaging of amino acid transport in brain tumours: Positron emission tomography with O-(2-[18F]fluoroethyl)-L-tyrosine (FET). Methods, 2017, 130, 124-134.
[3]
Hamacher, K.; Coenen, H.H. Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl. Radiat. Isot., 2002, 57(6), 853-856.
[4]
Langen, K.J.; Galldiks, N.; Hattingen, E.; Shah, N.J. Advances in neuro-oncology imaging. Nat. Rev. Neurol., 2017.
[5]
Weckesser, M.; Langen, K.J.; Rickert, C.H.; Kloska, S.; Straeter, R.; Hamacher, K.; Kurlemann, G.; Wassmann, H.; Coenen, H.H.; Schober, O.O. -(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur. J. Nucl. Med. Mol. Imaging, 2005, 32(4), 422-429.
[6]
Galldiks, N.; Stoffels, G.; Filss, C.; Rapp, M.; Blau, T.; Tscherpel, C.; Ceccon, G.; Dunkl, V.; Weinzierl, M.; Stoffel, M.; Sabel, M.; Fink, G.R.; Shah, N.J.; Langen, K.J. The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro-oncol., 2015, 17(9), 1293-1300.
[7]
Pöpperl, G.; Kreth, F.W.; Mehrkens, J.H.; Herms, J.; Seelos, K.; Koch, W.; Gildehaus, F.J.; Kretzschmar, H.A.; Tonn, J.C.; Tatsch, K. FET PET for the evaluation of untreated gliomas: Correlation of FET uptake and uptake kinetics with tumour grading. Eur. J. Nucl. Med. Mol. Imaging, 2007, 34(12), 1933-1942.
[8]
Moulin-Romsee, G.; D’Hondt, E.; de Groot, T.; Goffin, J.; Sciot, R.; Mortelmans, L.; Menten, J.; Bormans, G.; Van Laere, K. Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine? Eur. J. Nucl. Med. Mol. Imaging, 2007, 34(12), 2082-2087.
[9]
Kratochwil, C.; Combs, S.E.; Leotta, K.; Afshar-Oromieh, A.; Rieken, S.; Debus, J.; Haberkorn, U.; Giesel, F.L. Intra-individual comparison of (18)F-FET and (18)F-DOPA in PET imaging of recurrent brain tumors. Neuro-oncol., 2014, 16(3), 434-440.
[10]
Albert, N.L.; Weller, M.; Suchorska, B.; Galldiks, N.; Soffietti, R.; Kim, M.M.; la Fougere, C.; Pope, W.; Law, I.; Arbizu, J.; Chamberlain, M.C.; Vogelbaum, M.; Ellingson, B.M.; Tonn, J.C. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-oncol., 2016, 18(9), 1199-1208.
[11]
Swissmedic. Swiss agency for therapeutic products. J. Swissmedic., 2014, 13, 651.
[12]
Heiss, P.; Mayer, S.; Herz, M.; Wester, H.J.; Schwaiger, M.; Senekowitsch-Schmidtke, R. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J. Nucl. Med., 1999, 40(8), 1367-1373.
[13]
Wester, H.J.; Herz, M.; Weber, W.; Heiss, P.; Senekowitsch-Schmidtke, R.; Schwaiger, M.; Stocklin, G. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J. Nucl. Med., 1999, 40(1), 205-212.
[14]
Wang, H.E.; Wu, S.Y.; Chang, C.W.; Liu, R.S.; Hwang, L.C.; Lee, T.W.; Chen, J.C.; Hwang, J.J. Evaluation of F-18-labeled amino acid derivatives and [18F]FDG as PET probes in a brain tumor-bearing animal model. Nucl. Med. Biol., 2005, 32(4), 367-375.
[15]
Pauleit, D.; Floeth, F.; Herzog, H.; Hamacher, K.; Tellmann, L.; Muller, H.W.; Coenen, H.H.; Langen, K.J. Whole-body distribution and dosimetry of O-(2-[18F]fluoroethyl)-L-tyrosine. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(4), 519-524.
