[1]
Prabhakar, U.; Maeda, H.; Jain, R.K. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res., 2013, 73(8), 2412-2417.
[2]
Gabizon, A.; Shmeeda, H.; Barenholz, Y. Pharmacokinetics of pegylated liposomal doxorubicin: Review of animal and human studies. Clin. Pharmacokinet., 2003, 42(5), 419-436.
[3]
Barenholz, Y. Doxil(R)-the first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[4]
Soloman, R.; Gabizon, AA. Clinical pharmacology of liposomal anthracyclines: Focus on pegylated liposomal doxorubicin. Clin. Lymphoma Myeloma, 2008, 8(1), 21-32.
[5]
Hare, J.I.; Lammers, T.; Ashford, M.B. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev., 2017, 108, 25-38.
[6]
Ruhee, J.; Tahseen, K.; Sourabh, J. Targeted nanosystems for cancer therapy. Curr. Cancer Ther. Rev., 2017, 13(1), 63-73.
[7]
Ferro-Flores, G.; Ocampo-García, B.E.; Santos-Cuevas, C.L. Multifunctional radiolabeled nanoparticles for targeted therapy. Curr. Med. Chem., 2014, 21(1), 124-138.
[8]
Zhou, C.; Yang, S.; Liu, J. Luminescent gold nanoparticles: A new class of nanoprobes for biomedical imaging. Exp. Biol. Med. (Maywood), 2013, 238(11), 1199-1209.
[9]
Letfullin, R.R.; Iversen, C.B.; George, T.F. Modeling nanophotothermal therapy: Kinetics of thermal ablation of healthy and cancerous cell organelles and gold nanoparticles. Nanomedicine, 2011, 7(2), 137-145.
[10]
Luna-Gutierrez, M.; Ferro-Flores, G.; Ocampo-Garcia, B.E. A therapeutic system of 177Lu-labeled gold nanoparticles-RGD internalized in breast cancer cells. J. Mex. Chem. Soc., 2013, 57(3), 212-219.
[11]
Jimenez-Mancilla, N.; Ferro-Flores, G.; Santos-Cuevas, C. Multifunctional targeted therapy system based on 99mTc/177Lu-labeled gold nanoparticles-Tat (49–57)-Lys3-bombesin internalized in nuclei of prostate cancer cells. J. Labelled Comp. Radiopharm., 2013, 56(13), 663-671.
[12]
Vilchis-Juárez, A.; Ferro-Flores, G.; Santos-Cuevas, C. Molecular targeting radiotherapy with cyclo-RGDFK(C) peptides conjugated to 177Lu-labeled gold nanoparticles in tumor-bearing mice. J. Biomed. Nanotechnol., 2014, 10(3), 393-404.
[13]
Gonzalez-Ruíz, A.; Ferro-Flores, G.; Azorín-Vega, E. Synthesis and in vitro evaluation of an antiangiogenic cancer-specific dual-targeting 177Lu-Au-nanoradiopharmaceutical. J. Radioanal. Nucl. Chem., 2017, 314, 1337-1345.
[14]
Mendoza-Nava, H.; Ferro-Flores, G.; Ramírez, F.M. Fluorescent, plasmonic, and radiotherapeutic properties of the 177Lu-Dendrimer-AuNP-Folate-Bombesin nanoprobe located inside cancer cells. Mol. Imaging, 2017, 1615360121177047682017
[15]
Dong, X.; Sun, Z.; Wang, X. An innovative MWCNTs/DOX/TC nanosystem for chemo-photothermal combination therapy of cancer. Nanomedicine, 2018, 13(7), 2271-2280.
[16]
Wang, D.; Ren, Y.; Shao, Y. Facile Preparation of doxorubicin-loaded and folic acid-conjugated carbon nanotubes@poly(N-vinyl pyrrole) for targeted synergistic chemo-photothermal cancer treatment. Bioconjug. Chem., 2017, 28(11), 2815-2822.
[17]
Gannon, C.J.; Cherukuri, P.; Yakobson, B.I. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer, 2007, 110(12), 2654-2665.
[18]
Wolski, P.; Nieszporek, K.; Panczyk, T. Multimodal, pH sensitive, and magnetically assisted carrier of doxorubicin designed and analyzed by means of computer simulations. Langmuir, 2018, 34(7), 2543-2550.
[19]
DeNardo, S.J.; DeNardo, G.L.; Miers, L.A. Development of tumor targeting bioprobes (111In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin. Cancer Res., 2005, 11, 7087s-7092s.
[20]
Qiu, L.; Hu, Q.; Cheng, L. cRGDyK modified pH responsive nanoparticles for specific intracellular delivery of doxorubicin. Acta Biomater., 2016, 30, 285-298.
[21]
Mai, B.T.; Fernandes, S.; Balakrishnan, P.B. Nanosystems based on magnetic nanoparticles and thermo- or pH-responsive polymers: An update and future perspectives. Acc. Chem. Res., 2018, 51(5), 999-1013.
[22]
Kittel, A.; Falus, A.; Buzás, E. Microencapsulation technology by nature: Cell derived extracellular vesicles with therapeutic potential. Eur. J. Microbiol. Immunol. (Bp.), 2013, 3(2), 91-96.
[23]
van der Meel, R.; Fens, M.H.; Vader, P. Extracellular vesicles as drug delivery systems: Lessons from the liposome field. J. Control. Release, 2014, 195, 72-85.