[1]
Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr. Med. Chem., 2005, 12, 887-916.
[2]
Bolognese, A.; Correale, G.; Manfra, M.; Levecchia, A.; Mazzoni, O.; Novellino, E.; Lacolla, P.; Sanna, G.; Loddo, R. Antitumor agents. 3. Design, synthesis, and biological evaluation of new pyridoisoquinolindione and dihydrothienoquinolindione derivatives with potent cytotoxic activity. J. Med. Chem., 2004, 47, 849-858.
[3]
Bayer, T.A.; Schafer, S.; Breyh, H.; Breyhan, O.; Wirths, C.; Treiber, G.A. A vicious circle: Role of oxidative stress, intraneuronal Aβ and Cu in Alzheimer’s disease multhaup. Clin. Neuropathol., 2006, 25, 163-171.
[4]
Lacy, A.; O’Kennedy, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des., 2004, 10, 3797-3811.
[5]
Foye, W.O. Principidi Chimica Farmaceutica Piccin- Padova, Italy, 1991.
[6]
Su, C.X.; Mouscadet, J.F.; Chiang, C.C.; Tsai, H.J.; Hsu, L.Y. HIV-1 integrase inhibition of biscoumarin analogues. Chem. Pharm. Bull., 2006, 54, 682-686.
[7]
Trost, B.M. Atom economy-A challenge for organic synthesis: Homogeneous catalysis leads the way. Angew. Chem. Int. Ed. Engl., 1995, 34, 259-281.
[9]
Choudhary, M.I.; Fatima, N.; Khan, K.M.; Jalil, S.; Iqbal, S.; Atta-ur, R. New biscoumarin derivatives-cytotoxicity and enzyme inhibitory activities. Bioorg. Med. Chem., 2006, 14, 8066-8072.
[10]
Ellis, G.P. The Chemistry of Heterocyclic Compounds. In:Chromenes; Chromenes, and Chromenes; Weissberger; E.C.; Taylor, A.; Eds, John Wiley; NewYork, 11,. , 1977.
[11]
Zolfigol, M.A.; Mousavi-Zare, A.R.; Zarei, M. Friedel–Crafts alkylation of 4-hydroxycoumarin catalyzed by sulfonic-acid-functionalized pyridinium chloride as a new ionic liquid. Comp. Rend. Chim., 2014, 17, 1264-1267.
[12]
Khurana, J.M.; Kumar, S. Ionic liquid: An efficient and recyclable medium for the synthesis of octahydroquinazolinone and biscoumarin derivatives. Monatsh. Chem., 2010, 141, 561-564.
[14]
Khan, K.M.; Iqbal, S.; Lodhi, M.A.; Maharvi, G.M.; Zia-Ullah, M.I. Choudhary, Atta-ur-Rahman. S. Perveen, Biscoumarin: New class of urease inhibitors; economical synthesis and activity. Bioorg. Med. Chem., 2004, 12, 1963-1968.
[15]
Hagiwara, H.; Miya, S.; Suzuki, T.; Ando, M.; Yamamoto, I.; Kato, M. Et2AlCl promoted coupling reactions of 4-hydroxy-2-pyrone or 4-hydroxycoumarine with aldehydes: Synthesis of methylenebis-(4-hydroxy-2-pyrone) or methylenebis-(4-hydroxycoumarine) derivatives. Heterocycles, 1999, 51, 493-496.
[16]
Tabatabaeian, K.; Heidari, H.; Khorshidi, A. mamaghani, M.; Mahmoodi, N.O. Synthesis of biscoumarin derivatives by the reaction of aldehydes and 4-hydroxycoumarin using ruthenium(III) chloride hydrate as a versatile homogeneous catalyst. J. Serb. Chem. Soc., 2012, 77, 407-413.
[17]
Khurana, J.M.; Kumar, S. Tetrabutylammonium bromide (TBAB): A neutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives in water and solvent-free conditions. Tetrahedron Lett., 2009, 50, 4125-4127.
[18]
Padalkar, V.; Phatangare, K.; Takale, S.; Pisal, R.; Chaskar, A. Silica supported sodium hydrogen sulfate and indion 190 resin:an efficient and heterogeneous catalyst for facile synthesis of bis-(4-hydroxycoumarin-3-yl)methanes. J. Saudi Chem. Soc., 2015, 19, 42-45.
[19]
Mehrabi, H.; Abusaidi, H. Synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives catalysed by sodium dodecyl sulfate (SDS) in neat water. J. Iran Chem. Soc., 2010, 7, 890-894.
[20]
Yadav, U.N.; Shankarling, G.S. Room temperature ionic liquid choline chloride–oxalic acid: A versatile catalyst for acid-catalyzed transformation in organic reactions. J. Mol. Liq., 2014, 191, 137-141.
[21]
Kandasamy, K.; Pachamuthu, M.P.; Muthusamy, M.; Ganesabaskaran, S.; Ramanathan, A. Synthesis of novel pyrazolylbiscoumarin derivatives using FeTUD-1 as a mesoporous solid acid catalyst. RSC Advances, 2013, 3, 25367-25373.
[22]
Li, W.; Wang, Y.; Wang, Z.; Dai, L.; Wang, Y. Novel SO3H-functionalized ionic liquids based on benzimidazolium cation: Efficient and recyclable catalysts for one-pot synthesis of biscoumarin derivatives. Catal. Lett., 2011, 141, 1651-1658.
[23]
Rodriguez, B.; Bruckmann, A.; Rantanen, T.; Bolm, C. Solvent-free carbon-carbon bond formations in ball mills. Adv. Synth. Catal., 2007, 349, 2213-2233.
[24]
Bruckmann, A.; Krebs, A.; Bolm, C. Organocatalytic reactions: Effects of ball milling, microwave and ultrasound irradiation. Green Chem., 2008, 10, 1131-1141.
[25]
Shan, Z.X.; Luo, X.X.; Hu, L.; Hu, X.Y. New observation on a class of old reactions: Chemoselectivity for the solvent-free reaction of aromatic aldehydes with alkylketones catalyzed by a double-component inorganic base system. Sci. China Chem., 2010, 53, 1095-1101.
[26]
Zare Fekri, L.; Nikpassand, M.; Hasanpour, K. Green aqueous synthesis of mono, bis and trisdihydropyridines using nano Fe3O4 under ultrasound irradiation. Curr. Org. Synth., 2015, 12, 76-79.
[29]
Nikpassand, M.; Zare Fekri, L.; Karimian, L.; Rassa, M. Synthesis of biscoumarin derivatives using nanoparticle Fe3O4 as an efficient reusable heterogeneous catalyst in aqueous media and their antimicrobial activity. Curr. Org. Synth., 2015, 12, 358-362.
[30]
Nikpassand, M.; Zare Fekri, L.; Farokhian, P. An efficient and green synthesis of novel benzoxazole under ultrasound irradiation. Ultrason. Sonochem., 2016, 28, 341-345.
[31]
Kiyani, H.; Ghiasi, M. Potassium phthalimide: An efficient and green organocatalyst for the synthesis of 4-aryl-7-(arylmethylene)-3, 4, 6, 7-tetrahydro-1H-cyclopenta [d] pyrimidin-2 (5H)-ones/thiones under solvent-free conditions. Chin. Chem. Lett., 2014, 25, 313-316.