[16]
Langen, K.J.; Jarosch, M.; Muhlensiepen, H.; Hamacher, K.; Broer, S.; Jansen, P.; Zilles, K.; Coenen, H.H. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl. Med. Biol., 2003, 30(5), 501-508.
[17]
Richard, M.A.; Fouquet, J.P.; Lebel, R.; Lepage, M. Determination of an optimal pharmacokinetic model of (18)F-FET for quantitative applications in rat brain tumors. J. Nucl. Med., 2017, 58(8), 1278-1284.
[18]
Bolcaen, J.; Lybaert, K.; Moerman, L.; Descamps, B.; Deblaere, K.; Boterberg, T.; Kalala, J.P.; Van den Broecke, C.; De Vos, F.; Vanhove, C.; Goethals, I. kinetic modeling and graphical analysis of 18F-Fluoromethylcholine (FCho), 18F-Fluoroethyltyrosine (FET) and 18F-Fluorodeoxyglucose (FDG) PET for the fiscrimination between high-grade glioma and radiation necrosis in rats. PLoS One, 2016, 11(8)e0161845
[19]
Thiele, F.; Ehmer, J.; Piroth, M.D.; Eble, M.J.; Coenen, H.H.; Kaiser, H.J.; Schaefer, W.M.; Buell, U.; Boy, C. The quantification of dynamic FET PET imaging and correlation with the clinical outcome in patients with glioblastoma. Phys. Med. Biol., 2009, 54, 5525-5539.
[20]
Prante, O.; Blaser, D.; Maschauer, S.; Kuwert, T. In vitro characterization of the thyroidal uptake of O-(2-[(18)F]fluoroethyl)-L-tyrosine. Nucl. Med. Biol., 2007, 34(3), 305-314.
[21]
Wiriyasermkul, P.; Nagamori, S.; Tominaga, H.; Oriuchi, N.; Kaira, K.; Nakao, H.; Kitashoji, T.; Ohgaki, R.; Tanaka, H.; Endou, H.; Endo, K.; Sakurai, H.; Kanai, Y. Transport of 3-fluoro-L-alpha-methyl-tyrosine by tumor-upregulated L-type amino acid transporter 1: A cause of the tumor uptake in PET. J. Nucl. Med., 2012, 53(8), 1253-1261.
[22]
Hawkins, R.A.; O’Kane, R.L.; Simpson, I.A.; Vina, J.R. Structure of the blood-brain barrier and its role in the transport of amino acids. J. Nutr., 2006, 136(1), 218s-226s.
[23]
Broer, S. Xenopus laevis Oocytes. Methods Mol. Biol., 2003, 227, 245-258.
[24]
Lahoutte, T.; Caveliers, V.; Camargo, S.M.; Franca, R.; Ramadan, T.; Veljkovic, E.; Mertens, J.; Bossuyt, A.; Verrey, F. SPECT and PET amino acid tracer influx via system L (h4F2hc-hLAT1) and its transstimulation. J. Nucl. Med., 2004, 45(9), 1591-1596.
[25]
Habermeier, A.; Graf, J.; Sandhofer, B.F.; Boissel, J.P.; Roesch, F.; Closs, E.I. System L amino acid transporter LAT1 accumulates O-(2-fluoroethyl)-L-tyrosine (FET). Amino Acids, 2015, 47(2), 335-344.
[26]
Meier, C.; Ristic, Z.; Klauser, S.; Verrey, F. Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J., 2002, 21(4), 580-589.
[27]
Laique, S.; Egrise, D.; Monclus, M.; Schmitz, F.; Garcia, C.; Lemaire, C.; Luxen, A.; Goldman, S. L-amino acid load to enhance PET differentiation between tumor and inflammation: an in vitro study on (18)F-FET uptake. Contrast Media Mol. Imaging, 2006, 1(5), 212-220.
[28]
Lahoutte, T.; Caveliers, V.; Franken, P.R.; Bossuyt, A.; Mertens, J.; Everaert, H. Increased tumor uptake of 3-(123)I-Iodo-L-alpha-methyltyrosine after preloading with amino acids: An in vivo animal imaging study. J. Nucl. Med., 2002, 43(9), 1201-1206.
