[1]
Gregori M, Masserini M, Mancini S. Nanomedicine for the treatment of Alzheimer’s disease. Nanomedicine 10(7): 1203-18. (2015).
[2]
Wang X, Blanchard J, Grundke-Iqbal I, Wegiel J, Deng HX, Siddique T, et al. Alzheimer disease and amyotrophic lateral sclerosis: an etiopathogenic connection. Acta Neuropathol 127(2): 243-56. (2014).
[3]
Ittner LM, Gotz J. Amyloid-beta and tau--a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2): 65-72. (2011).
[4]
Yan R, Vassar R. Targeting the beta secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol 13(3): 319-29. (2014).
[5]
Masterman D. Treatment of the neuropsychiatric symptoms in Alzheimer’s disease. J Am Med Dir Assoc 4(6)(Suppl.): S146-54. (2003).
[6]
Hyun S, Han A, Jo MH, Hohng S, Yu J. Dicer nuclease-promoted production of Let7a-1 microRNA is enhanced in the presence of tryptophan-containing amphiphilic peptides. Chembiochem: A Eur. J Chem Biol 15(11): 1651-9. (2014).
[7]
Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue): D152-7. (2011).
[8]
Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1): 92-105. (2009).
[9]
Zhu QB, Unmehopa U, Bossers K, Hu YT, Verwer R, Balesar R, et al. MicroRNA-132 and early growth response-1 in nucleus basalis of Meynert during the course of Alzheimer’s disease. Brain 139(Pt 3): 908-21. (2016).
[10]
Banzhaf-Strathmann J, Benito E, May S, Arzberger T, Tahirovic S, Kretzschmar H, et al. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. EMBO J 33(15): 1667-80. (2014).
[11]
Augustin R, Endres K, Reinhardt S, Kuhn PH, Lichtenthaler SF, Hansen J, et al. Computational identification and experimental validation of microRNAs binding to the Alzheimer-related gene ADAM10. BMC Med Genet 13: 35. (2012).
[12]
Jiang ZP, Zhou TB. Role of miR-107 and its signaling pathways in diseases. J Recept Signal Transduct Res 34(5): 338-41. (2014).
[13]
Singh R, Masuda ES, Payan DG. Discovery and development of spleen tyrosine kinase (SYK) inhibitors. J Med Chem 55(8): 3614-43. (2012).
[14]
Abdel-Magid AF. Spleen tyrosine kinase inhibitors (syk) as potential treatment for autoimmune and inflammatory disorders: patent highlight. ACS Med Chem Lett 4(1): 18-9. (2013).
[15]
Paris D, Ait-Ghezala G, Bachmeier C, Laco G, Beaulieu-Abdelahad D, Lin Y, et al. The spleen tyrosine kinase (Syk) regulates Alzheimer amyloid-beta production and Tau hyperphosphorylation. J Biol Chem 289(49): 33927-44. (2014).
[16]
Venkatesan N, Deepa PR, Khetan V, Krishnakumar S. Computational and in vitro investigation of mirna-gene regulations in retinoblastoma pathogenesis: miRNA mimics strategy. Bioinform Biol Insights 9: 89-101. (2015).
[17]
Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46(5): 705-16. (1986).
[18]
Abu-Amer Y. NF-kappaB signaling and bone resorption. Osteoporos Int 24(9): 2377-86. (2013).
[19]
Kim E, Son YJ, Yang Y, Shen T, Kim I, Aravinthan A, et al. 1-(2,3-Dibenzimidazol-2-ylpropyl)-2-methoxybenzene Is a Syk Inhibitor with Anti-Inflammatory Properties. Molecules 21(4): 508. (2016).
[20]
Song SY, Jung YY, Hwang CJ, Lee HP, Sok CH, Kim JH, et al. Inhibitory effect of ent-Sauchinone on amyloidogenesis via inhibition of STAT3-mediated NF-kappaB activation in cultured astrocytes and microglial BV-2 cells. J Neuroinflam 11: 118. (2014).
[21]
Li F, Calingasan NY, Yu F, Mauck WM, Toidze M, Almeida CG, et al. Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. J Neurochem 89(5): 1308-12. (2004).
[22]
Huang M, Liang Y, Chen H, Xu B, Chai C, Xing P. The role of fluoxetine in activating wnt/beta-catenin signaling and repressing beta-amyloid production in an alzheimer mouse model. Front Aging Neurosci 10: 164. (2018).
[23]
Shu B, Zhang X, Du G, Fu Q, Huang L. MicroRNA-107 prevents amyloid-beta-induced neurotoxicity and memory impairment in mice. Int J Mol Med 41(3): 1665-72. (2018).
[24]
Moncini S, Lunghi M, Valmadre A, Grasso M, Del Vescovo V, Riva P, et al. The miR-15/107 Family of microRNA Genes Regulates CDK5R1/p35 with implications for Alzheimer’s disease pathogenesis. Mol Neurobiol 54(6): 4329-42. (2017).
[25]
Wang WX, Wilfred BR, Madathil SK, Tang G, Hu Y, Dimayuga J, et al. miR-107 regulates granulin/progranulin with implications for traumatic brain injury and neurodegenerative disease. Am J Pathol 177(1): 334-45. (2010).
[26]
Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, et al. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28(5): 1213-23. (2008).
[27]
Nelson PT, Wang WX. MiR-107 is reduced in Alzheimer’s disease brain neocortex: validation study. J Alzheimers Dis 21(1): 75-9. (2010).
[28]
Hatterer E, Benon A, Chounlamountri N, Watrin C, Angibaud J, Jouanneau E, et al. Syk kinase is phosphorylated in specific areas of the developing nervous system. Neurosci Res 70(2): 172-82. (2011).
[29]
Kohler C, Fuhr V, Dinekov M. Distribution of spleen tyrosine kinase and tau phosphorylated at tyrosine 18 in a mouse model of tauopathy and in the human hippocampus. Brain Res 1677: 1-13. (2017).
[30]
Schweig JE, Yao H, Beaulieu-Abdelahad D, Ait-Ghezala G, Mouzon B, Crawford F, et al. Alzheimer’s disease pathological lesions activate the spleen tyrosine kinase. Acta Neuropathol Commun 5(1): 69. (2017).
[31]
Mohr S, Doebele C, Comoglio F, Berg T, Beck J, Bohnenberger H, et al. Hoxa9 and Meis1 cooperatively induce addiction to Syk signaling by suppressing miR-146a in acute myeloid leukemia Cancer Cell 31(4): 549-62 e11 (2017).
[32]
Maes OC, Schipper HM, Chertkow HM, Wang E. Methodology for discovery of Alzheimer’s disease blood-based biomarkers. J Gerontol A Biol Sci Med Sci 64(6): 636-45. (2009).
[33]
Maes OC, Xu S, Yu B, Chertkow HM, Wang E, Schipper HM. Transcriptional profiling of Alzheimer blood mononuclear cells by microarray. Neurobiol Aging 28(12): 1795-809. (2007).
[34]
Wang XY, Tang SS, Hu M, Long Y, Li YQ, Liao MX, et al. Leukotriene D4 induces amyloid-beta generation via CysLT(1)R-mediated NF-kappaB pathways in primary neurons. Neurochem Int 62(3): 340-7. (2013).
[35]
Zeng KW, Zhang T, Fu H, Liu GX, Wang XM. Schisandrin B exerts anti-neuroinflammatory activity by inhibiting the Toll-like receptor 4-dependent MyD88/IKK/NF-kappaB signaling pathway in lipopolysaccharide-induced microglia. Eur J Pharmacol 692(1-3): 29-37. (2012).
[36]
Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell 148(6): 1204-22. (2012).
[37]
Wiseman FK, Al-Janabi T, Hardy J, Karmiloff-Smith A, Nizetic D, Tybulewicz VL, et al. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat Rev Neurosci 16(9): 564-74. (2015).
[38]
Kohr MA, Parrish JM, Neef NA, Driessen JR, Hallinan PC. Communication skills training for parents: experimental and social validation. J Appl Behav Anal 21(1): 21-30. (1988).
[39]
Davis PS, Babaria A, March DE, Goldberg RD. Primary amyloidosis of the ureter and renal pelvis. Urol Radiol 9(3): 158-60. (1987).
[40]
Hunt C, Morimoto RI. Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc Natl Acad Sci USA 82(19): 6455-9. (1985).
[41]
Kong Y, Wu J, Yuan L. MicroRNA expression analysis of adult-onset Drosophila Alzheimer’s disease model. Curr Alzheimer Res 11(9): 882-91. (2014).
[42]
Barbash S, Soreq H. Threshold-independent meta-analysis of Alzheimer’s disease transcriptomes shows progressive changes in hippocampal functions, epigenetics and microRNA regulation. Curr Alzheimer Res 9(4): 425-35. (2012).
[43]
Dencker L. Accumulation of retinoids in embryonic neural and neural crest cells as part of the mechanism of teratogenesis. Ups J Med Sci 91(3): 295-8. (1986).