[1]
Kopelman, P.G. Obesity as a medical problem. Nature, 2000, 404(6778), 635-643.
[2]
Cairns, E. Obesity: the fat lady sings? Drug Discov. Today, 2005, 10(5), 305-307.
[3]
Trigueros, L.; Peña, S.; Ugidos, A.V.; Sayas-Barberá, E.; Pérez-Álvarez, J.A.; Sendra, E. Food ingredients as anti-obesity agents: A review. Crit. Rev. Food Sci. Nutr., 2013, 53(9), 929-942.
[4]
Jebb, S. Obesity: causes and consequences. Women’s. Health Med., 2004, 1, 38-41.
[5]
Calle, E.E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med., 2003, 348(17), 1625-1638.
[6]
Finer, N. Medical consequences of obesity. Medicine (Baltimore), 2006, 34, 510-514.
[7]
Shi, Y.; Burn, P. Lipid metabolic enzymes: emerging drug targets for the treatment of obesity. Nat. Rev. Drug Discov., 2004, 3(8), 695-710.
[8]
de, la, Garza, A.L.; Milagro, F.I.; Boque, N.; Campión, J.; Martínez, J.A. Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Med., 2011, 77, 773-785.
[9]
Kang, J.G.; Park, C.Y. Anti-obesity drugs: a review about their effects and safety. Diabetes Metab. J., 2012, 36(1), 13-25.
[10]
Bourne, Y.; Martinez, C.; Kerfelec, B.; Lombardo, D.; Chapus, C.; Cambillau, C. Horse pancreatic lipase. The crystal structure refined at 2.3 A resolution. J. Mol. Biol., 1994, 238(5), 709-732.
[11]
Van, T.H.; Sarda, L.; Verger, R.; Cambillau, C. Structure of the pancre¬atic lipase-procolipase complex. Nature, 1992, 359, 159-162.
[12]
Birari, R.B.; Bhutani, K.K. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov. Today, 2007, 12(19-20), 879-889.
[13]
Panwar, U.; Singh, S.K. Structure-based virtual screening toward the discovery of novel inhibitors for impeding the protein-protein interaction between HIV-1 integrase and human lens epithelium-derived growth factor (LEDGF/p75). J. Biomol. Struct. Dyn., 2018, 36(12), 3199-3217.
[14]
Reddy, K.K.; Singh, S.K. Combined ligand and structure-based approaches on HIV-1 integrase strand transfer inhibitors. Chem. Biol. Interact., 2014, 218, 71-81.
[15]
Aarthy, M.; Panwar, U.; Selvaraj, C.; Singh, S.K. Advantages of Structure-Based Drug Design Approaches in Neurological Disorders. Curr. Neuropharmacol., 2017, 15(8), 1136-1155.
[16]
Panwar, U.; Singh, S.K. An Overview on Zika Virus and the Importance of Computational Drug Discovery. J. Expl. Res. Pharm., 2018, 3, 43-51.
[17]
Egloff, M.P.; Marguet, F.; Buono, G.; Verger, R.; Cambillau, C.; van Tilbeurgh, H. The 2.46 A resolution structure of the pancreatic lipase-colipase complex inhibited by a C11 alkyl phosphonate. Biochemistry, 1995, 34(9), 2751-2762.
[19]
Protein Preparation Wizard; Schrödinger, LLC: New York, NY, 2015.
[20]
Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and Testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 1996, 118, 11225-11236.
[21]
Reddy, K.K.; Singh, P.; Singh, S.K. Blocking the interaction between HIV-1 integrase and human LEDGF/p75: Mutational studies, virtual screening and molecular dynamics simulations. Mol. Biosyst., 2014, 10(3), 526-536.
[22]
Selvaraj, C.; Priya, R.B.; Lee, J.K.; Singh, S.K. Mechanistic Insights of SrtA-LPXTG Blockers targeting the transpeptidase mechanism in Streptococcus mutans. RSC Advances, 2015, 5, 100498-100510.
[23]
Glide; Schrödinger, LLC: New York, NY, 2015.
[24]
LigPrep; Schrödinger, LLC: New York, NY, 2015.
[25]
Singh, S.; Vijaya Prabhu, S.; Suryanarayanan, V.; Bhardwaj, R.; Singh, S.K.; Dubey, V.K. Molecular docking and structure-based virtual screening studies of potential drug target, CAAX prenyl proteases, of Leishmania donovani. J. Biomol. Struct. Dyn., 2016, 34(11), 2367-2386.
[26]
Suryanarayanan, V.; Singh, S.K. Assessment of dual inhibition property of newly discovered inhibitors against PCAF and GCN5 through in silico screening, molecular dynamics simulation and DFT approach. J. Recept. Signal Transduct. Res., 2015, 35(5), 370-380.
[27]
Sherman, W.; Beard, H.S.; Farid, R. Use of an induced fit receptor structure in virtual screening. Chem. Biol. Drug Des., 2006, 67(1), 83-84.
[28]
Prime; Schrödinger, LLC: New York, NY, 2015.
[29]
Lyne, P.D.; Lamb, M.L.; Saeh, J.C. Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J. Med. Chem., 2006, 49(16), 4805-4808.
[30]
QikProp; Schrödinger, LLC: New York, NY, 2015.
[31]
Jaguar; Schrödinger, LLC: New York, NY, 2015.
[32]
Adcock, S.A.; McCammon, J.A. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chem. Rev., 2006, 106(5), 1589-1615.
[33]
Durrant, J.D.; McCammon, J.A. Molecular dynamics simulations and drug discovery. BMC Biol., 2011, 9, 71.
[34]
Tripathi, S.K.; Singh, S.K. Insights into the structural basis of 3,5-diaminoindazoles as CDK2 inhibitors: Prediction of binding modes and potency by QM-MM interaction, MESP and MD simulation. Mol. Biosyst., 2014, 10(8), 2189-2201.