[29]
Tsukada, H.; Sato, K.; Fukumoto, D.; Kakiuchi, T. Evaluation of D-isomers of O-18F-fluoromethyl, O-18F-fluoroethyl and O-18F-fluoropropyl tyrosine as tumour imaging agents in mice. Eur. J. Nucl. Med. Mol. Imaging, 2006, 33(9), 1017-1024.
[30]
Makrides, V.; Bauer, R.; Weber, W.; Wester, H.J.; Fischer, S.; Hinz, R.; Huggel, K.; Opfermann, T.; Herzau, M.; Ganapathy, V.; Verrey, F.; Brust, P. Preferred transport of O-(2-[18F]fluoroethyl)-D-tyrosine (D-FET) into the porcine brain. Brain Res., 2007, 1147, 25-33.
[31]
Stegmayr, C.; Schoneck, M.; Oliveira, D.; Willuweit, A.; Filss, C.; Galldiks, N.; Shah, N.J.; Coenen, H.H.; Langen, K.J. Reproducibility of O-(2-(18)F-fluoroethyl)-L-tyrosine uptake kinetics in brain tumors and influence of corticoid therapy: An experimental study in rat gliomas. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(6), 1115-1123.
[32]
Stegmayr, C.; Stoffels, G.; Kops, E.R.; Lohmann, P.; Galldiks, N.; Shah, N.J.; Neumaier, B.; Langen, K.J. Influence of dexamethasone on O-(2-[(18)F]-Fluoroethyl)-L-Tyrosine uptake in the human brain and quantification of tumor uptake. Mol. Imaging Biol., 2018.
[33]
Fuchs, B.C.; Bode, B.P. Amino acid transporters ASCT2 and LAT1 in cancer: Partners in crime? Semin. Cancer Biol., 2005, 15(4), 254-266.
[34]
Nawashiro, H.; Otani, N.; Shinomiya, N.; Fukui, S.; Ooigawa, H.; Shima, K.; Matsuo, H.; Kanai, Y.; Endou, H. L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int. J. Cancer, 2006, 119(3), 484-492.
[35]
Pauleit, D.; Stoffels, G.; Schaden, W.; Hamacher, K.; Bauer, D.; Tellmann, L.; Herzog, H.; Broer, S.; Coenen, H.H.; Langen, K.J. PET with O-(2-18F-Fluoroethyl)-L-Tyrosine in peripheral tumors: first clinical results. J. Nucl. Med., 2005, 46(3), 411-416.
[36]
Ikotun, O.F.; Marquez, B.V.; Huang, C.; Masuko, K.; Daiji, M.; Masuko, T.; McConathy, J.; Lapi, S.E. Imaging the L-type amino acid transporter-1 (LAT1) with Zr-89 immunoPET. PLoS One, 2013, 8(10)e77476
[37]
Langen, K.J.; Bartenstein, P.; Boecker, H.; Brust, P.; Coenen, H.H.; Drzezga, A.; Grunwald, F.; Krause, B.J.; Kuwert, T.; Sabri, O.; Tatsch, K.; Weber, W.A.; Schreckenberger, M. [German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids]. Nucl. Med. (Stuttg.), 2011, 50(4), 167-173.
[38]
Vander Borght, T.; Asenbaum, S.; Bartenstein, P.; Halldin, C.; Kapucu, O.; Van Laere, K.; Varrone, A.; Tatsch, K. EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur. J. Nucl. Med. Mol. Imaging, 2006, 33(11), 1374-1380.
[39]
Law, I.; Albert, N.L.; Arbizu, J.; Boellaard, R.; Drzezga, A.; Galldiks, N.; la Fougere, C.; Langen, K.J.; Lopci, E.; Lowe, V.; McConathy, J.; Quick, H.H.; Sattler, B.; Schuster, D.M.; Tonn, J.C.; Weller, M. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [(18)F]FDG: version 1.0. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(3), 540-557.
[40]
Langen, K.J.; Roosen, N.; Coenen, H.H.; Kuikka, J.T.; Kuwert, T.; Herzog, H.; Stocklin, G.; Feinendegen, L.E. Brain and brain tumor uptake of L-3-[123I]iodo-alpha-methyl tyrosine: competition with natural L-amino acids. J. Nucl. Med., 1991, 32(6), 1225-1229.
[41]
Bergstrom, M.; Ericson, K.; Hagenfeldt, L.; Mosskin, M.; von Holst, H.; Noren, G.; Eriksson, L.; Ehrin, E.; Johnstrom, P. PET study of methionine accumulation in glioma and normal brain tissue: competition with branched chain amino acids. J. Comput. Assist. Tomogr., 1987, 11(2), 208-213.
[42]
Jansen, N.L.; Graute, V.; Armbruster, L.; Suchorska, B.; Lutz, J.; Eigenbrod, S.; Cumming, P.; Bartenstein, P.; Tonn, J.C.; Kreth, F.W.; la Fougere, C. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(6), 1021-1029.
[44]
Floeth, F.W.; Pauleit, D.; Sabel, M.; Stoffels, G.; Reifenberger, G.; Riemenschneider, M.J.; Jansen, P.; Coenen, H.H.; Steiger, H.J.; Langen, K.J. Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J. Nucl. Med., 2007, 48(4), 519-527.
[45]
Yen, L.F.; Wei, V.C.; Kuo, E.Y.; Lai, T.W. Distinct patterns of cerebral extravasation by Evans blue and sodium fluorescein in rats. PLoS One, 2013, 8(7)e68595
[46]
Spaeth, N.; Wyss, M.T.; Weber, B.; Scheidegger, S.; Lutz, A.; Verwey, J.; Radovanovic, I.; Pahnke, J.; Wild, D.; Westera, G.; Weishaupt, D.; Hermann, D.M.; Kaser-Hotz, B.; Aguzzi, A.; Buck, A. Uptake of 18F-fluorocholine, 18F-fluoroethyl-L-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: Implications for separation of radiation necrosis from tumor recurrence. J. Nucl. Med., 2004, 45(11), 1931-1938.
[47]
Spaeth, N.; Wyss, M.T.; Pahnke, J.; Biollaz, G.; Lutz, A.; Goepfert, K.; Westera, G.; Treyer, V.; Weber, B.; Buck, A. Uptake of 18F-fluorocholine, 18F-fluoro-ethyl-L: -tyrosine and 18F-fluoro-2-deoxyglucose in F98 gliomas in the rat. Eur. J. Nucl. Med. Mol. Imaging, 2006, 33(6), 673-682.
[48]
Stegmayr, C.; Bandelow, U.; Oliveira, D.; Lohmann, P.; Willuweit, A.; Filss, C.; Galldiks, N.; Lubke, J.H.; Shah, N.J.; Ermert, J.; Langen, K.J. Influence of blood-brain barrier permeability on O-(2-(18)F-fluoroethyl)-L-tyrosine uptake in rat gliomas. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(3), 408-416.
[49]
Stegmayr, C.; Oliveira, D.; Niemietz, N.; Willuweit, A.; Lohmann, P.; Galldiks, N.; Shah, N.J.; Ermert, J.; Langen, K.J. Influence of bevacizumab on blood-brain barrier permeability and O-(2-(18)F-Fluoroethyl)-l-Tyrosine uptake in rat gliomas. J. Nucl. Med., 2017, 58(5), 700-705.
[50]
Darpolor, M.M.; Molthen, R.C.; Schmainda, K.M. Multimodality imaging of abnormal vascular perfusion and morphology in preclinical 9L gliosarcoma model. PLoS One, 2011, 6(1)e16621
[51]
Badruddoja, M.A.; Krouwer, H.G.; Rand, S.D.; Rebro, K.J.; Pathak, A.P.; Schmainda, K.M. Antiangiogenic effects of dexamethasone in 9L gliosarcoma assessed by MRI cerebral blood volume maps. Neuro-oncol., 2003, 5(4), 235-243.
[52]
Stober, B.; Tanase, U.; Herz, M.; Seidl, C.; Schwaiger, M.; Senekowitsch-Schmidtke, R. Differentiation of tumour and inflammation: characterisation of [methyl-3H]methionine (MET) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur. J. Nucl. Med. Mol. Imaging, 2006, 33(8), 932-939.
[53]
Lee, T.S.; Ahn, S.H.; Moon, B.S.; Chun, K.S.; Kang, J.H.; Cheon, G.J.; Choi, C.W.; Lim, S.M. Comparison of 18F-FDG, 18F-FET and 18F-FLT for differentiation between tumor and inflammation in rats. Nucl. Med. Biol., 2009, 36(6), 681-686.
[54]
Kaim, A.H.; Weber, B.; Kurrer, M.O.; Westera, G.; Schweitzer, A.; Gottschalk, J.; von Schulthess, G.K.; Buck, A. (18)F-FDG and (18)F-FET uptake in experimental soft tissue infection. Eur. J. Nucl. Med. Mol. Imaging, 2002, 29, 648-654.
[55]
Rau, F.C.; Weber, W.A.; Wester, H.J.; Herz, M.; Becker, I.; Kruger, A.; Schwaiger, M.; Senekowitsch-Schmidtke, R.O. -(2-[(18)F]Fluoroethyl)- L-tyrosine (FET): A tracer for differentiation of tumour from inflammation in murine lymph nodes. Eur. J. Nucl. Med. Mol. Imaging, 2002, 29(8), 1039-1046.
[56]
Floeth, F.W.; Pauleit, D.; Sabel, M.; Reifenberger, G.; Stoffels, G.; Stummer, W.; Rommel, F.; Hamacher, K.; Langen, K.J. 18F-FET PET differentiation of ring-enhancing brain lesions. J. Nucl. Med., 2006, 47(5), 776-782.
[57]
Salber, D.; Stoffels, G.; Pauleit, D.; Oros-Peusquens, A.M.; Shah, N.J.; Klauth, P.; Hamacher, K.; Coenen, H.H.; Langen, K.J. Differential uptake of O-(2-18F-fluoroethyl)-L-tyrosine, L-3H-methionine, and 3H-deoxyglucose in brain abscesses. J. Nucl. Med., 2007, 48(12), 2056-2062.
[58]
Salber, D.; Stoffels, G.; Oros-Peusquens, A.M.; Shah, N.J.; Reifenberger, G.; Hamacher, K.; Coenen, H.H.; Langen, K.J. Comparison of O-(2-18F-fluoroethyl)-L-tyrosine and L-3H-methionine uptake in cerebral hematomas. J. Nucl. Med., 2010, 51(5), 790-797.
[59]
Salber, D.; Stoffels, G.; Pauleit, D.; Reifenberger, G.; Sabel, M.; Shah, N.J.; Hamacher, K.; Coenen, H.H.; Langen, K.J. Differential uptake of [18F]FET and [3H]l-methionine in focal cortical ischemia. Nucl. Med. Biol., 2006, 33(8), 1029-1035.
[60]
Pauleit, D.; Floeth, F.; Hamacher, K.; Riemenschneider, M.J.; Reifenberger, G.; Muller, H.W.; Zilles, K.; Coenen, H.H.; Langen, K.J.O. -(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain, 2005, 128(Pt 3), 678-687.
[61]
Piroth, M.D.; Prasath, J.; Willuweit, A.; Stoffels, G.; Sellhaus, B.; van Osterhout, A.; Geisler, S.; Shah, N.J.; Eble, M.J.; Coenen, H.H.; Langen, K.J. Uptake of O-(2-[18F]fluoroethyl)-L-tyrosine in reactive astrocytosis in the vicinity of cerebral gliomas. Nucl. Med. Biol., 2013, 40(6), 795-800.
[62]
Bolcaen, J.; Descamps, B.; Deblaere, K.; Boterberg, T.; De Vos Pharm, F.; Kalala, J.P.; Van den Broecke, C.; Decrock, E.; Leybaert, L.; Vanhove, C.; Goethals, I. (18)F-fluoromethylcholine (FCho), (18)F-fluoroethyltyrosine (FET), and (18)F-fluorodeoxyglucose (FDG) for the discrimination between high-grade glioma and radiation necrosis in rats: A PET study. Nucl. Med. Biol., 2015, 42(1), 38-45.
[63]
Ceccon, G.; Lohmann, P.; Stoffels, G.; Judov, N.; Filss, C.P.; Rapp, M.; Bauer, E.; Hamisch, C.; Ruge, M.I.; Kocher, M.; Kuchelmeister, K.; Sellhaus, B.; Sabel, M.; Fink, G.R.; Shah, N.J.; Langen, K.J.; Galldiks, N. Dynamic O-(2-18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro-oncol., 2016.
[64]
Galldiks, N.; Stoffels, G.; Filss, C.P.; Piroth, M.D.; Sabel, M.; Ruge, M.I.; Herzog, H.; Shah, N.J.; Fink, G.R.; Coenen, H.H.; Langen, K.J. Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J. Nucl. Med., 2012, 53(9), 1367-1374.
[65]
Ellingson, B.M.; Wen, P.Y.; Cloughesy, T.F. Modified criteria for radiographic response assessment in glioblastoma clinical trials. Neurotherapeutics, 2017, 14(2), 307-320.
[66]
Klasner, B.; Buchmann, N.; Gempt, J.; Ringel, F.; Lapa, C.; Krause, B.J. Early [18F]FET-PET in gliomas after surgical resection: Comparison with MRI and histopathology. PLoS One, 2015, 10(10)e0141153
[67]
Buchmann, N.; Klasner, B.; Gempt, J.; Bauer, J.S.; Pyka, T.; Delbridge, C.; Meyer, B.; Krause, B.J.; Ringel, F. (18)F-Fluoroethyl-l-thyrosine positron emission tomography to delineate tumor residuals after glioblastoma resection: A comparison with standard postoperative magnetic resonance imaging. World Neurosurg., 2016, 89, 420-426.
[68]
Hutterer, M.; Ebner, Y.; Riemenschneider, M.J.; Willuweit, A.; McCoy, M.; Egger, B.; Schroder, M.; Wendl, C.; Hellwig, D.; Grosse, J.; Menhart, K.; Proescholdt, M.; Fritsch, B.; Urbach, H.; Stockhammer, G.; Roelcke, U.; Galldiks, N.; Meyer, P.T.; Langen, K.J.; Hau, P.; Trinka, E. Epileptic activity increases cerebral amino acid transport assessed by 18F-Fluoroethyl-l-tyrosine amino acid PET: A potential brain tumor mimic. J. Nucl. Med., 2017, 58(1), 129-137.
[69]
Theodore, W.H. Presurgical focus localization in epilepsy: PET and SPECT. Semin. Nucl. Med., 2017, 47(1), 44-53.
[70]
Ebenhan, T.; Honer, M.; Ametamey, S.M.; Schubiger, P.A.; Becquet, M.; Ferretti, S.; Cannet, C.; Rausch, M.; McSheehy, P.M. Comparison of [18F]-tracers in various experimental tumor models by PET imaging and identification of an early response biomarker for the novel microtubule stabilizer patupilone. Mol. Imaging Biol., 2009, 11(5), 308-321.
[71]
Wang, H.E.; Yu, H.M.; Liu, R.S.; Lin, M.; Gelovani, J.G.; Hwang, J.J.; Wei, H.J.; Deng, W.P. Molecular imaging with 123I-FIAU, 18F-FUdR, 18F-FET, and 18F-FDG for monitoring herpes simplex virus type 1 thymidine kinase and ganciclovir prodrug activation gene therapy of cancer. J. Nucl. Med., 2006, 47(7), 1161-1171.
[72]
Hayashi, K.; Anzai, N. Novel therapeutic approaches targeting L-type amino acid transporters for cancer treatment. World J. Gastrointest. Oncol., 2017, 9(1), 21-29.
[73]
Menichetti, L.; Petroni, D.; Panetta, D.; Burchielli, S.; Bortolussi, S.; Matteucci, M.; Pascali, G.; Del Turco, S.; Del Guerra, A.; Altieri, S.; Salvadori, P.A. A micro-PET/CT approach using O-(2-[18F]fluoroethyl)-L-tyrosine in an experimental animal model of F98 glioma for BNCT. Appl. Radiat. Isot., 2011, 69(12), 1717-1720.