Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

One-year Outcome of Shanghai Mild Cognitive Impairment Cohort Study

Author(s): Bin Zhou*, Qianhua Zhao, Shinsuke Kojima, Ding Ding, Satoshi Higashide, Yoji Nagai, Qihao Guo, Tatsuo Kagimura, Masanori Fukushima and Zhen Hong*

Volume 16, Issue 2, 2019

Page: [156 - 165] Pages: 10

DOI: 10.2174/1567205016666181128151144

Price: $65

Abstract

Background & Objective: The purpose of this study is to identify the risk factors associated with the conversion from Mild Cognitive Impairment (MCI) to Alzheimer’s Disease (AD) dementia for the early detection of AD.

Methods: The study comprised a prospective cohort study that included 400 MCI subjects with annual follow-ups for 3 years.

Results: During the first 12 months’ follow-up, 42 subjects converted to Alzheimer’s dementia (21 probable AD and 21 possible AD), two subjects converted to other types of dementia and 56 subjects lost follow. The factors associated with a greater risk of conversion from MCI to AD included gender, whole brain volume, and right hippocampal volume (rt. HV), as well as scores on the Revised Chinese version of the Alzheimer’s Disease Assessment Scale-Cognitive subscale 13 (ADAS-Cog-C), Clock Drawing Test (CDT), Symbol Digit Modalities Test (SDMT), and Rey-Osterrieth Complex Figure Test (ROCFT). The risk classification of the combined ADAS-Cog-C and Alzheimer Cognitive Composite (ACC) score with the rt. HV and left Entorhinal Cortex Volume (lt. ECV) showed a conversion difference among the groups.

Conclusion: Early detection of AD and potential selection for clinical trial design should utilize the rt. HV, as well as neuropsychological test scores, including those of the ADAS-Cog-C and ACC.

Keywords: Mild cognitive impairment, Alzheimer's disease, risk factors, Alzheimer cognitive composite score, selective reminding test, neuropsychological tests.

[1]
Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Dominantly Inherited Alzheimer Network. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367(9): 795-804. (2012).
[2]
Petersen RC, Thomas RG, Aisen PS, Mohs RC, Carrillo MC, Albert MS. Randomized controlled trials in mild cognitive impairment: Sources of variability. Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Foundation for NIH (FNIH) Biomarkers Consortium AD MCI Placebo Data Analysis Project Team. Neurology 88(18): 1751-8. (2017).
[3]
Guo Q, Zhao Q, Chen M, Ding D, Hong Z. A comparison study of mild cognitive impairment with 3 memory tests among Chinese individuals. Alzheimer Dis Assoc Disord 23(3): 253-9. (2009).
[4]
Silva D, Guerreiro M, Maroco J, Santana I, Rodrigues A, Bravo Marques J, et al. Comparison of four verbal memory tests for the diagnosis and predictive value of mild cognitive impairment. Dement Geriatr Cogn Disord Extra 2: 120-31. (2012).
[5]
Rabin LA, Paré N, Saykin AJ, Brown MJ, Wishart HA, Flashman LA, et al. Differential memory test sensitivity for diagnosing amnestic mild cognitive impairment and predicting conversion to Alzheimer’s disease. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 16(3): 357-76. (2009).
[6]
Tremont G, Miele A, Smith MM, Westervelt HJ. Comparison of verbal memory impairment rates in mild cognitive impairment. J Clin Exp Neuropsychol 32(6): 630-6. (2010).
[7]
Derby CA, Burns LC, Wang C, Katz MJ, Zimmerman ME, L’italien G, et al. Screening for predementia AD: time-dependent operating characteristics of episodic memory tests. Neurology 80(14): 1307-14. (2013).
[8]
Zhou B. Editorial: prevention strategies targeting different preclinical stages of alzheimer’s disease. Curr Alzheimer Res 12(6): 504-6. (2015).
[9]
Donohue MC, Sperling RA, Petersen R, Sun CK, Weiner MW, Aisen PS. Alzheimer’s Disease Neuroimaging Initiative. Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA 317(22): 2305-16. (2014).
[10]
Donohue MC, Sperling RA, Salmon DP, Rentz DM, Raman R, Thomas RG, et al. The preclinical Alzheimer cognitive composite: measuring amyloid-related decline. JAMA Neurol 71(8): 961-70. (2014).
[11]
Teipel S, Drzezga A, Grothe MJ, Barthel H, Chételat G, Schuff N, et al. Multimodal imaging in Alzheimer’s disease: validity and usefulness for early detection. Lancet Neurol 14(10): 1037-53. (2015).
[12]
Wang T, Xiao S, Chen K. Yang C1, Dong S1, Cheng Y, Prevalence, incidence, risk and protective factors of amnestic mild cognitive impairment in the elderly in Shanghai. Curr Alzheimer Res 4(4): 460-6. (2017).
[13]
Wang D, Guo ZH, Liu XH, Li YH, Wang H. Examination of hippocampal differences between Alzheimer disease, amnestic mild cognitive impairment and normal aging: diffusion kurtosis. Curr Alzheimer Res 12(1): 80-7. (2015).
[14]
Wang Y, Cao W, Sun Y, Chen X, Ding W, Xu Q, et al. White matter integrity in subcortical vascular cognitive impairment: a multimodal structural MRI study. Curr Alzheimer Res 14(9): 991-9. (2017).
[15]
Zhou B, Nakatani E, Teramukai S, Nagai Y, Fukushima M. Alzheimer’s Disease Neuroimaging Initiative. Risk classification in mild cognitive impairment patients for developing Alzheimer’s disease. J Alzheimers Dis 30(2): 367-75. (2012).
[16]
Jagust W, Gitcho A, Sun F, Kuczynski B, Mungas D, Haan M. Brain imaging evidence of preclinical Alzheimer’s disease in normal aging. Ann Neurol 59: 673-81. (2006).
[17]
Petrella JR, Wang L, Krishnan S, Slavin MJ, Prince SE, et al. Cortical deactivation in mild cognitive impairment: high-field-strength functional MR imaging 1. Radiology 245: 224-35. (2007).
[18]
den Heijer T, van der Lijn F, Koudstaal PJ, Hofman A, van der Lugt A, Krestin GP, et al. A 10-year follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive decline. Brain133: 1163-1172 (2010).
[19]
DeCarli C, Frisoni GB, Clark CM, Harvey D, Grundman M, Petersen RC, et al. Qualitative estimates of medial temporal atrophy as a predictor of progression from mild cognitive impairment to dementia. Arch Neurol 64: 108-15. (2007).
[20]
Risacher SL, Saykin AJ, West JD, Shen L, Firpi HA, McDonald BC. Baseline MRI predictors of conversion from MCI to Probable AD in the ADNI Cohort. Curr Alzheimer Res 6(4): 347-61. (2009).
[21]
Fischer P, Jungwirth S, Zehetmayer S, Weissgram S, Hoenigschnabl S, Gelpi E, et al. Conversion from subtypes of mild cognitive impairment to Alzheimer dementia. Neurology 68: 288-91. (2007).
[22]
Tabert MH1, Manly JJ, Liu X, Pelton GH, Rosenblum S, Jacobs M, Neuropsychological prediction of conversion to Alzheimer disease in patients with mild cognitive impairment. Arch Gen Psychiatry 63: 916-24. (2006).
[23]
Dickerson BC, Sperling RA, Hyman BT, Albert MS, Blacker D. Clinical prediction of Alzheimer disease dementia across the spectrum of mild cognitive impairment. Arch Gen Psychiatry 64: 1443-50. (2007).
[24]
Fleisher AS, Sowell BB, Taylor C, Gamst AC, Petersen RC, Thal LJ. Study for the ADC. Clinical predictors of progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology 68: 1588-95. (2007).
[25]
Barnes DE, Cenzer IS, Yaffe K, Ritchie CS, Lee SJ. Alzheimer’s Disease Neuroimaging Initiative. A point-based tool to predict conversion from mild cognitive impairment to probable Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc 10(6): 646-55. (2014).
[26]
Lo RY, Hubbard AE, Shaw LM, Trojanowski JQ, Petersen RC, Aisen PS, et al. Alzheimer’s Disease Neuroimaging Initiative. Longitudinal change of biomarkers in cognitive decline. Arch Neurol 68(10): 1257-66. (2011).
[27]
Frisoni GB, Boccardi M, Barkhof F, Blennow K, Cappa S, Chiotis K, et al. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol 16(8): 661-76. (2017).
[28]
Donohue MC, Sun CK, Raman R, Insel PS, Aisen PS. AN-ADNI; AIBL; J-ADNI. Cross-validation of optimized composites for preclinical Alzheimer’s disease. Alzheimers Dement (N Y) 3(1): 123-9. (2017).
[29]
Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3): 270-9. (2011).
[30]
Zhou B, Zhao Q, Kojima S, Ding D, Nagai Y, Guo Q, et al. Shanghai cohort study on mild cognitive impairment: study design and baseline characteristics. J Alzheimers Dis Parkinsonism 6(1): 224. (2016).
[31]
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3): 263-9. (2011).
[32]
Hou XH, Feng L, Zhang C, Cao XP, Tan L, Yu JT. Models for predicting risk of dementia: a systematic review. J Neurol Neurosurg Psychiatry (2018) Jun 28.
[http://dx.doi.org/10.1136/jnnp-2018-318212]
[33]
Li K, Chan W, Doody RS, Quinn J, Luo S. Alzheimer’s Disease Neuroimaging Initiative. Prediction of Conversion to Alzheimer's Disease with Longitudinal Measures and Time-To-Event Data. J Alzheimers Dis 58(2): 361-71. (2017).
[34]
Blennow K, Dubois B, Fagan AM, Lewczuk P, de Leon MJ, Hampel H. Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s disease. Alzheimers Dement 11(1): 58-69. (2015).
[35]
Khan TK, Alkon DL. Alzheimer’s Disease cerebrospinal fluid and neuroimaging biomarkers: diagnostic accuracy and relationship to drug efficacy. J Alzheimers Dis 46(4): 817-36. (2015).
[36]
Huang Y, Ito K, Billing CB Jr, Anziano RJ. Alzheimer’s Disease Neuroimaging Initiative. Development of a straight forward and sensitive scale for MCI and early AD clinical trials. Alzheimers Dement 11(4): 404-14. (2015).
[37]
Mormino EC, Papp KV, Rentz DM, Donohue MC, Amariglio R, Quiroz YT, et al. Early and late change on the preclinical Alzheimer’s cognitive composite in clinically normal older individuals with elevated amyloid-β. Alzheimers Dement 13(9): 1004-12. (2017).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy