Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Solar Exfoliated Graphene Oxide: A Platform for Electrochemical Sensing of Epinephrine

Author(s): Renjini Sadhana, Pinky Abraham and Anithakumary Vidyadharan*

Volume 16, Issue 4, 2020

Page: [393 - 403] Pages: 11

DOI: 10.2174/1573411015666190104110928

Price: $65

Abstract

Introduction: In this study, solar exfoliated graphite oxide modified glassy carbon electrode was used for the anodic oxidation of epinephrine in a phosphate buffer medium at pH7. The modified electrode showed fast response and sensitivity towards Epinephrine Molecule (EP). The electrode was characterized electrochemically through Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV). Area of the electrode enhanced three times during modification and studies reveal that the oxidation process of EP occurs by an adsorption controlled process involving two electrons. The results showed a detection limit of 0.50 ± 0.01μM with a linear range up to 100 μM. The rate constant calculated for the electron transfer reaction is 1.35 s-1. The electrode was effective for simultaneous detection of EP in the presence of Ascorbic Acid (AA) and Uric Acid (UA) with well-resolved signals. The sensitivity, selectivity and stability of the sensor were also confirmed.

Methods: Glassy carbon electrode modified by reduced graphene oxide was used for the detection and quantification of epinephrine using cyclic voltammetry and differential pulse voltammetry.

Results: The results showed an enhancement in the electrocatalytic oxidation of epinephrine due to the increase in the effective surface area of the modified electrode. The anodic transfer coefficient, detection limit and electron transfer rate constant of the reaction were also calculated.

Conclusion: The paper reports the determination of epinephrine using reduced graphene oxide modified glassy carbon electrode through CV and DPV. The sensor exhibited excellent reproducibility and repeatability for the detection of epinephrine and also its simultaneous detection of ascorbic acid and uric acid, which coexist in the biological system.

Keywords: Ascorbic acid, Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV), epinephrine, solar exfoliated graphene oxide, uric acid.

Graphical Abstract

[1]
Sivanesan, A.; John, S.A. Selective electrochemical epinephrine sensor using self-assembled monomolecular film of 1,8,15,22-tetraaminophthalocyanato nickel (II) on gold electrode. Electroanalysis, 2008, 20(21), 2340-2346.
[http://dx.doi.org/10.1002/elan.200804331]
[2]
Ren, W.; Luo, H.Q.; Li, N.B. Electrochemical behavior of epinephrine at a glassy carbon electrode modified by electrodeposited films of caffeic acid. Sensors (Basel), 2006, 6, 80-89.
[http://dx.doi.org/10.3390/s6020080]
[3]
Wierzbicka, E.; Sulk, G.D. Fabrication of highly ordered nanoporous thin Au films and their application for electrochemical determination of EP. Sens. Actuators B Chem., 2016, 222, 270-279.
[http://dx.doi.org/10.1016/j.snb.2015.08.066]
[4]
Dawson, G.; Toth, K. Autism spectrum disordes in : D. Cicchetti, D. J. Cohen (Eds). Developemental Physopathology, 2nd Ed. Risk, Disorder and adaptaion; John Wiley & Sons, Inc. Hoboken, New Jersy, USA, 2006, 317-357,
[5]
Vaarmann, A.; Kask, A.; Maeorg, U. Novel and sensitive high performance liquid chromatographic method based on electrochemical coulometric array of catecholamines, kynurenine and indole derivatives of tryptophan. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 769(1), 145-153.
[http://dx.doi.org/10.1016/S1570-0232(01)00639-0] [PMID: 11936687]
[6]
Zhang, W.; He, L.; Gu, Y.; Liu, X.; Jiang, S. Effect of ionic liquid as mobile phase additives on reactions of catecholamines in reversed phase high performance liquid chromatography. Anal. Lett., 2003, 36, 827-838.
[http://dx.doi.org/10.1081/AL-120018802]
[7]
Li, H.; Luo, W.; Hu, X. [Determination of enantiomeric purity for epinephrine by high performance liquid chromatography]. Se Pu, 1999, 17(4), 403-405.
[PMID: 12552866]
[8]
Fatma, B.S. Spectrophotometric and flurometric determination of catechol-amines. Anal. Lett., 1993, 26(2), 278-281.
[9]
Zhu, X.; Shaw, P.N.; Barrett, D.A. Catecholamines derivatized with 4-fluoro-7-nitro-2,13-benzoxadiazole: Characterization of chemical structure and fluorescence properties. Anal. Chim. Acta, 2003, 478(2), 259-269.
[http://dx.doi.org/10.1016/S0003-2670(02)01515-5]
[10]
Zheng, X.W.; Guo, Z.H.; Zhang, Z. Flow-injection electrogenerated chemiluminescence determination of epinephrine using luminal. J. Anal. Chim. Acta, 2001, 441, 81-86.
[http://dx.doi.org/10.1016/S0003-2670(01)01090-X]
[11]
Yao, H.; Sun, Y.Y.; Lin, X.; Cheng, J.; Huang, L. Flow-injection chemiluminescence determination of catecholamines based on their enhancing effects on the luminol-potassium periodate system. Luminescence, 2006, 21(2), 112-117.
[http://dx.doi.org/10.1002/bio.894] [PMID: 16416506]
[12]
Britz-Mckibbin, P.; Kranack, A.R.; Paprica, A.; Chen, D.D. Quantitative assay for epinephrine in dental anesthetic solutions by capillary electrophoresis. Analyst (Lond.), 1998, 123(7), 1461-1463.
[http://dx.doi.org/10.1039/a800772a] [PMID: 9830160]
[13]
Nagaraja, P.; Vasantha, R.A.; Sunitha, K.R. A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations. Talanta, 2001, 55(6), 1039-1046.
[http://dx.doi.org/10.1016/S0039-9140(01)00438-6] [PMID: 18968454]
[14]
Ren, W.; Luo, H.Q.; Li, N.B. Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid. Biosens. Bioelectron., 2006, 21(7), 1086-1092.
[http://dx.doi.org/10.1016/j.bios.2005.04.002] [PMID: 15871920]
[15]
Yu, Z.Y.; Li, X.C.; Wang, X.L.; Cao, K.W. Studies on electrochemical behaviors of epinephrine at a poly(1-aspartic acid) modified glassy carbon electrode and its analytical application. Int. J. Electrochem. Sci., 2011, 6, 3890-3901.
[16]
Zhou, Y.; He, M.; Huang, C.; Dong, S.; Zheng, J. A novel and simple biosensor based on poly(indoleacetic acid) film and its applications for simultaneous electrochemical determination of dopamine and epinephrine in the presence of ascorbic acid. J. Solid State Electrochem., 2012, 16, 2203-2210.
[http://dx.doi.org/10.1007/s10008-012-1646-2]
[17]
Ma, W.; Sun, D.M. The electrochemical properties of dopamine, epinephrine and their simultaneous determination at a poly (L-methionine) modified electrode. Russ. J. Electrochem., 2007, 43, 1382-1389.
[http://dx.doi.org/10.1134/S1023193507120087]
[18]
Yao, H.; Sun, Y.; Lin, X.; Tang, Y.; Liu, A.; Li, G.; Li, W.; Zhang, S. Selective determination of epinephrine in the presence of ascorbic acid and uric acid by electrocatalytic oxidation at poly(eriochrome black T) film-modified glassy carbon electrode. Anal. Sci., 2007, 23(6), 677-682.
[http://dx.doi.org/10.2116/analsci.23.677] [PMID: 17575351]
[19]
Wang, H.S.; Huang, D.Q.; Liu, R.M. Study on the electrochemical behavior of epinephrine at a poly (3-methylthiophene)-modified glassy carbon electrode. J. Electroanal. Chem. (Lausanne Switz.), 2004, 570, 83-90.
[http://dx.doi.org/10.1016/j.jelechem.2004.03.019]
[20]
Goyal, R.N.; Rana, A.R.S.; Chasta, H. Electrochemical and peroxidase-catalyzed oxidation of epinephrine. Electrochim. Acta, 2012, 59, 492-498.
[http://dx.doi.org/10.1016/j.electacta.2011.11.014]
[21]
Wang, G.; Liu, X.; Yu, B.; Luo, G. Electrocatalytic response of norepinephrine at a β-cyclodextrin incorporated carbon nanotube modified electrode. J. Electroanal. Chem. (Lausanne Switz.), 2004, 567, 227-231.
[http://dx.doi.org/10.1016/j.jelechem.2003.12.029]
[22]
Umasankar, Y.; Thiagarajan, S.; Chen, S.M. Nanocomposite of functionalized multiwall carbon nanotubes with nafion, nano platinum, and nano gold biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid. Anal. Biochem., 2007, 365(1), 122-131.
[http://dx.doi.org/10.1016/j.ab.2007.02.034] [PMID: 17428433]
[23]
Ou, L.B.; Liu, Y.N.; Wang, J.; Zhang, L. Enhanced voltammetric detection of epinephrine at a carbon nanotube/nafion composite electrode in the presence of ascorbic acid. J. Nanosci. Nanotechnol., 2009, 9(11), 6614-6619.
[http://dx.doi.org/10.1166/jnn.2009.1471] [PMID: 19908573]
[24]
Zare, H.R.; Nasirizadeh, N. Simultaneous determination of ascorbic acid, adrenaline and uric acid at a hematoxylin multi-wall carbon nanotube modified glassy carbon electrode. Sens. Actuat. B, 2010, 143, 666-672.
[http://dx.doi.org/10.1016/j.snb.2009.10.030]
[25]
Agboola, B.O.; Vilakazi, S.L.; Ozoemena, K.I. Electrochemistry at cobalt(II) tetrasulfophthalocyanine-multi-walled carbon nanotubes modified glassy carbon electrode: a sensing platform for efficient suppression of ascorbic acid in the presence of epinephrine. J. Solid State Electrochem., 2009, 13, 1367-1369.
[http://dx.doi.org/10.1007/s10008-008-0691-3]
[26]
Moraes, F.C.; Golinelli, D.L.C.; Mascaro, L.H.; Machado, S.A.S. Determination of epinephrine in urine using multi-walled carbon nanotube modified with cobaltphthalocyanine in a paraffin composite electrode. Sens. Actuat. B, 2010, 148, 492-497.
[http://dx.doi.org/10.1016/j.snb.2010.05.005]
[27]
Du, X.; Skachko, I.; Barker, A.; Andrei, E.Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol., 2008, 3(8), 491-495.
[http://dx.doi.org/10.1038/nnano.2008.199] [PMID: 18685637]
[28]
Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887), 385-388.
[http://dx.doi.org/10.1126/science.1157996] [PMID: 18635798]
[29]
Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3), 902-907.
[http://dx.doi.org/10.1021/nl0731872] [PMID: 18284217]
[30]
Westervelt, R.M. Applied physics. Graphene nanoelectronics. Science, 2008, 320(5874), 324-325.
[http://dx.doi.org/10.1126/science.1156936] [PMID: 18420920]
[31]
Alwarappan, S.; Erdem, A.; Liu, C.; Li, Z. Probing the electrochemical properties of graphene nanosheets for biosensing applications. J. Phys. Chem. C, 2009, 113, 8853-8857.
[http://dx.doi.org/10.1021/jp9010313]
[32]
Wang, J. Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis, 2005, 17, 7-14.
[http://dx.doi.org/10.1002/elan.200403113]
[33]
Pumera, M.; Ambrosi, A.; Bonanni, A.; Chng, E.L.; Poh, H.L. Graphene for electro chemical sensing and biosensing. TRAC Trends Analyt. Chem., 2010, 29, 954-965.
[http://dx.doi.org/10.1016/j.trac.2010.05.011]
[34]
Li, X.; Chen, M.; Ma, X. Selective determination of epinephrine in the presence of ascorbic acid using a glassy carbon electrode modified with graphene. Anal. Sci., 2012, 28(2), 147-151.
[http://dx.doi.org/10.2116/analsci.28.147] [PMID: 22322807]
[35]
Cui, F.; Zhang, X. Electrochemical sensor for epinephrine based on a glassy carbon modified with graphene/gold nanocomposites. J. Electroanal. Chem. (Lausanne Switz.), 2012, 669, 35-41.
[http://dx.doi.org/10.1016/j.jelechem.2012.01.021]
[36]
Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8), 4806-4814.
[http://dx.doi.org/10.1021/nn1006368] [PMID: 20731455]
[37]
Eswareiah, V.; Aravind, S.S.J.; Ramaprabhu, S. Top down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation. J. Mater. Chem., 2011, 21, 6800-6803.
[http://dx.doi.org/10.1039/c1jm10808e]
[38]
Kudin, K.N.; Ozbas, B.; Schniepp, H.C.; Prud’homme, R.K.; Aksay, I.A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett., 2008, 8(1), 36-41.
[http://dx.doi.org/10.1021/nl071822y] [PMID: 18154315]
[39]
Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; Geim, A.K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett., 2006, 97(18), 187401-187404.
[http://dx.doi.org/10.1103/PhysRevLett.97.187401] [PMID: 17155573]
[40]
Mary Nancy, T.E.; Anithakumary, V. Synergistic electrocatalytic effect of graphene/nickel hydroxide composite for the simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Electrochim. Acta, 2014, 133, 233-240.
[http://dx.doi.org/10.1016/j.electacta.2014.04.027]
[41]
Mary Nacy, T.E.; Anithakumary, V.; Kumaraswamy, B.E. Solar graphene modified glassy carbon electrode for the voltammetric resolution of dopamine, ascorbic acid and uric acid. J. Electroanal. Chem., 2014, 720(721), 107-114.
[http://dx.doi.org/10.1016/j.jelechem.2014.03.015]
[42]
Parisa, S. Dorraji; Fahimeh, Jalali. Novel sensitive electrochemical sensor for simultaneous determination of epinephrine and uric acid by using a nanocomposite of MWCNTs- Chitosan and gold nanoparticles attached to thioglycolic acid. Sens. Actuators B Chem., 2014, 200, 251-258.
[http://dx.doi.org/10.1016/j.snb.2014.04.036]
[43]
Simultaneous determination of ascorbic acid, epinephrine and uric acid by differential pulse voltammetry using poly(3,3′-bis[N,N-bis(carboxymethyl)aminomethyl]-o-cresolsulfonephthalein) modified glassy carbon electrode. Sens. Actuators B Chem., 2010, 150, 321-329.
[http://dx.doi.org/10.1016/j.snb.2010.06.066]
[44]
Anithkumary, V.; Mary Nancy, T.E.; Divya, J.; Sreevalsan, K. Nonenzymatic glucose sensor: Glassy carbon electrode modified with graphene-nickel/nickel oxide composite. Int. J. Electrochem. Sci., 2013, 8, 2220-2228.
[45]
Kang, H.; Jin, Y.; Han, Q. Electrochemical detection of epinephrine using an l-glutamic acid functionalized graphene modified electrode. Anal. Lett., 2014, 47, 1552-1563.
[http://dx.doi.org/10.1080/00032719.2013.876541]
[46]
Bertollahi, H.; Mohadesi, A.; Mahani, S.K.; Akbari, A. Application of modified carbon nanotube paste electrode for simultaneous determination of epinephrine, uric acid and folic acid. Anal. Methods, 2012, 4, 1029-1035.
[http://dx.doi.org/10.1039/c2ay05628c]
[47]
Peik-See, T.; Pandikumar, A.; Nay-Ming, H.; Hong-Ngee, L.; Sulaiman, Y. Simultaneous electrochemical detection of dopamine and ascorbic acid using an iron oxide/reduced graphene oxide modified glassy carbon electrode. Sensors (Basel), 2014, 14(8), 15227-15243.
[http://dx.doi.org/10.3390/s140815227] [PMID: 25195850]
[48]
Fotouhi, L.; Fatollahzadeh, M.; Heravi, M.M. Electrochemical behavior and voltammetric `determination of sulfaguanidine atb a glassy carbon electrode modified with a multi walled carbon nanotube. Int. J. Electrochem. Sci., 2012, 7, 3919-3928.
[49]
Gao, F.; Cai, X.; Wang, X.; Gao, C.; Liu, S.; Gao, F.; Wang, Q. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sens. Actuators B Chem., 2013, 186, 380-387.
[http://dx.doi.org/10.1016/j.snb.2013.06.020]
[50]
Soofiabadi, F.; Amiri, A.; Jahani, S. Application of Cu (II) nanocomplex modified graphite screen printed electrode to improve the sensitivity and selectivity for epinephrine detection. Anal. Bioanal. Electrochem., 2017, 9(3), 340-350.
[51]
Mao, H.; Zhang, H.; Jiang, W.; Liang, J.; Sun, Y.; Zhang, Y.; Wu, Q.; Zhang, G.; Song, X.M. Poly(ionic liquid) functionalized polypyrrole nanotubes supported gold nanoparticles: An efficient electrochemical sensor to detect epinephrine. Mater. Sci. Eng. C, 2017, 75, 495-502.
[http://dx.doi.org/10.1016/j.msec.2017.02.083] [PMID: 28415490]
[52]
Wierzbicka, E.; Sulk, G.D. Nanoporous sponge like Au-Ag films for electrochemical epinephrine sensing. J. Electroanal. Chem. (Lausanne Switz.), 2016, 762, 43-50.
[http://dx.doi.org/10.1016/j.jelechem.2015.12.013]
[53]
Narayana, P.V.; Madhusudana Reddy, T.; Gopal, P.; Mohan Reddy, M.; Ramakrishna Naidu, G. Electrocatalytic boost up of epinephrine and its simultaneous resolution in the presence of serotonin and folic acid at poly(serine)/multi-walled carbon nanotubes composite modified electrode: A voltammetric study. Mater. Sci. Eng. C, 2015, 56, 57-65.
[http://dx.doi.org/10.1016/j.msec.2015.06.011] [PMID: 26249565]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy